Analysis of robotic data from rehabilitation with MAHI-EXOII after incomplete spinal cord injury

Boyeon Kim bk5@rice.edu

Background
- Robotic rehabilitation with the MAHI-EXOII device was provided for upper limb training of 6 incomplete spinal cord injury (SCI) patients
 - MAHI-EXOII allows wrist flexion/extension, radial/ulnar deviation, forearm supination/pronation, and elbow flexion/extension

Importance
- Efficacy of robotic devices for upper limb rehabilitation of SCI patients has yet to be demonstrated
- Understanding effects of robotic training and role of robotic measures in rehabilitation can play a significant role in enhancing outcomes for this population

Methods
- Position data were collected at 100 HZ and were collected before, during and after 4 weeks of robotic training
 - Various objective measures including movement smoothness were used to monitor patient progress
- Data were plotted for each subject for each treated side, using MATLAB
- Existing codes for data analysis were enhanced in order to:
 - Make the calculating codes compatible with data from all subjects
 - Divide and categorize the extensive set of collected data (especially the training data) into manageable blocks to better represent the data

Results
- Evaluation and training data were plotted together to better allow observation of patients’ progress over time and after training (see Figure 2)
- Most subjects demonstrated continuous improvement across training sessions for various robotic measures
 - Average smoothness (F_s) and corresponding average velocity increased over time for both training and evaluation sessions
 - Observed progress was consistent over five blocks of each training session

Figure 1. Right hand of an SCI patient in MAHI-EXOII

Figure 2. Sample of smoothness measure plotted over evaluation and 10 training sessions

This research was conducted in the MAHI lab at Rice University (www.mahilab.com) under the direction of Prof. Marcia K. O’Malley. Funding was provided by Mission Connect, a project of the TIRR Foundation, and NSF Grant CNS-1135916