
1083-4435 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2016.2557727, IEEE/ASME
Transactions on Mechatronics

energy, and then adjusted between trials based on resulting
performance. Upper limit EU must be less than the maximum
energy, and lower limit EL must be greater than zero. Finally,
while other monotonic functions are viable, f was chosen to
affect a linear interpolation between Zd and Z∗d , since this
affords an intuitive interpretation of the impedance rendered
throughout the transition region. So long as Z∗d can always be
rendered passively, the iPC guarantees at least input-to-state
stability, regardless of the other parameter selections. To better
demonstrate an SEA with iPC, example simulation results are
provided in Fig. 5.

IV. EXPERIMENTAL VALIDATION

We performed the subsequent experiments on a single
degree-of-freedom linear SEA [33]. Our device—along with
its enumerated components—is shown in Fig. 6. A brushed
DC motor (Maxon Motor, RE 30) and rotary incremental
encoder (Maxon Motor, HEDL 5540) are mounted to the
ground frame; this motor drives a cable-wrapped pulley to
control the translational slider’s motion. An elastic element,
which has been characterized to have stiffness K = 1075 N/m,
lies between the slider and load and consists of a compactly-
housed bidirectional spring together with a linear incremental
encoder (US Digital, EM1-0-500-I) that directly measures
spring deflection. Our experimental platform was designed for
two load conditions: a fixed output for studying SEA force
control, and a backdrivable mode for testing SEA interaction
control. When varying load position, we employed another
identical motor and transmission unit rigidly attached to the
spring output. This second motor was treated as a pure velocity
source, and resulting load positions were measured by sub-
tracting spring deflection from actuator position. Controllers
were executed using MATLAB/Simulink, and data acquisition
at a sampling rate of 1 kHz was realized by QuaRC.

A. Demonstration of MRAC for SEAs

We here seek to experimentally verify that the proposed
MRAC for SEAs can provide desired force performance
despite errors in the initial parameter estimates. During this
test we rigidly attached our linear SEA output to the ground
frame such that xL was fixed; accordingly, actuator translation
directly corresponded to load forces, FL = KxA. The system
attempted to track a sinusoidal desired load force FL,d with
0.5 Hz frequency and an amplitude oscillating between ±15
N—due to the proportionality of load force and actuator
position, this equated to an appropriately scaled desired ac-
tuator trajectory xA,d. In picking the second order transfer
function for the reference model (6), we selected a natural
frequency of 10 Hz and a critical damping ratio. Given that
the resultant reference poles are twenty times faster than the
signal frequency, Qf (s) ≈ 1, and the desired load force can
be accurately output with low impedance (19).

Recall that the parameter vector φ contains estimates of JA,
BA, K, µ1, and µ2. We purposely initialized φ to be different
from φ∗, the “true” parameter values, to demonstrate that
errors in ĴA, B̂A, K̂, µ̂1, and µ̂2 can be accommodated under
MRAC for SEAs. Practically, these intentional mistakes were

Fig. 6. Experimental linear SEA test-bed: (1) actuator-side DC motor, (2)
translational slider, (3) bidirectional spring, (4) incremental encoder, (5) load-
side DC motor.

(a)

(b)

Fig. 7. Example force control performance using MRAC for SEAs. (a)
Comparison of reference model and actuator position: error, which is defined
as the difference between xA and xA,m, decreases in amplitude as xA
converges to xA,m. (b) Parameter adaption for an unknown plant: the
estimated plant parameters converge from erroneous initial conditions to yield
desired closed-loop behavior. Prior to this test, we identified M = 0.5 kg,
BA = 10 N·s/m, and K = 1075 N/m.

meant to simulate a situation in which the plant had not been
exactly identified, or where its properties had changed over
time. The parameter estimate φ was updated in real time by
integrating the adaption law (17). When constructing the con-
trol law (7), we determined the sign of velocity via continuous
sat(tanh(·)) functions for f1 and f2. The symmetric positive
definite matrix P was chosen using the Kalman-Yakubovich
lemma such that errors in actuator position were weighted
significantly higher than errors in actuator velocity; moreover,
the scalar gain γ was tuned so convergence could be observed
over the test’s 30 s length.

Fig. 7 depicts the results of this experiment, both in terms of
actuator position and parameter estimates—these plots allow
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us to evaluate MRAC stability and parameter convergence.
From Fig. 7(a) it is evident that xA more closely resembles
xA,m as t increases; furthermore, performance improvements
temporally correspond to the parameter adjustments. Position
error does not converge to zero, however, which we believe
stems from an unknown and repeated model variation, possibly
motor backlash. Turning our attention to Fig. 7(b), we observe
that the parameters desirably change so that FA induces
model following, but do not necessarily converge to their true
values—e.g., M̂A settles near 2MA. This behavior again aligns
with previously stated theoretical expectations, particularly
since the input signal is not persistently exciting. Although
Coulomb friction parameters grew throughout the given time
scale, they converged during longer tests.

B. Comparison of DOB and MRAC for SEAs

The following experiment endeavors to exhibit overarching
stability and convergence trends for both robust and adaptive
SEA force controllers, and focuses on the consequences of
parameter uncertainty. Our goal here is not to claim one ap-
proach is “better,” but rather to demonstrate that, unlike DOB
methods, MRAC for SEAs is stable under arbitrary parameter
uncertainty. We employed the robust controller described by
[10]—which includes a filter Q(s), a PD controller C(s), and
a nominal plant Pn(s)—together with our proposed MRAC
for SEAs. The spring output was again rigidly attached to
the ground frame, and each controller attempted to track a
sinusoidal load force of 10 N amplitude and 0.5 Hz frequency
for 10 s. Before performing any testing, we experimentally
identified our SEA. The estimated plant parameters, along with
reference model parameters, DOB control gains, and MRAC
control gains, are enumerated in Table I. By inserting these
values into the controller developed within Section II, as well
as the DOB block diagram introduced in [10], the following
experimental results can be replicated through simulation.

While we kept other initial parameters at their true value, we
increased the estimated spring constant K̂ by 0.5K after each
pair of trials. Of course, changing K̂ introduced parameter es-
timation error and provided a straightforward means to monitor
the influence of system knowledge on controller behavior. A
total of 8 trials were performed—4 with each controller—and
the experimental results are plotted in Fig. 8. Norm position
error here refers to the L2-norm of the difference between xA
and xA,m taken over 2 s intervals. Note that the DOB method

TABLE I
PLANT PARAMETERS AND CONTROLLER GAINS

Plant Pn(s) Model Q(s)

MA 0.5 kg ωn 10 Hz
BA 10 N·s/m ζ 1
K 1075 N/m

µ1, µ2 0

DOB Gains C(s) MRAC Gains

KP 100 N/m Q 106(I2)
KD 10 N·s/m γ 104

Fig. 8. Performance of DOB and MRAC during SEA force control while
parameter estimation errors are present. When K̂/K = 2.5 the DOB
approach becomes rapidly unstable.

quickly becomes unstable when K̂ = 2.5K; hence, its norm
position error is uniquely calculated at 0.2 s increments.

Two general trends can be extracted from Fig. 8: (a) the
robust controller offered consistent performance throughout
individual tests, while adaptive controller performance con-
verged toward a common behavior, and (b) parameter un-
certainty incurred instability in the robust controller, yet did
not alter the long-term tracking of our adaptive controller.
Increasing estimated parameter error augments the magnitude
of a multiplicative perturbation ∆ for DOB, but has no effect
on ∆ within MRAC; as shown, when ∆→∞, DOB perfor-
mance degrades (K̂/K = 2) and eventually becomes unstable
(K̂/K = 2.5). The plot also suggests that MRACs provide
better performance even in the absence of parameter error—
potential gain variations and model inaccuracies, however,
prevent us from inferring an underlying advantage.

C. Impact of iPC Settings on SEA Performance

We next endeavored to heuristically establish how different
iPC parameter selections altered the behavior of an SEA under
impedance control. During this test load position xL was
methodically varied by a second actuator, which attempted
to follow a 0.5 Hz frequency and 4.25 mm amplitude cosine
wave that had a −4.25 mm offset bias; simultaneously, our
SEA interface sought to passively render Zds = 2K. We
performed 9 trials, each 120 s in duration. With the intention
of providing a consistent means for comparison, we first
conducted a “baseline” case where the SEA used cascaded
force control, the iPC upper energy bound EU equaled 0.05
J, and the iPC passive impedance Z∗ds was defined as 0.1K.
Subsequent trials changed one parameter—whether that be the
controller, EU , or Z∗d—with respect to this baseline case.
Control gains, EL, and other variables were held constant
throughout.

Plots of averaged load force vs. load displacement are
shown in Fig. 9. The slope of these curves corresponds
to Zs, the stiffness rendered at the SEA output. Near low
energy states the system renders stiffnesses less than 2K;
however, as displacement increases, stiffnesses approaching
the desired 2K were observed during each trial. We found that
smaller values of EU and K∗d yield worse performance around
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(a)

(b)

(c)

Fig. 9. Average load force as a function of load displacement while using
different iPC parameter values. The baseline case, denoted by a blue line
with square markers, is constant across each plot. Dashed gray and black
lines correspond to the actual spring stiffness and desired output stiffness,
respectively. (a) Application of different force control schemes. (b) Effects of
varying the lower bound of the interpolation region. (c) Effects of varying
the passive impedance; dashed colored lines indicate the addition of damping
within Z∗d .

equilibrium, but caused more rapid transitions to the desired
stiffness. Increasing B∗d enables higher perceived stiffnesses
across the spectrum of displacement—since damping induces
energy dissipation, this result matches expectation.

Numerical outcomes of Fig. 9 are summarized in Table II.
Each row corresponds to a unique trial, while the first column
denotes the modified parameter; tests should be contrasted
with analogous trials—those varying the same parameter—
as well as the baseline case. Let x̄L indicate the mean load
path across all trials; then xL normalized error, a scaled
metric of input deviation, was calculated as ‖xL− x̄L‖/‖x̄L‖.
The amount of dissipated interaction energy was simply EP

measured at a trial’s completion. The variable f is defined in
(30), and dictates desired impedance. Perceived SEA stiffness

Fig. 10. Bode magnitude plot of normalized perceived stiffnesses for an SEA
under impedance control. Cases without the iPC are shown in solid lines, while
those with an iPC use dotted lines. Note that rendering Zds = 1.5K without
the iPC was not passive.

was computed according to Zs = −FL/xL, and singular data
points where xL → 0 were discarded. Finally, recalling that
FL,d = −ZdxLs, load force normalized error was calculated
as ‖FL − FL,d‖/‖FL,d‖.

Due to the presence of the proposed iPC, every listed trial
maintained passivity throughout the experiment; in another
novel result, the iPC worked successfully with linear, robust,
and adaptive SEA force controllers. We found that increasing
EU unsurprisingly led to greater EP —i.e., a more conservative
system—but harmed other performance metrics. On the other
hand, decreasing EU instigated more aggressive behavior:
EP decreased, Zs ≥ 1.5K more often, and normalized
FL error diminished. Varying K∗d produced a similar trade-
off, where augmenting K∗d reduced EP but improved the
remaining metrics; increasing the disparity between Kd and
K∗d , however, facilitated more accurate rendering during large
xL displacements at the expense of lower Z near equilib-
rium. The addition of B∗d substantially increased both EP

and overall performance—but the use of B∗d is sensitive to
measurement delays and controller properties, and may not
always be possible.

D. Effect of iPCs on SEA Bandwidth

In our final experiment, we studied the manner in which
iPCs changed the high frequency behavior of impedance
controlled SEAs. An actuator modulated load position such
that xL tracked a Schroeder multisine; this input had a flat
frequency spectrum in the range 0.1−8 Hz, and was scaled to a
maximum amplitude of 5 mm. For the first 3 trials—performed
without an iPC—the SEA attempted to render virtual stiff-
nesses 0.5K, K, and 1.5K. Throughout the next 5 trials—now
including the iPC—the SEA sought to render Zds = 1.5K;
here Z∗ds = 0.5K, and only the initial interaction energy
EP (0) varied between tests. A cascaded force controller was
leveraged, along with iPC parameters given for the previous
section’s baseline case. We identified Z(s)s by the MATLAB
function tfestimate using measured input −xL and output
FL; all estimates had a coherence function above 0.9 across
relevant frequencies.

The frequency responses of SEA virtual stiffness transfer
functions are depicted in Fig. 10. For trials where EP (0) ≥ 0,
the iPC maintained passivity, and for the test where EP (0) <
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TABLE II
EFFECT OF CONTROLLER, TRANSITION REGION, AND Z∗d ON SEA PERFORMANCE WHILE Zds = 2K

xL Norm. Error EP Dissipated [J] f Mean f Std. % Time Zs ≥ 1.5K FL Norm. Error

Baseline 0.0136 0.0128 0.4768 0.3060 30.32 0.2905

DOB 0.0164 0.0157 0.3519 0.2830 40.35 0.2291
MRAC 0.0170 0.0154 0.4519 0.3061 32.61 0.2759

EU = 0.1 0.0337 0.0354 0.5021 0.1853 15.77 0.3688
EU = 0.01 0.0262 0.0008 0.4009 0.4264 52.11 0.1769

Z∗d = 0.5K/s 0.0121 0.0068 0.5283 0.3398 32.59 0.2466
Z∗d = 0.1K/s+ 50 0.0184 0.0206 0.3265 0.2655 42.55 0.1771
Z∗d = 0.5K/s+ 50 0.0135 0.0166 0.3901 0.3010 42.37 0.1653
Z∗d = K/s+ 50 0.0131 0.0033 0.5160 0.3578 43.21 0.1515

0, the iPC dissipated energy. We conclude that—when using
an iPC—the Bode magnitude plot of Z(s)s is bounded by
the frequency responses of strictly rendering Zds, the de-
sired stiffness, and Z∗ds, our secondary impedance. The iPC
system displayed a range of stiffnesses between Zds and
Z∗ds at a given frequency; since Z ′d is dependent on EP ,
this phenomenon stems from the time domain nature of our
solution. Hypothetically, any behavior contained within the
envelope described by Zds and Z∗ds is therefore possible.
We finally note that Z(s)s converged to K as ω → ∞,
demonstrating that the proposed iPC both works throughout
a reasonable frequency range, and preserves underlying SEA
high-frequency behavior.

V. DISCUSSION AND CONCLUSION

This article addressed compliant actuator control issues
in the context of time domain theory, and focused on the
fundamental tasks of stable SEA torque control and passive
SEA impedance control. A model reference adaptive controller
was first developed for SEAs, and was subsequently shown
to track desired closed-loop behavior with Lyapunov stabil-
ity. MRAC provides requested performance characteristics by
continuously estimating the system’s inertia, damping, spring
stiffness, and Coulomb friction; we theoretically and exper-
imentally demonstrated that our adaptive approach is stable
despite parameter uncertainty, while state-of-the-art SEA dis-
turbance observers may suffer parameter-induced instability.
Moreover, unlike prior adaptive controllers for SEAs, the
proposed formulation does not involve user dynamics, and can
be safely integrated into an interaction control scheme using
the described energy analysis method.

We next applied network theory—and, in particular, the
time domain passivity approach—to ensure the safety of
SEAs under impedance control schemes. Frequency domain
tests such as the positive real property can determine linear
controller passivity; however, each potential impedance/torque
controller combination must be individually evaluated, and
results cannot be extended to time-varying systems. On the
other hand, by placing SEAs under impedance control in
the context of network models, energy can be measured
using passivity observers and dissipated through passivity
controllers. We formulated the energy conditions for passivity

when augmenting any stable torque controller with an arbi-
trary impedance, and developed a novel impedance passivity
controller which enabled SEAs to passively render stiffnesses
above their natural stiffness. It was interesting to note that
compliant actuation necessarily introduces a mechanical time
delay between commanded and actual end effector torque,
which demands a different solution than the communication
time delays common within haptic and bilateral teleoperation
systems. Experiments highlighted the effects of the iPC tran-
sition region on performance metrics and the influences of an
iPC on bandwidth.

Our methodical approach to compliant actuation under the
lenses of time domain theory yielded a new torque control
technique for this application, and more versatile impedance
passivity assessments than were previously available. By
means of these gains in compliant actuator control, we hope
to increase the prevalence and effectiveness of elastic and safe
manipulator designs for human-robot interaction. Although
this work focused on SEAs—the most fundamental case of
compliant actuation—many of the same concepts may be ex-
tended to variable stiffness actuators (VSAs), as well as other
elastic actuator designs. Next steps involve incorporating our
results within applications for compliant actuation, studying
the potentially limiting properties of discrete time controller
implementations, and more directly investigating VSAs while
exploiting the proposed time domain techniques.
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