TY - Generic T1 - Human-machine admittance and transparency adaptation in passive user interaction with a haptic interface T2 - First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'05) Y1 - 2005 A1 - McJunkin, Samuel A1 - Yanfang Li A1 - O'Malley, M.K. KW - Haptic interfaces KW - Human computer interaction KW - Manipulators KW - Virtual reality AB -

This paper addresses human adaptation to changes in coupling impedance and force amplitude during passive user induced (PUI) interactions with a haptic interface. PUI interactions are characterized as event-based haptic interactions or haptic recordings that are replayed to the user. In the study, virtual environments are displayed to passive users with variable coupling stiffness and force amplitudes, and transparency bandwidth and human-machine admittance are measured. Results indicate that transparency bandwidth and the human-machine admittance do not change significantly for permutations of force amplitudes and coupling impedances, nor do they vary significantly across users. The reason for this invariance is that, during a PUI interaction, users tend approach a similar displacement profile. As a result, all users will have similar apparent admittance and transparency. The findings give sufficient justification for the use of universal compensators that improve transparency bandwidth, and that can be designed based solely on a priori transparency measurements for a typical user

JF - First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'05) CY - Pisa, Italy UR - http://www2.computer.org/portal/web/csdl/doi/10.1109/WHC.2005.76 N1 -

human-machine admittance;transparency adaptation;passive user interaction;haptic interface;force amplitude;passive user induced interactions;event-based haptic interactions;virtual environments;force amplitudes;transparency bandwidth;

ER - TY - Generic T1 - Cooperative manipulation between humans and teleoperated agents T2 - Proceedings - 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS Y1 - 2004 A1 - John Glassmire A1 - O'Malley, M.K. A1 - William Bluethmann A1 - Robert O. Ambrose KW - Computer simulation KW - Feedback KW - Haptic interfaces KW - Human computer interaction KW - Robots KW - Statistical methods AB -

Robonaut is a humanoid robot designed by the Robotic Systems Technology Branch at NASA's Johnson Space Center in a collaborative effort with DARPA. This paper describes the implementation of haptic feedback into Robonaut. We conducted a cooperative manipulation task, inserting a flexible beam into an instrumented receptacle. This task was performed while both a human at the worksite and the teleoperated robot grasped the flexible beam simultaneously. Peak forces in the receptacle were consistently lower when the human operator was provided with kinesthetic force feedback in addition to other modalities of feedback such as gestures and voice commands. These findings are encouraging as the Dexterous Robotics Lab continues to implement force feedback into its teleoperator hardware architecture.

JF - Proceedings - 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS CY - Chicago, IL, United States UR - http://dx.doi.org/10.1109/HAPTIC.2004.1287185 N1 -

Robonauts;Haptic feedback;Cooperative manipulation;

ER - TY - Generic T1 - Design of a haptic arm exoskeleton for training and rehabilitation T2 - American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC Y1 - 2004 A1 - Abhishek Gupta A1 - O'Malley, M.K. KW - Actuators KW - Bandwidth KW - Damping KW - Degrees of freedom (mechanics) KW - Friction KW - Human computer interaction KW - Kinematics KW - Robotic arms KW - Robots KW - Sensors KW - Stiffness AB -

A high-quality haptic interface is typically characterized by low apparent inertia and damping, high structural stiffness, minimal backlash and absence of mechanical singularities in the workspace. In addition to these specifications, exoskeleton haptic interface design involves consideration of additional parameters and constraints including space and weight limitations, workspace requirements and the kinematic constraints placed on the device by the human arm. In this context, we present the design of a five degree-of-freedom haptic arm exoskeleton for training and rehabilitation in virtual environments. The design of the device, including actuator and sensor selection, is discussed. Limitations of the device that result from the above selections are also presented. The device is capable of providing kinesthetic feedback to the joints of the lower arm and wrist of the operator, and will be used in future work for robot-assisted rehabilitation and training. Copyright © 2004 by ASME.

JF - American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC CY - Anaheim, CA, United States VL - 73 N1 -

Haptic arm exoskeleton;Inertia;Structural stiffness;Kinesthetic feedback;

ER -