@article {1784, title = {Modeling Electromechanical Aspects of Cyber-Physical Systems}, journal = {Journal of Software Engineering for Robotics (JOSER)}, volume = {7}, number = {1}, year = {2016}, month = {07/2016}, pages = {100-119}, chapter = {100}, abstract = {

Model-based tools have the potential to significantly improve the process of developing novel cyber-physical systems (CPS). In this paper, we consider the question of what language features are needed to model such systems. We use a small, experimental hybrid systems modeling language to show how a number of basic and pervasive aspects of cyber-physical systems can be modeled concisely using the small set of language constructs. We then consider four, more complex, case studies from the domain of robotics. The first, a quadcopter, illustrates that these constructs can support the modeling of interesting systems. The second, a serial robot, provides a concrete example of why it is important to support static partial derivatives, namely, that it significantly improves the way models of rigid body dynamics can be expressed. The third, a linear solenoid actuator, illustrates the language{\textquoteright}s ability to integrate multiphysics subsystems. The fourth and final, a compass gait biped, shows how a hybrid system with non-trivial dynamics is modeled. Through this analysis, the work establishes a strong connection between the engineering needs of the CPS domain and the language features that can address these needs. The study builds the case for why modeling languages can be improved by integrating several features, most notably, partial derivatives, differentiation without duplication, and support for equations. These features do not appear to be addressed in a satisfactory manner in mainstream modeling and simulation tools.

}, keywords = {Cyber-Physical Systems, Domain-Specific Language}, issn = {2035-3928}, attachments = {https://mahilab.rice.edu/sites/default/files/publications/102-585-1-PB.pdf}, author = {Yingfu Zeng and Rose, Chad G. and Walid Taha and Adam Duracz and Kevin Atkinson and Roland Philippsen and Robert Cartwright and Marcia O{\textquoteright}Malley} } @proceedings {1765, title = {Acumen: An open-source testbed for cyber-physical systems research}, year = {2015}, month = {10/2015}, attachments = {https://mahilab.rice.edu/sites/default/files/publications/cyclone15Taha.pdf}, author = {Walid Taha and Adam Duracz and Yingfu Zeng and Kevin Atkinson and Ferenc A.Bartha and Paul Brauner and Jan Duracz and Fei Xu and Robert Cartwright and Michal Konecny and Eugenio Moggi and Jawad Masood and Pererik Andreasson and Jun Inoue and Anita Santanna and Roland Philippsen and Alexandre Chapoutot and O{\textquoteright}Malley, M.K. and Aaron Ames and Veronica Gaspes and Lise Hvatum and Shyam Mehta and Henrik Eriksson and Christian Grante} }