Mechatronics

Sensory Feedback for Smart Prosthetics

Researchers aim for 'direct brain control' of prosthetic arms

Engineers work to design prosthetic arm that allows amputees to feel what they touch

http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=15983&SnID=1928...

Engineering researchers at four U.S. universities are embarking on a four-year project to design a prosthetic arm that amputees can control directly with their brains and that will allow them to feel what they touch. While it may sound like science fiction, the researchers say much of the technology has already been proven in small-scale demonstrations.

The research at Rice University, the University of Michigan, Drexel University and the University of Maryland is made possible by a $1.2 million grant from the National Science Foundation's Human-Centered Computing program.

Category: 

Effects of Discretization on the K-Width of Series Elastic Actuators

Rigid haptic devices enable humans to physically interact with virtual environments, and the range of impedances that can be safely rendered using these rigid devices is quantified by the Z-Width metric. Series elastic actuators (SEAs) similarly modulate the impedance felt by the human operator when interacting with a robotic device, and, in particular, the robot's perceived stiffness can be controlled by changing the elastic element's equilibrium position.

Project Status: 

Active

Category: 

A Time Domain Approach to Control of Series Elastic Actuators: Adaptive Torque and Passivity-Based Impedance Control

Robots are increasingly designed to physically interact with humans in unstructured environments, and as such must operate both accurately and safely. Leveraging compliant actuation, typically in the form of series elastic actuators (SEAs), can guarantee this required level of safety. To date, a number of frequency domain techniques have been proposed which yield effective SEA torque and impedance control; however, these methods are accompanied by undesirable stability constraints.

Project Status: 

Active

Category: 

Development and Control of a 3DOF MRI-Compatible Haptic Device

Through the use of functional magnetic resonance imaging (fMRI) in conjunction with a haptic device, it is possible to study changes in brain activity while a patient undergoes rehabilitation-like protocols. By measuring changes in brain activity of a patient undergoing neurorehabilitation during fMRI, optimal patient-specific therapy regimens might be obtained. This research aims to develop, characterize, and control a parallel three degrees of freedom magnetic resonance (MR) compatible haptic device, called the MR-SoftWrist, which can measure and support wrist movements during fMRI.

Project Status: 

Active

Category: 

Hands-on Haptics: The Haptic Paddle

The primary goal of the Haptic Paddle is to improve learning outcomes in a required undergraduate mechanical engineering course via student-centered learning and laboratory topics featuring integrated systems. The labs integrate haptic technology, LabVIEW, MATLAB simulations, and system interfacing in experiments to enhance understanding of dynamic systems and controls.

Project Status: 

Active

Category: 

A Lyapunov approach for SOSM based velocity estimation and its application to improve bilateral teleoperation performance

In many mechatronic applications, velocity estimation is required for implementation of closed loop control. Proportional-Integral control based differentiation has been proposed to estimate velocity in bilateral teleoperation. We propose a Second Order Sliding Mode (SOSM) based velocity estimation scheme for this application, since the SOSM approach is robust to small disturbances near the origin. Simulation results demonstrate the superior performance of the SOSM based velocity estimation over the PI-control approach for bilateral teleoperation in viscous environments.

Project Status: 

Inactive

Category: 

Pages

Subscribe to RSS - Mechatronics