Rehabilitation Robotics

Remembering Motor Skills with Reward-Based Reinforcement, Haptic Guidance, and Error Augmentation

There has been significant research aimed at leveraging programmable robotic devices to provide haptic assistance or augmentation to a human user so that new motor skills can be trained efficiently and retained long after training has concluded. The success of these approaches has been varied, and retention of skill is typically not significantly better for groups exposed to these controllers during training. These findings point to a need to incorporate a more complete understanding of human motor learning principles when designing haptic interactions with the trainee.

Project Status: 

Inactive

Category: 

Development and Control of a 3DOF MRI-Compatible Haptic Device

Through the use of functional magnetic resonance imaging (fMRI) in conjunction with a haptic device, it is possible to study changes in brain activity while a patient undergoes rehabilitation-like protocols. By measuring changes in brain activity of a patient undergoing neurorehabilitation during fMRI, optimal patient-specific therapy regimens might be obtained. This research aims to develop, characterize, and control a parallel three degrees of freedom magnetic resonance (MR) compatible haptic device, called the MR-SoftWrist, which can measure and support wrist movements during fMRI.

Project Status: 

Inactive

Category: 

Minimal Assist-as-Needed (mAAN) Controller for Robotic Rehabilitation

Providing minimal assistance to neurologically impaired individuals only becomes possible when the subject's functional capability is known.  In this research we introduce a minimal assist-as-needed (mAAN) controller which utilizes sensorless force estimation to determine subject inputs as a function of time, before providing a corresponding assistance with adjustable ultimate bounds on position error.

Project Status: 

Inactive

Category: 

Design and Development of Exoskeletons for Hand-Wrist Rehabilitation

Robotic devices are excellent candidates for delivering repetitive and intensive practice that can restore functional use of the upper limbs, even years after a stroke. Rehabilitation of the wrist and hand in particular are critical for recovery of function, since hands are the primary interface with the world.  However, robotic devices that focus on hand rehabilitation are limited due to excessive cost, complexity, or limited functionality. A design and control strategy for such devices that bridges this gap is critical.

Project Status: 

Inactive

Category: 

Robot Assisted Rehabilitation - Spinal Cord Injury (SCI)

The objective of this research effort is to develop a rehabilitation robot and associated controllers to be used in both therapy and evaluation of subjects with incomplete spinal-cord injuries. We are working in collaboration with Dr. Gerard Francisco and Dr. Nuray Yozbatiran of TIRR-Memorial Hermann and UTHealth.

Project Status: 

Inactive

Category: 

Robotic assisted rehabilitation-Stroke

Robotic systems provide numerous opportunities to improve the effectiveness of rehabilitation protocols and to lower therapy expenses for stroke patients. Because treatment intensity has a significant effect on motor recovery after stroke, the use of robotics has potential to automate labor-intensive therapy procedures. Additional potential advantages of robotics include bringing therapy to new venues including the home, new sensing capabilities for monitoring progress, and increased therapy efficiency with the possibility of group therapy.

Project Status: 

Inactive

Category: 

Pages

Subscribe to RSS - Rehabilitation Robotics