@article {071210493824, title = {Design of a haptic arm exoskeleton for training and rehabilitation}, journal = {IEEE/ASME Transactions on Mechatronics}, volume = {11}, number = {3}, year = {2006}, note = {

Arm exoskeletons;Apparent inertia;Design methodology;

}, pages = {280 - 289}, abstract = {

A high-quality haptic interface is typically characterized by low apparent inertia and damping, high structural stiffness, minimal backlash, and absence of mechanical singularities in the workspace. In addition to these specifications, exoskeleton haptic interface design involves consideration of space and weight limitations, workspace requirements, and the kinematic constraints placed on the device by the human arm. These constraints impose conflicting design requirements on the engineer attempting to design an arm exoskeleton. In this paper, the authors present a detailed review of the requirements and constraints that are involved in the design of a high-quality haptic arm exoskeleton. In this context, the design of a five-degree-of-freedom haptic arm exoskeleton for training and rehabilitation in virtual environments is presented. The device is capable of providing kinesthetic feedback to the joints of the lower arm and wrist of the operator, and will be used in future work for robot-assisted rehabilitation and training. Motivation for such applications is based on findings that show robot-assisted physical therapy aids in the rehabilitation process following neurological injuries. As a training tool, the device provides a means to implement flexible, repeatable, and safe training methodologies. \© 2006 IEEE.

}, keywords = {Damping, Degrees of freedom (mechanics), Joints (anatomy), Patient rehabilitation, Robot applications, Sensory perception, Stiffness}, url = {http://dx.doi.org/10.1109/TMECH.2006.875558}, attachments = {https://mahilab.rice.edu/sites/default/files/publications/47-IEEEASME_HapticArmExoskeleton.pdf}, author = {Abhishek Gupta and O{\textquoteright}Malley, M.K.} } @article {04338307919, title = {The effect of virtual surface stiffness on the haptic perception of detail}, journal = {IEEE/ASME Transactions on Mechatronics}, volume = {9}, number = {2}, year = {2004}, note = {

Virtual surface stiffness;Haptic perception;Design specifications;Haptic interface hardware;

}, pages = {448 - 454}, abstract = {

This brief presents a quantitative study of the effects of virtual surface stiffness in a simulated haptic environment on the haptic perception of detail. Specifically, the haptic perception of detail is characterized by identification, detection, and discrimination of round and square cross section ridges. Test results indicate that performance, measured as a percent correct score in the perception experiments, improves in a nonlinear fashion as the maximum level of virtual surface stiffness in the simulation increases. Further, test subjects appeared to reach a limit in their perception capabilities at maximum stiffness levels of 300 to 400 N/m, while the hardware was capable of 1000 N/m of maximum virtual surface stiffness. These results indicate that haptic interface hardware may be able to convey sufficient perceptual information to the user with relatively low levels of virtual surface stiffness. \© 2004 IEEE.

}, keywords = {Computer aided design, Computer hardware, Computer simulation, Degrees of freedom (mechanics), Manipulators, Object recognition, Sensory perception, Specifications, Stiffness, Surface properties, Virtual reality}, url = {http://dx.doi.org/10.1109/TMECH.2004.828625}, attachments = {https://mahilab.rice.edu/sites/default/files/publications/44-09tmech02omalley-print.pdf}, author = {O{\textquoteright}Malley, M.K. and Michael Goldfarb} }