TY - Generic T1 - Robotic training and clinical assessment of forearm and wrist movements after incomplete spinal cord injury: A case study T2 - 2011 IEEE International Conference on Rehabilitation Robotics Y1 - 2011 A1 - N. Yozbatiran A1 - J. Berliner A1 - C. Boake A1 - M. K. O'Malley A1 - Z. Kadivar A1 - G. E. Francisco KW - age 24 yr KW - arm motor function recovery KW - ASIA upper-extremity motor score KW - biomechanics KW - clinical assessment KW - electrically-actuated forearm KW - Forearm KW - forearm movement KW - forearm pronation KW - forearm supination KW - functional independence measure KW - functional tasks KW - grip KW - Haptic interfaces KW - Humans KW - injuries KW - Jebsen-Taylor hand function test KW - Joints KW - Male KW - medical robotics KW - Medical treatment KW - Muscles KW - neurophysiology KW - patient movement capabilities KW - Patient rehabilitation KW - Patient treatment KW - pinch strength KW - radial-ulnar deviation KW - rehabilitation applications KW - robotic training KW - Robots KW - Spinal Cord Injuries KW - spinal cord injury KW - training KW - Wrist KW - wrist extension KW - wrist flexion KW - wrist haptic exoskeleton device KW - wrist movement KW - Young Adult AB -

The effectiveness of a robotic training device was evaluated in a 24-year-old male, cervical level four, ASIA Impairment Scale D injury. Robotic training of both upper extremities was provided for three hr/day for ten consecutive sessions using the RiceWrist, an electrically-actuated forearm and wrist haptic exoskeleton device that has been designed for rehabilitation applications. Training involved wrist flexion/extension, radial/ulnar deviation and forearm supination/pronation. Therapy sessions were tailored, based on the patient's movement capabilities for the wrist and forearm, progressed gradually by increasing number of repetitions and resistance. Outcome measures included the ASIA upper-extremity motor score, grip and pinch strength, the Jebsen-Taylor Hand Function test and the Functional Independence Measure. After the training, improvements were observed in pinch strength, and functional tasks. The data from one subject provides valuable information on the feasibility and effectiveness of robotic-assisted training of forearm and hand functions after incomplete spinal cord injury.

JF - 2011 IEEE International Conference on Rehabilitation Robotics ER - TY - Generic T1 - The RiceWrist: A distal upper extremity rehabilitation robot for stroke therapy T2 - ASME Dynamic Systems and Control Division, 2006 International Mechanical Engineering Congress and Exposition Y1 - 2006 A1 - O'Malley, M.K. A1 - Alan Sledd A1 - Abhishek Gupta A1 - Volkan Patoglu A1 - Joel C. Huegel A1 - Burgar, Charles KW - Degrees of freedom (mechanics) KW - Graphical user interfaces KW - Human rehabilitation equipment KW - Patient treatment AB -

This paper presents the design and kinematics of a four degree-of-freedom upper extremity rehabilitation robot for stroke therapy, to be used in conjunction with the Mirror Image Movement Enabler (MIME) system. The RiceWrist is intended to provide robotic therapy via force-feedback during range-of-motion tasks. The exoskeleton device accommodates forearm supination and pronation, wrist flexion and extension, and radial and ulnar deviation in a compact design with low friction and backlash. Joint range of motion and torque output of the electricmotor driven device is matched to human capabilities. The paper describes the design of the device, along with three control modes that allow for various methods of interaction between the patient and the robotic device. Passive, triggered, and active-constrained modes, such as those developed for MIME, allow for therapist control of therapy protocols based on patient capability and progress. Also presented is the graphical user interface for therapist control of the interactions modes of the RiceWrist, basic experimental protocol, and preliminary experimental results. Copyright © 2006 by ASME.

JF - ASME Dynamic Systems and Control Division, 2006 International Mechanical Engineering Congress and Exposition PB - ASME CY - Chicago, IL, United States N1 -

Mirror Image Movement Enabler (MIME) system;Rehabilitation robot;Robotic therapy;

ER -