TY - Generic T1 - SYSTEM CHARACTERIZATION OF MAHI EXO-II: A ROBOTIC EXOSKELETON FOR UPPER EXTREMITY REHABILITATION T2 - ASME Dynamic Systems and Controls Conference (DSCC) Y1 - 2014 A1 - French, James A. A1 - Rose, Chad G. A1 - O'Malley, Marcia K. AB -
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and
spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs.
JF - ASME Dynamic Systems and Controls Conference (DSCC) PB - ASME CY - San Antonio, TX ER - TY - Generic T1 - System characterization of RiceWrist-S: A forearm-wrist exoskeleton for upper extremity rehabilitation T2 - Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on Y1 - 2013 A1 - Pehlivan, Ali Utku A1 - Rose, Chad G. A1 - O'Malley, Marcia K. KW - Actuators KW - closed loop position performance KW - closed loop systems KW - distal joints KW - Exoskeletons KW - forearm rehabilitation KW - forearm-wrist exoskeleton KW - Friction KW - haptic interface design KW - Joints KW - medical robotics KW - neurological lesions KW - neurophysiology KW - Patient rehabilitation KW - position control KW - prosthetics KW - RiceWrist-S KW - robotic rehabilitation KW - Robots KW - serial mechanisms KW - spatial resolution KW - spinal cord injury KW - spinal cord injury rehabilitation KW - stroke KW - stroke rehabilitation KW - system characterization KW - Torque KW - torque output KW - upper extremity rehabilitation KW - Wrist KW - wrist rehabilitation JF - Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on ER -