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Subject-specific Assist-as-needed Controllers for a
Hand Exoskeleton for Rehabilitation

Priyanshu Agarwal1 and Ashish D. Deshpande2

Abstract—Robotic rehabilitation of the hands from a neuro-
muscular impairment such as stroke requires controllers that
could provide subject-specific assistance and result in fastest
possible recovery. We present two such assist-as-needed con-
trollers for a hand exoskeleton called Maestro that is designed to
provide accurate torque assistance to a subject. Learned force-
field control is a novel control technique in which a neural-
network-based model of the required torques is learned off-line
for a specific subject and then used to render a force-field to
assist the finger motion to follow a target trajectory. Adaptive
assist-as-needed control, on the other hand, estimates the coupled
finger-exoskeleton system torque requirement of a subject using
a radial basis function (RBF) network and adapts the RBF
magnitudes in real-time to provide a feedforward assistance for
accurate trajectory tracking. Experiments with a healthy subject
on Maestro showed that while the force-field control is non-
adaptive and there is less control on the speed of execution of
the task, it is safer as it does not apply increased torques if the
finger motion is restricted. On the other hand, adaptive assist-
as-needed controller adapts to the changing needs of the coupled
finger-exoskeleton system and helps in performing the task with
a consistent speed, however, applies increased torques in case of
restricted motion and is therefore, potentially less safe.

Index Terms—Rehabilitation Robotics, Prosthetics and Ex-
oskeletons, Wearable Robots

I. INTRODUCTION

REHABILITATION of hands using robotic devices has
gained momentum in the last decade as these devices can

be used to assess recovery progress and provide repetitive and
intensive training with significantly less manual labor [1], [2],
[3], [4], [5]. Evidence in the rehabilitation literature suggests
that in general force-control based strategies can be more
effective than position-based control alone [6]. While several
force-based advanced controllers have been developed for
rehabilitation of both the upper and lower limbs, the controllers
used for hand rehabilitation have primarily been limited to
position control [7], [8]. This is mainly because force control
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Fig. 1. Hand exoskeleton system used for carrying out experiments with the
two developed controllers.

of hand exoskeletons is challenging with many degrees of
freedom of the hand in a limited space. Furthermore, an
understanding of what control algorithms could best leverage
neural plasticity and achieve best possible functional recovery
using these devices is currently missing.

Different hand impairments have distinct therapy require-
ments based on the nature, severity or acuteness of the
impairment and state of recovery. For example, during acute
phase of stroke when the hand digits do not have full range of
motion, the requirement is to provide appropriate assistance
for passively moving the digits through their range of motion
without focusing on the positional accuracy of the digits.
Later, when the full passive range of motion of the hand
digits is recovered, the requirement is to encourage the subject
to exert forces with the digits and actively participate in
the training tasks. Finally, when the subject could actively
generate grasping forces the requirement changes to further
train the subject to achieve accurate finger positioning for
fine manipulation tasks. This constantly changing training
requirement demands controllers that could accommodate and
adapt to the changing requirements of a specific subject.

Torque requirement for impaired subjects vary drastically
based on the degree and type of impairement, which makes the
use of basic force control inadequate without an estimate of the
subject-specific torque requirement. Such a control also fails to
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achieve desired movement due to lack of error correction in the
joint position. Impedance control [9] and admittance control
[10], [11], which are capable of compliantly interacting with
the human limb, have been adopted to improve the accuracy
of position tracking [12], [13]. However, impedance control
requires high stiffness to create accurate movement. This is
particularly true for the finger joints where stiffness varies
significantly within the range of motion [14], especially in
the absence of accurate subject-specific stiffness model of the
finger joints. Furthermore, certain impairments (e.g. spastic
catch phenomena and changing nature of spasms in spastic
finger muscles [16] and inflammatory joint disease such as
rheumatoid arthritis [17]) could lead to accidental locking of
the finger joints. A high exoskeleton impedance could lead to a
scenario where large torques are applied at the finger joints due
to their sudden stalling [15], which would be uncomfortable
and unsafe for the subject. Also, the users tend to slack and
mostly rely on the assistive force provided by impedance
control, which reduces patient involvement in the task and
inhibits learning [18]. Thus, there is a need to learn subject-
specific models of the required assistance along with a means
to adapt the model-based assistance for hand rehabilitation.

We have developed a hand exoskeleton system, called
Maestro, that allows for control of the torques applied at the
various digits of the hand [19], [20]. The exoskeleton consists
of three modules to actively assist the index and middle fingers
and the thumb. Each finger module has two actuated degrees
of freedom (DOF) to assist the motion at the metacarpopha-
langeal (MCP) and proximal interphalangeal (PIP) joints of the
finger. Miniature Bowden-cable-based series elastic actuators
allow to achieve bidirectional torque control of the actuated
exoskeleton joints [29]. These actuators also make the device
highly backdrivabile while keeping the reflected inertia low.
In this work, we develop two assist-as-needed controllers for
Maestro. Learned force-field control learns a subject-specific
model of the required joint torques using a neural network and
use this model to build a force-field to assist the finger joint
motion of the subject. Adaptive assist-as-needed control, on
the other hand, varies the amount of assistance based on online
estimation of the subject performance using measurements, to
encourage active participation.

A force-field control has been developed for a lower limb
exoskeleton, which provided only a constant assistance along
the task trajectory [21], [22], was not subject-specific and
did not have any learning aspect. Such a controller is not
appropriate for a hand exoskeleton. This is because for hand
digits the joint stiffness changes considerably within the range
of motion, so accurate force-field assistance for the specific
subject is needed along the task trajectory to achieve the task
at desired velocities. Also, the previous force-field control did
not take into account the fact that the nature of assistance can
vary in the workspace due to the non-homogeneous residual
motor capabilities of a subject [23]. A few upper and lower
limb exoskeletons have also implemented adaptive assist-as-
needed control [24], [25], [26].

There are several differences in our implementation and
the existing implementations of these controllers. First, the
controllers presented in the past were all implemented in the

task space i.e. the assistance is modulated to meet the tracking
requirement of only the end-effector of the device [24], [25],
[21], [22]. Our controllers, on the other hand, are implemented
in the joint space i.e. the assistance is modulated to meet the
tracking requirement of each joint individually. Previous work
suggests that better motor learning takes place when haptic
training of complex movements is conducted by anatomically
decomposing the complex motion [27]. Our implementation
readily allows for this type of training by choosing appro-
priate desired joint angle trajectory for each joint individually.
Second, our joint-space-based approach provides a mapping of
the torque requirement at individual human joint, which can be
used to diagnose the nature of impairment and prescribe future
course of therapy based on this understanding of recovery.
Finally, the learning of the required assistance takes place
in the joint angle space in our implementation of adaptive
assist-as-needed control as opposed to the task position and
velocity space. In addition, such assist-as-needed controllers
have never been implemented for a hand exoskeleton in the
past. Furthermore, the term adaptive assist-as-needed control
have been used in the past to represent both the types of
control, however, these controllers have never been compared
in the past.

We implement the learned force-field and adaptive assist-as-
needed controllers on Maestro and conduct experiments with a
healthy subject to validate their performance. Specifically, we
make the following contributions: (i) a novel neural-network-
based learned force-field control that allows to capture the
non-linear nature of required assistance, (ii) learned force-
field and adaptive assist-as-needed controllers for Maestro,
(iii) compare and contrast the two assist-as-needed controllers
using experimental results, and (iv) present three-dimensional
torque mapping for the finger joints, which could be used
to classify and diagnose hand impairments. The controllers
presented in this work are general and can be implemented
on each digit of the exoskeleton. Multiple digits of the device
can be actuated by defining appropriate desired trajectories
for each digit. Since the index finger exoskeleton acts as
the basis of the design for each digit, in this work we
conduct experiments with the index finger module to validate
these controllers. Portions of this work have previously been
presented in [15], [28].

II. CONTROLS

In this section, we present two assist-as-needed controllers
that learn subject-specific models of the coupled hand ex-
oskeleton system to provide appropriate torques as per the
needs of the subject.

A. Learned Force-field Control

Learned force-field is designed to assist subjects in achiev-
ing a coordinated flexion-extension motion at the MCP and
PIP finger joints. In general, a force-field control renders a
tunnel-like force-field in the configuration space, which guides
the motion of the limb to evolve along the specified target path
[30], [22]. The key feature of this type of control is that the
target path and the control input is only a function of the
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Fig. 2. Overview of the learned force-field control implemented on the finger
module of Maestro.

current system configuration and not of time explicitly. To
learn the torque mapping as a function of the exoskeleton
joint angles we use a neural network model. This trained
network is then used to render a force-field that provides
the assistance necessary to achieve the coordinated motion at
the finger joints (Fig. 2). This controller, therefore, learns the
needs of a specific subject and provide appropriate assistance
to the subject.

1) Subject-specific Data: We first control the exoskeleton
in impedance control mode to obtain the subject-specific
nonlinear exoskeleton joint torques to joint angles mapping
(Fig. 3) [15]. We chose sinusoidal joint angle trajectories,
which have been shown to represent the finger joint motion
while performing different tasks [31], as the desired motion at
the finger joints, by gradually increasing controller impedance.
For this motion, the torque vary in a closed contour at both the
exoskeleton joints (Fig. 3(c)) due to the viscous and frictional
dissipation at the finger joints [32], which results in hysteresis
loops. The desired sinusoidal joint angle trajectories manifest
as a linear target trajectory in the exoskeleton configuration
space (Fig. 3(d)).

2) Learning System Dynamics: We use a neural network
with one hidden layer and three perceptrons to learn the torque
to joint angle mapping at the two exoskeleton joints. Different
networks are learned for flexion and extension torque-angle
mapping, since the mapping showed a hysteresis loop. We use
linear transfer functions for the input and output layers. Some
studies have shown that networks with hyperbolic tangent
sigmoid as a transfer function are more generalizable [33]
and perform better than networks with other types of transfer
functions [34], [35]. Therefore, we use hyperbolic tangent
sigmoid transfer function for the perceptrons in the hidden
layer.

3) Force-field Control: The force-field in our implementa-
tion is learned in the joint space of the finger module. The
torque vector (τ ) in learned force-field control has a normal
(τn) and a tangential (τt) torque component, which act at
the exoskeleton MCP and PIP joints (Eq. (1)). The tangential
component assists in moving along the target trajectory and
the normal component pushes the finger towards the target
trajectory. It is the assistance along the target trajectory that
varies significantly from subject to subject based on the type
and degree of impairment. So, we learn the gain for the
tangential component of the force field (Kt(Θ)) using the
neural network model to guide the finger motion along the
target path in the exoskeleton joint angle space.
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Fig. 3. Results from the impedance control of the index finger module with
sinusoidal desired trajectories at the exoskeleton MCP and PIP joints. (a)
Exoskeleton MCP joint relative angle tracking, (b) exoskeleton PIP joint
relative angle tracking, (c) exoskeleton joint torque with respect to the
respective relative joint angle, (d) exoskeleton relative PIP joint angle with
respect to relative MCP joint angle, (e) exoskeleton joint torque variation with
respect to the respective exoskeleton joint angle at the MCP and PIP joints
and (f) exoskeleton MCP joint angle variation with respect to the exoskeleton
PIP joint angle.

τ = τn + τt (1)

‖τn‖ = Kn

1− e
−

2‖Θe‖2

σn


‖τt‖ = Kt(Θ)e

−
2‖Θe‖2

σt

(2)

where Kn and Kt(Θ) are the gain vectors for the normal
and tangential force field assistance, respectively. Θ is the
current angular joint position vector of the exoskeleton joints.
||Θe|| is the distance between the current exoskeleton joints
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Fig. 4. Overview of the adaptive-assistance-based control implemented on
the finger module of Maestro.

position and the closest configuration on the target trajectory.
Two force field tunnels with diameters σn and σt created
in the joint angle space around the target path are given by
Eq. (2). The magnitude of the normal component increases
to Kn outside of the tunnel and gradually reduces to zero
as one approaches the target path inside the tunnel. The
magnitude of the tangential component, on the other hand,
is close to zero outside the tunnel and gradually increases to
Kt(Θ) as one approaches the target path inside the tunnel.
An analytical expression is obtained for Θe by projecting the
current exoskeleton joint angle state on the target line segment
contour (C) (Eq. (3)).

‖Θe‖ = min
Θd∈C

‖Θ−Θd‖ (3)

Since different networks are learned for flexion and exten-
sion motion, the tangential gain is determined by switching
between the two networks based on whether the upper (Θub)
or lower (Θlb) exoskeleton joint angle limit is crossed (Eq.
(4)).

Kt(Θ) =

{
Ktf (Θ), if Θ ≤ Θlb

Kte(Θ), if Θ ≥ Θub

(4)

where Ktf (Θ) and Kte(Θ) are the gain vectors for the
tangential component of the force field assistance for the
flexion and extension motion, respectively, as learned using
neural network.

In learned force-field control, the neural network mapping is
static and therefore, the torque requirement is not updated with
either change in the frequency of motion or inherent changes in
the required finger torque due to changes in the neuromuscular
characteristics of the finger. This is a major limitation of this
type of control. So, next we implement an adaptive assist-as-
needed controller to address this limitation.

B. Adaptive-assistance-based Control

Adaptive assist-as-needed control learns a dynamics model
of the coupled finger-exoskeleton system and the ability and
effort of a specific subject in real-time [24] (Fig. 4).

1) Adaptive Controller for Learning Coupled System Dy-
namics: The coupled dynamics of the finger exoskeleton
system can be expressed as in Eq. (5).

I(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + G(Θ) = τj + τh (5)

where Θ is the 2×1 vector of exoskeleton MCP and PIP joint
angular position, I(Θ) is the inertia matrix, C(Θ, Θ̇) is the

matrix representing Coriolis and centrifugal terms, G is the
vector representing gravitational terms, τj is the 2×1 vector
representing the torques applied by the actuated exoskeleton
MCP and PIP joints and τh is the 2×1 vector representing the
torques applied by the human subject at the exoskeleton MCP
and PIP joints.

We define a sliding surface (s) to formulate the joint angle
tracking problem (Eq. (6)).

s = ˙̃Θ + ΛΘ̃ = (Θ̇− Θ̇d) + Λ(Θ−Θd) (6)

where Θ̃ = Θ(t)−Θd(t) is the tracking error with Θd(t) as
the desired joint angle trajectory. Λ is a 2×2 constant, positive
definite and symmetric matrix.

For the finger-exoskeleton system the contribution of iner-
tial effects is small. Therefore, in our formulation we only
consider the position-dependent terms in the system dynamics
(Eq. (5)) and define a position-dependent regressor matrix.
Since the system parameters appear linearly in Eq. (5), the
estimated system dynamics can be expressed as a product of
the unknown system parameters (â) and the regressor matrix
(Y(Θ)) (Eq. (7)). The torque control law for the system is
then given by Eq. (8)

Ĝ(Θ)− τ̂h = Y(Θ)â (7)

τj = Y(Θ)â−Kps (8)

where Kp is a symmetric positive definite feedback gain
matrix.

We approximate the arbitrary torque surface with respect
to the exoskeleton joint angles using a radial basis function
(RBF) (Eq. (9)) network.

φn = e
−
‖Θ− µn‖2

2σ2 (9)

We use a 25 RBF network to approximate the torque-angle
relationship throughout the workspace by partitioning the
rotational DOF into five equally spaced intervals at both the
MCP and PIP joints of the exoskeleton. The regressor matrix
is then given by Eq. (10).

Y2×50 =

[
ΦT 0
0 ΦT

]
(10)

where Φ = [φ1 φ2 . . . φ25]. The regressor matrix takes into
account both the joint angles to determine the torque at each
joint. The parameter update law is given by Eq. (11) and it can
be shown using Lyapunov stability analysis that the controller
is uniformly ultimately bounded [25].

˙̂a = −Γ−1YT s (11)

2) Assist-as-needed Controller Modification: Experiments
have shown that subjects slack when full assistance is provided
through the controller, which inhibits motor recovery [24]. To
account for this effect, the parameter update law is modified
(Eqs. (12) and (13)) to decay the applied torques when errors
are small as proposed in [24].

∂

∂t
(Yâ) = Y˙̂a = −1

τ
Yâ (12)

˙̂a = −Γ−1YT s− 1

τ
YT

(
YYT

)−1
Yâ (13)
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where τ is the time constant for the parameter decay.

III. EXPERIMENTS

Experiments were conducted with the finger module to val-
idate and understand the advantages and disadvantages of the
developed controllers. A healthy subject (male, age 29 years)
participated in the study, after their written consent is obtained.
The study is approved by the institutional review board at The
University of Texas at Austin. We also assess the stability
of the controller and safety of the device by occasionally
impeding the motion of the finger, while conducting these
experiments.

A. Learned Force-field Control

We first learned the subject’s torque-angle relationship dur-
ing the flexion and extension motion at the index finger joints
using two neural networks. These trained subject-specific
networks are then used to render a force-field with a desired
trajectory in the joint angle space. To get an accurate estimate
of the passive requirement of the finger joints using impedance
control, the subject is asked to relax the finger muscles while
the torque data is collected. During the controller test phase,
the subject is asked to follow the desired motion, while the
controller assisted the subject using the learned force-field.

B. Adaptive-assistance-based Control

In this experiment, we assessed the adaptability of the
controller to a subject’s requirement, which results in im-
proved joint angle trajectory tracking performance. We used
sinusoidal joint angle trajectories as the desired motion at the
two index finger joints.

1) Healthy Subject Experiments: We first conducted two
experiments with the unaltered finger module to test if the
system could adapt to meet the assistance requirement of the
subject. For the first experiment, the subject was asked to keep
the finger passive while the controller adapted to the joint
torque requirement of the subject. For the second experiment,
the subject was asked to impede the exoskeleton motion to
assess how quickly the controller could react to the changed
torque requirement.

2) Stiffened Exoskeleton Subject Experiments: Stiffening
of the finger PIP joint is one of the most common and
most serious problem observed in several hand impairments
[36], [37], [38]. To validate the effectiveness of the adaption
algorithm, we conducted an experiment with an exoskeleton
that is stiffened at the PIP joint with elastic rubber bands to
simulate increased PIP joint stiffness. The subject was asked
to keep the finger passive and the adaptability of the controller
to the increased PIP joint stiffness is assessed.

IV. RESULTS

In this section, we present the fitting statistics for the learned
neural networks and present results from the aforementioned
experiments.

TABLE I
MODEL FITTING STATISTICS (MEAN SQUARED ERROR) FOR

THE NEURAL NETWORKS LEARNED TO REPRESENT THE
TORQUE-ANGLE RELATIONSHIP FOR THE FLEXION AND

EXTENSION MOTIONS.

Motion Training
(×10−6)

Validation
(×10−6)

Testing
(×10−6)

Overall
(×10−6)

Flexion 3.64 3.87 3.47 3.65
Extension 5.88 8.90 4.38 6.11

A. Learned Force-field Control

The performance of the learned force-field control depends
on the accuracy with which the underlying neural network can
predict the desired joint torques given the joint angles.

1) Neural Network Fitting Results: The mean squared error
for both the trained flexion and extension networks is of the
order of 10−6 in training, validation and testing (Table I). A
comparison of the predicted data with the measured data shows
that the learned model is able to predict the exoskeleton joint
torques accurately (Fig. 5).
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Fig. 5. Comparison of the learned neural-network-based predicted exoskeleton
joint torques with those estimated by the series elastic actuator controller in
real-time (labeled as measured). (Best viewed in color)

2) Hand Exoskeleton Control: The system is able to
achieve coordinated motion at the two exoskeleton joints
(Fig. 6(e)). There are several reasons for some deviation
that is observed between the actual and desired trajectories.
First, the torque assistance that was learned using impedance
control was learned with a compliant controller to limit the
amount of torque that was applied at the finger joints. Since
the finger stiffness changes drastically within its range of
motion, the compliant controller is designed to not track the
desired trajectory strictly in the high stiffness region of the
finger range of motion (Fig. 3(a) and (b)). Second, the torque
induced by the subject on the device varies during every
repetition of the motion. Third, the constants used to generate
the normal component of the force-field are chosen to ensure
some compliance in control. Finally, the large deviation in few
trials from the theoretically desired trajectory is due to external
blocking of the finger motion to assess how the controller
reacts to external disturbance, which may be present due to
the nature of a finger impairment (Section I).

Force-field control also does not apply excessive torques
when the motion is externally blocked at time 22 and 31
seconds (Figs. 6(a),(b) and (c)). However, the velocity with
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Fig. 6. Results from force-field control of the index finger exoskeleton
with a linear relationship between MCP and PIP joint angles as the desired
trajectory (a) Exoskeleton MCP joint relative angle tracking, (b) exoskeleton
PIP joint relative angle tracking, (c) exoskeleton joint torque with respect to
the respective relative joint angle and (d) exoskeleton relative PIP joint angle
with respect to relative MCP joint angle.

which the trajectory is traced is not accurately controlled
(Figs. 6(a) and (b)). Force-field control allows to achieve
coordinated motion at the finger joints and is good for training
for the tasks that only need joint angle coordination, while not
applying excessive torques in case of an uncertain external
disturbance.

B. Adaptive-assistance-based Control

1) Healthy Subject Experiments: In the first experiment,
the system is able to adapt to the torque requirement of the
subject. The feedforward component of the torque increases
gradually, while the feedback component reduces at both the
joints (Figs. 7(a) and (b)). The unknown learned parameters
also tend to converge to their respective values (Figs. 7(c)
and (d)). The root mean square (RMS) tracking error reduced
from 5◦ to 3◦ at the MCP joint and from 3.5◦ to under 2◦ at
the PIP joint from the initial to final 10 seconds showing that
the adaptive assist-as-needed control improved the tracking
performance (Figs. 7(g) and (h)).

In the second experiment, when the finger motion is im-
peded by the subject, the controller reacted by increasing
the applied torque (at time 66 and 86 seconds in Fig. 8).
Also, as soon as the externally applied torque is removed the
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Fig. 7. Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with a healthy subject. (a) Exoskeleton MCP joint
feedforward and feedback torque component, (b) exoskeleton PIP joint
feedforward and feedback torque component, (c) parameter adaptation results
for 5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed to
the MCP joint torque (d) parameter adaptation results for 5 out of 25
parameters (µn = [−30◦ µ(n)]T ) that contributed to the PIP joint torque,
(e) exoskeleton joint torque variation with respect to the joint angles, (f)
exoskeleton MCP angle with respect to the PIP joint angle, (g) MCP joint
tracking error for the initial and final 10 seconds and (h) PIP joint tracking
error for the initial and final 10 seconds. (Best viewed in color)

controller torque returned to the original value demonstrating
that the controller is quite reactive and can quickly adapt to the
changing requirements of a subject. However, when the finger
motion is accidentally blocked the system applied increased
torques at both the finger joints, which might not be safe for
the subject.

2) Stiffened Exoskeleton Subject Experiments: Experiments
with the stiffened exoskeleton also showed similar results
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Fig. 8. Adaptive assist-as-needed control experiment with impeded finger
motion at time 66 sec and 86 sec. (a) MCP and PIP exoskeleton joint angle
with respect to time and (b) MCP and PIP joint torques with respect to time.
The joint torque magnitude increases when the finger motion is impeded.

(Figs. 9). RMS tracking error in this case reduced from 5◦

to under 3◦ for the MCP joint and from over 4◦ to 2.5◦ for
the PIP joint (Figs. 9(g) and (h)).

3) Learned Torque Mapping: : A comparison of the three-
dimensional learned RBF torque mapping at MCP and PIP
joints between the normal and stiffened PIP joint shows that
while the torque requirement at the PIP joint has increased
considerably the torque mapping at the MCP joint has changed
(Fig. 10). This learned torque mapping of the finger joints can
also be used to classify hand impairments and further aid the
diagnosis of hand impairments.

V. CONCLUSION

We developed two subject-specific assist-as-needed con-
trollers for a hand exoskeleton, called Maestro. Experiments
with the finger exoskeleton showed that the learned force-field
control can achieve coordinated motion at the finger joints.
Also, the adaptive assist-as-needed control can quickly adapt
to the changing requirements of a subject and track the desired
joint angle trajectories with small RMS errors (3◦and 2 ◦at
MCP and PIP joint, respectively).

Our study suggests that rehabilitation therapy where the
goal is to train for time critical tasks and where accurate
tracking of the desired joint angle trajectories is needed,
adaptive assist-as-needed control would be a better choice. On
the other hand, therapy where the coordination between the
joints is important rather than the timeliness of the motion,
learned force-field control would be more useful. Learned
force-field control is in general safer than the adaptive assist-
as-needed control, as it does not lead to the application of
increased torques if the motion is accidentally stalled. These
experiments suggest that a single controller might not be
suitable for every neuromuscular impairment. This requires
that a repository of subject-specific controllers be developed
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Fig. 9. Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with stiffened exoskeleton PIP joint. (a) Exoskeleton
MCP joint feedforward and feedback torque components, (b) exoskeleton PIP
joint feedforward and feedback torque components, (c) parameter adaptation
results for 5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed
to the MCP joint torque (d) parameter adaptation results for 5 out of 25
parameters (µn = [−30◦ µ(n)]T ) that contributed to PIP joint torque,
(e) exoskeleton joint torque variation with respect to the joint angles, (f)
exoskeleton MCP angle with respect to the PIP joint angle, (g) MCP joint
tracking error for the initial and final 10 seconds and (h) PIP joint tracking
error for the initial and final 10 seconds. (Best viewed in color)

and the right controller be chosen based on the goals of the
therapy and the nature of impairment. In the future, we plan to
develop a controls framework in collaboration with therapists
that could sense and learn the most suitable control strategy
for a specific subject and seamlessly switch strategy based on
the therapy goals and subject’s needs.
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Fig. 10. Three-dimensional torque mapping of the index finger joints learned
using adaptive assist-as-needed control. (a) and (b) shows the torque mapping
of MCP and PIP joint, respectively, for the healthy subject. (c) and (d) shows
the torque mapping of MCP and PIP joint, respectively, with the stiffened
exoskeleton PIP joint. The color bar represents the magnitude of the learned
torque at a specific configuration. (Best viewed in color)
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