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Trajectory Deformations from Physical
Human-Robot Interaction

Dylan P. Losey, Student Member, IEEE, and Marcia K. O’Malley, Senior Member, IEEE

Abstract— Robots are finding new applications where physical
interaction with a human is necessary: manufacturing, health-
care, and social tasks. Accordingly, the field of physical human-
robot interaction (pHRI) has leveraged impedance control ap-
proaches, which support compliant interactions between human
and robot. However, a limitation of traditional impedance control
is that—despite provisions for the human to modify the robot’s
current trajectory—the human cannot affect the robot’s future
desired trajectory through pHRI. In this paper, we present
an algorithm for physically interactive trajectory deformations
which, when combined with impedance control, allows the human
to modulate both the actual and desired trajectories of the robot.
Unlike related works, our method explicitly deforms the future
desired trajectory based on forces applied during pHRI, but does
not require constant human guidance. We present our approach
and verify that this method is compatible with traditional
impedance control. Next, we use constrained optimization to
derive the deformation shape. Finally, we describe an algorithm
for real time implementation, and perform simulations to test the
arbitration parameters. Experimental results demonstrate reduc-
tion in the human’s effort and improvement in the movement
quality when compared to pHRI with impedance control alone.

Index Terms— physical human-robot interaction, shared con-
trol, haptics and haptic interfaces, learning from demonstration

I. INTRODUCTION

Physical human-robot interaction (pHRI) has become more
pervasive as robots transition from structured factory floors
to unpredictable human environments. Today we can find
applications of pHRI not only within manufacturing, but also
for rehabilitation, surgery, training, and comanipulation. In
many of these situations, the human and robot are working
collaboratively [1]; both agents share a common goal, mutually
respond to each other’s actions, and provide assistance when
needed [2]. Of course, while the human and robot may agree
upon the goal they are trying to reach or the task they are at-
tempting to perform, they might disagree on the trajectory that
should be followed. Within this context, impedance control—
as originally proposed by Hogan [3]—has traditionally been
leveraged to relate interaction forces with deviations from
the robot’s desired trajectory. Impedance control helps to
provide compliant, safe, and natural robotic behavior [4], and
is currently regarded as the most popular control paradigm
for pHRI [5]. Unfortunately, while impedance control enables
the human to modify the robot’s actual trajectory, it does not
allow the human to interact with the robot’s desired trajectory.
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Fig. 1. Schematic of the proposed framework for pHRI. The human interacts
with a robot, which renders a desired impedance (left). In response to the
human’s applied force, the robot’s future desired trajectory is updated using
physically interactive trajectory deformations (right).

Practically, this can cause humans to expend more effort when
working to change the behavior of the robot, leading to higher
effort, or “inefficient,” human-robot collaboration [6]–[8].

As a result, extensions of impedance control have been de-
veloped where the robot proactively moves along the human’s
desired trajectory [7]–[9]. Under these techniques, the human
dictates the desired trajectory and leads the interactions, while
the robot estimates the human’s intent and acts as a transparent
follower. Because the human guides the robot, however, the
robot cannot meaningfully intervene towards reaching the goal
or completing the task, and hence collaboration is restricted.
Alternatively, shared control methods for comanipulation can
be used, where the human and robot dynamically exchange
leader and follower roles [10]–[13]. Both the human and robot
are able to contribute to the robot’s motion, and the robot’s
level of autonomy is adjusted by the shared control allocation.
Although the robot can now meaningfully contribute within
this shared control, we observe that the human is again unable
to directly alter the robot’s desired trajectory through forces
applied during pHRI. Hence, it may be beneficial to develop an
approach which combines the advantages of both changing the
desired trajectory and sharing control. Under such a scheme,
haptic interactions could become a bidirectional information
exchange; the human physically conveys task-relevant modifi-
cations to the robot, while the robot’s force feedback informs
the human about the current desired trajectory.

In this paper, we propose physically interactive tra-
jectory deformations, which—when implemented alongside
impedance control—enables the human to simultaneously
interact with the robot’s actual and desired trajectories. By
applying input forces, the human operator not only experiences
the rendered compliance of the impedance controller, but also
continually modifies or deforms a future segment of the desired
trajectory (see Fig. 1). Because the deformed desired trajectory
returns to the original desired trajectory after some fixed time
interval, the human does not need to constantly guide the
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robot, and so the robot can also contribute towards completing
the shared task. Our approach is intended for applications
where the human wants to change how a robot behaves through
physical interaction, and this robot is coupled to either a real or
virtual environment. First, we derive constraints to ensure that
the trajectory deformations are compatible with our impedance
controller, and use constrained optimization to find a smooth,
invariant deformation shape which resembles natural human
motion. Next, an algorithm implementing our approach in
real time is presented, along with simulations demonstrating
how the algorithm’s parameters can be tuned to arbitrate
between the human and robot. Finally, we evaluate impedance
control with physically interactive trajectory deformations by
conducting human-subject experiments on a haptic device. The
results indicate that users exert less force and achieve better
performance when interacting using the proposed method, as
compared to a traditional impedance controller.

II. RELATED WORK

The problem we are considering and the solution we will
pursue build on prior research from a variety of different
fields. In particular, for applications that involve pHRI, we will
discuss recent work on tracking the human’s desired trajectory
and sharing control. Outside of pHRI applications, we also
overview trajectory changes during human-robot collaboration,
and examine algorithms which can be used to deform the
robot’s desired trajectory in a smooth, human-like manner.

As previously mentioned, the robot can actively follow
the human’s desired trajectory during pHRI; for example, [7]
uses a Kalman filter to track the human’s desired timing of
a point-to-point cooperative motion. Erden and Tomiyama
[9] measure the controller force as a means to detect the
human’s intent and update the robot’s desired position—when
the human stops interacting with the robot, the robot maintains
its most recent position. Similarly, Li and Ge [8] employ neural
networks to learn the mapping from measured inputs to the
human’s desired position, which the robot then tracks using an
impedance controller. Although the human is able to change
the robot’s desired behavior, these methods require the human
to guide the robot along their intended trajectory.

In contrast with [7]–[9], shared control for comanipulation
instead allows both the human and robot to dynamically
exchange leader and follower roles [10]–[13]. In work by
Li et al. [11], game theory is used to adaptively determine
the robot’s role, such that the robot gradually becomes a
leader when the human does not exert significant interaction
forces. Kucukyilmaz et al. [12] have a similar criteria for
role exchange, but find that performance decreases when
visual and vibrotactile feedback informs the human about
the robot’s current role. Medina et al. [13] utilize stochastic
data showing how humans have previously completed the
task; at times where the robot’s prediction does not match
the human’s behavior, prediction uncertainty and risk-sensitive
optimal control decide how much assistance the robot should
provide. We note that shared control methods such as [1], [11],
and [13] leverage optimal control theory in order to modu-
late the controller feedback gains, but—unlike our proposed
approach—they track a fixed desired trajectory.

For shared control situations where the robot is continually
in contact with an unpredictable environment—such as during
a human-robot sawing task—Peternel et al. [14] propose multi-
modal communication interfaces, including force, myoelectric,
and visual sensors. By contrast, we consider tasks where the
robot is attempting to avoid obstacles, and we focus on using
pHRI forces without additional feedback. Besides comanipu-
lation, shared control has also been applied to teleoperation,
where the human interacts with a haptic device, and that
device commands the motions of an external robot. In work by
Masone et al. [15], [16], the authors leverage haptic devices
to tune the desired trajectory parameters of a quadrotor in
real time. These proposed adjustments are then autonomously
corrected by the system to ensure path feasibility, regularity,
and collision avoidance; afterwards, the haptic devices offer
feedback about the resulting trajectory deformation.

Interestingly, even in settings where pHRI does not occur,
other works have used the human’s actions to cause changes
in the robot’s desired trajectory. Mainprice and Berenson [17]
present one such scheme, where the robot explicitly tries
to avoid collisions with the human. Based on a prediction
of the human’s workspace occupancy, the robot selects the
desired trajectory which minimizes human-robot interference
and task completion time. Indeed, as pointed out by Chao and
Thomaz [18], if the human and robot are working together
in close proximity—but wish to avoid physical contact—
the workspace becomes a shared resource. To support these
methods, human-subject studies have experimentally found
that deforming the desired trajectory in response to human
actions objectively and subjectively improves human-robot
collaboration [19]. However, it is not necessarily clear which
trajectory deformation is optimal; as a result, there is interest
in understanding how humans modify their own trajectories
during similar situations. Pham and Nakamura [20] develop
a trajectory deformation algorithm which preserves the orig-
inal trajectory’s affine invariant features, with applications in
transferring recorded human motions to humanoid robots.

Finally, from a motion planning perspective, optimization
methods can be used to find human-like and collision-free
desired trajectories by iteratively deforming the initial desired
trajectory. For example, in work on redundant manipulators
by Brock and Khatib [21], an initial desired trajectory from
start to goal is given, and then potential fields are used
to deform this trajectory in response to moving obstacles.
More recently, Zucker et al. developed CHOMP [22], an
optimization approach which uses covariant gradient descent
to find the minimum cost desired trajectory; each step down
the gradient deforms the previous desired trajectory. STOMP,
from [23], generates a set of noisy deformations around the
current desired trajectory, and then combines the beneficial
aspects of those deformations to update the desired trajectory.
TrajOpt, from [24], uses sequentially convex optimization to
deform the initial desired trajectory—the resulting deformation
satisfies both equality and inequality constraints. We observe
that the discussed trajectory optimization schemes, [21]–[25],
are not intended for pHRI, but have been successfully utilized
to share control during teleoperation [26].
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III. NOMENCLATURE

We here introduce some of the variables that will be used in
this paper. For ease of notation, these variables are defined for
a single degree-of-freedom (1-DoF) linear robot. Our problem
is first considered in an abstract manner—Section IV—before
we pursue a practical solution which can be implemented in
real time—Section V. Accordingly, in Section IV, we work
with functions in order to be more accurate and complete.
Conversely, within Section V, we approximate these functions
using waypoint parameterizations. The nomenclature discusses
both cases as applicable.
x∗d : R+ → R Original desired trajectory, assumed to be a

smooth (C∞) function.
xd Desired trajectory, updated after each trajectory defor-

mation. In Section IV, xd : R+ → R is a function. In
Section V, xd is a set of waypoints.

h,k ∈ N Discrete time variables.
T ∈ R+ Sample period for the computer interface.
δ ∈ R+ Sample period for the desired trajectory. Equiva-

lently, the time between waypoints along xd.
r ∈ Z+ Ratio between δ and T .
τi ∈ R+ Time at which the current trajectory deformation

starts. Also, in Section V, the time associated with the
most recent waypoint along xd.

τf ∈ R+ Time at which the current trajectory deformation
ends. Also, in Section V, the time associated with some
future waypoint along xd.

τ ∈ R+ Length of time of the trajectory deformation. An
integer multiple of δ.

γd Segment of the desired trajectory between τi and τf . In
Section IV, γd : [τi, τf ] → R is treated as a function.
In Section V, γd ∈ RN is a vector of waypoints.

γ̃d Deformation of γd with the same dual representations.
Γd : R× [τi, τf ]→ R Smooth family of trajectories.
Γsd : R× [τi, τf ]→ R Trajectory within the smooth family

of trajectories, shorthand for Γd(s, t) with s = constant.
In Section IV, Γ0

d(t) = γd(t) and Γ1
d(t) = γ̃d(t).

V Variation of γd used to find γ̃d. As before, in Section IV,
V : [τi, τf ] → R is a vector field along γd, and in
Section V, V ∈ RN is a vector.

N ∈ Z+ Number of waypoints along γd or γ̃d.
R ∈ RN×N Matrix determining an inner product on RN .
H ∈ RN Shape of the optimal variation.
µ ∈ R+ Admittance of the optimal variation.

IV. PROBLEM STATEMENT

In order to develop a framework for physically interactive
trajectory deformations, we will specifically consider 1-DoF
linear robots. Restricting ourselves to 1-DoF keeps the notation
simple, and enables us to pose the problem in a straightfor-
ward, instructive manner. Later, in Section V-E, we will show
that the algorithm we ultimately derive can be independently
applied to each DoF; hence, we do not lose any generality by
now focusing on a single DoF. The robot—which could be
thought of as a haptic device—can accordingly be modeled as

mẍ(t) + bẋ(t) = fa(t)+fh(t) (1)

where m is a point mass and b is the viscous friction constant.
The position of this robot is denoted by x, and the device is
subject to two external forces: fa, the force applied by the
actuator, and fh, the force applied by the human. We would
like to control fa so that the robot follows a desired trajectory,
xd, while rendering a virtual impedance, where this impedance
consists of a desired stiffness, kd, and a desired damping, bd.

A computer interface connects the robotic device to the
virtual impedance. Recalling that computers necessarily in-
troduce analog-to-digital conversion [27], the virtual force at
each sample time is given by

fv(hT ) = kd

(
xd(hT )− x(hT )

)
+

bd

(
ẋd(hT )− ẋ(hT )

)
∀h ∈ N (2)

Here h is a discrete time variable, which increases by one after
each sample, and T is the sample period for the computer
interface. Next, using a zero-order hold (ZOH) to return from
digital-to-analog, the actuator force becomes

fa(t) = fv(hT ) ∀t ∈ [hT, (h+ 1)T
)

(3)

Viewed together, (1), (2), and (3) describe a standard 1-
DoF linear haptic device under impedance control, while
also capturing the effects of discretization. For a more in-
depth analysis of this haptic system, particularly in regards to
passivity, we recommend [27]–[29].

Our objective is to enable the human to intuitively and
consistently change the desired trajectory, xd, by applying
forces, fh, to the robotic device. We argue that the human’s
input should not only affect the robot’s current state through
the impedance controller, but also interact with the robot’s
future behavior via trajectory deformations. In order to more
formally explore this concept, let us discuss some notation.
The desired trajectory is initialized as x∗d, a smooth, C∞

function provided by the operator, where, if pHRI never
occurs, xd(t) = x∗d(t). Each time the human physically
interacts with the robot, however, the desired trajectory is
modified or “deformed,” and xd is updated to include this
deformation. The overall timing of the desired trajectory xd
is assumed to be correct, and, while deformations can locally
alter the speed of the robot, the total time required to complete
the task will not be changed by these deformations. Although
we will first focus on a single trajectory deformation, it should
be understood that xd is continually modified in response to
fh through an iterative process; we refer to this approach as
physically interactive trajectory deformations.

For the current trajectory deformation, define τi to be the
time at which xd starts to change, define τf to be a future time
at which the current trajectory deformation ends, and define
τ = τf−τi to be the duration of trajectory deformation. Thus,
if the human applies a force fh at an arbitrary time τi, that
human input can alter xd over the time interval t ∈ [τi, τf ].
We will define γd : [τi, τf ] → R as the restriction of xd to
the interval t ∈ [τi, τf ], so that γd refers only to the segment
of the desired trajectory with which the human can currently
interact. Note that γd(t) = xd(t) when t ∈ [τi, τf ], but γd is
not defined outside this time interval. Finally, let γ̃d denote
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Fig. 2. Diagram of the current trajectory deformation. The segment of xd
between times τi and τf , labeled γd, is modified based on the human’s force
fh(τi). The resultant deformation is γ̃d (in blue). The variation field V (in
red) can be used to obtain γ̃d from γd. Other possible trajectory deformations,
which are members of a smooth family of trajectories Γd, are also plotted
(dashed lines). We use c1 and c2 to denote constants. Note that γd is Γ0

d,
i.e., s = 0, and γ̃d is Γ1

d, i.e., s = 1. After γ̃d is determined, xd would next
be updated such that xd(t) = γ̃d(t) over the time interval t ∈ [τi, τf ].

the deformation of γd, which we will derive in Section V by
considering the human’s force fh at sample time τi. Once γ̃d
has been determined, xd is updated so that xd(t) = γ̃d(t) over
the interval t ∈ [τi, τf ]. After time τf the robot again follows
its original desired trajectory, x∗d, since the human has not yet
interacted with this future portion of the trajectory—although
he or she can in subsequent trajectory deformations. To better
visualize the setting, refer to Fig. 2.

Over the remainder of this section we identify the con-
straints on our choice of γ̃d, and ensure that this trajectory
deformation is compatible with our impedance controller. We
use the notation and definitions presented by Lee [30]. Let
Γd(s, t) be a smooth family of trajectories—more commonly
referred to as a smooth “family of curves”—where Γd :
R × [τi, τf ] → R. Intuitively, Γd contains two collections of
curves; changing t when s is constant allows us to move along
a single trajectory, while changing s when t is constant allows
us to move between multiple trajectories, evaluating each of
these trajectories at time t. For our purposes, the curves for
which s is constant are especially important, because each
value of s = constant will yield a different smooth trajectory
over the time interval t ∈ [τi, τf ]. We write Γsd to denote these
smooth trajectories with constant s, and define

Γ0
d(t) = Γd(0, t) = γd(t) ∀t ∈ [τi, τf ] (4)

Hence, we have introduced Γsd, where Γ0
d is γd, and all other

values of s give deformations of γd. We observe that our use
of Γsd is similar to the sets of homotopic paths employed for
trajectory deformations in [21]. Next, we utilize Γsd with the
relationship from (2) to obtain

Fv
(
Γsd, hT

)
= kd

(
Γsd(hT )− x(hT )

)
+

bd

(
∂tΓ

s
d(hT )− ẋ(hT )

)
∀h ∈ [τi/T, τf/T ] (5)

Here Fv provides the virtual force at sample time hT when the
desired trajectory is Γsd, and ∂t denotes a partial derivative with
respect to time. As in (3), the actuator force Fa corresponding
to Γsd is simply equal to the virtual force from (5) evaluated

at the most recent sample time

Fa
(
Γsd, t

)
= Fv

(
Γsd, hT

)
∀t ∈ [hT, (h+ 1)T

)
(6)

By construction, when s = 0, we know that Fa
(
Γsd, t

)
= fa(t)

over the time interval t ∈ [τi, τf ]. As compared to (2) and (3),
our equations (5) and (6) provide more generalized expressions
for the virtual and actuator forces over the space of possible
trajectory deformations.

We now constrain the actuator force to be continuous when
the trajectory deformation starts, τi, and when the trajectory
deformation ends, τf . This constraint guarantees that the
human and robot will not experience any discontinuities in
force when changing the desired trajectory, and accordingly
prevents the trajectory modifications from interfering with our
impedance controller. Indeed, continuous interaction forces
have been observed in human-human dyads [31], and [32]
created an accurate model for human-robot interaction forces
by assuming that these forces were continuous. Leveraging
the notation we have developed, we therefore assert that—
regardless of our choice of s—the actuator force resulting
from the deformed trajectory, Fa in (6), and the actuator force
resulting from the original trajectory, fa in (3), are equivalent
at times τi and τf

Fa
(
Γsd, τi

)
= fa(τi) ∀s (7)

Fa
(
Γsd, τf

)
= fa(τf ) ∀s (8)

Since (7) and (8) are satisfied when s = 0, and Fa = Fv at
sample times τi and τf , we could equivalently state

∂sFv
(
Γ0
d, τi

)
= ∂sFv

(
Γ0
d, τf

)
= 0 (9)

Again, ∂s denotes a partial derivative with respect to s. For
clarity, we point out that functions involving Γsd(t) = Γd(s, t)
are really functions of t and s; hence statements like ∂sΓ0

d(t)
imply that we first take the partial derivative of Γd(s, t) with
respect to s, and then evaluate this result for s = 0.

We have arrived at constraints on Fv which ensure that the
human will experience continuous force feedback from the
impedance controller when deforming the desired trajectory.
Perhaps more usefully, by applying (9) to the right-side of
(5), we can re-express these constraints in terms of Γsd, and
identify constraints on the shape of the trajectory deformation.
Let Γsd be linear in s

Γsd(t) = γd(t) + sV (t) ∀t ∈ [τi, τf ] (10)

Define Γ1
d(t) = γ̃d(t), i.e., the curve Γd(s, t) for which s = 1

is our trajectory deformation. We now use (10) to write

γ̃d(t) = γd(t) + V (t) ∀t ∈ [τi, τf ] (11)

where V , the variation, is a vector field along γd such that

V (t) = ∂sΓ
0
d(t) ∀t ∈ [τi, τf ] (12)

Furthermore, from [30] and (12), the following expressions
are equivalent to the derivative of V with respect to t

∂s

(
∂tΓ

0
d(t)

)
= ∂t

(
∂sΓ

0
d(t)

)
= V̇ (t) (13)
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Now, if we let V and V̇ equal zero at the start and end of the
trajectory deformation,

V (τi) = V (τf ) = 0 (14)

V̇ (τi) = V̇ (τf ) = 0 (15)

we have that (9) is satisfied, and hence the actuator force of the
robot, fa, is continuous when transitioning between original
and deformed trajectories.

More intuitively, recalling (11), our derived constraints state
that γ̃d(t) = γd(t) and ˙̃γd(t) = γ̇d(t) both at the start, τi, and
the end, τf , of the trajectory deformation. These constraints
aren’t entirely unexpected. On the one hand, having fixed
endpoint positions—our constraint (14)—has been a typical
requirement for motion planning with trajectory optimization
[22], [23], [25]. On the other hand, having fixed endpoint
velocities—our constraint (15)—can be a requirement for
other trajectory deformation algorithms [20], and even for
modeling human-robot interaction forces [32]. As a result of
our formulation, we have revealed that finding γ̃d boils down
to determining V , the variation field. Of particular interest,
selecting a variation field fulfilling (14) and (15) ensures that
the resultant trajectory deformation is compatible with our
impedance controller. Clearly, there are many choices of V that
satisfy these constraints; for demonstration, one such choice
is shown in Fig. 2. Because we would like to find the “best”
variation field in accordance with (14) and (15), however, we
turn our attention to optimization theory.

V. OPTIMAL TRAJECTORY DEFORMATIONS

Using the notation introduced in Section III and the trajec-
tory deformations described by Section IV, we now present our
method for physically interactive trajectory deformations. At
the conclusion of Section IV, we argued that the optimal vari-
ation satisfying our endpoint constraints should be selected.
Hence, we will first describe the energy of the trajectory de-
formation, which is conveniently expressed using a waypoint
trajectory parameterization. Next, constrained optimization is
leveraged to derive the variation V , and we explore how the
shape of V can be tuned to arbitrate between the human
and robot. We then present an algorithm that implements
our results in real time, and combines impedance control
with physically interactive trajectory deformations. Finally,
we extend the approach to n-DoF robotic manipulators, and
consider potential implementation issues. A block diagram of
the scheme we are working towards is shown in Fig. 3. The
left panel of Fig. 3 depicts equations (1), (2), and (3) from
Section IV, while the steps and expressions in the right panel
will be derived and explained below.

A. Energy of the Trajectory Deformation

In order to choose the optimal trajectory deformation, we
first need to develop an energy function that maps trajectory
deformations to their relative costs [33]. Following the ex-
ample of [22]–[25], we will formulate our energy function
using a waypoint trajectory parameterization. Let xd now be
discretized into an arbitrary number of waypoints equally

𝜇𝛿H

ms+b

1

Zh

1
s impedance

controller

𝛾d

𝛾d
~

fv

fa

fh

fh(k𝛿)

x

T

x(hT)

T
x(hT)

kd   bd

𝛿
V

1
z

output update

xd,curr

xd,curr

Digital

Trajectory Deformation1-DoF Robot

ZOH

Fig. 3. Block diagram of a 1-DoF linear robot (on left, blue) with physically
interactive trajectory deformations (on right, red). The digital portion (inside
dashed line) is executed on a computer. Zh is the human’s impedance, ZOH
stands for zero-order hold, and the device is modeled as a point mass (m) and
viscous damper (b). Recall that 1/z is a unit delay, and notice that sampling
is occurring at two rates, with periods T and δ.

spaced in time, such that δ is the time interval between
consecutive waypoints. In particular, because the time duration
of the segment of xd with which the human can interact is τ ,
the number of waypoints along γd and γ̃d is given by

N =
τ

δ
+ 1 (16)

We can therefore represent γd and γ̃d as vectors of length
N , where each element of these vectors is a waypoint. For
instance, referring back to the block diagram in Fig. 3, at
τi = 0 we initialize γd to be

γd = [x∗d(0), x∗d(δ), x
∗
d(2δ), . . . , x

∗
d(τ)]T (17)

Throughout the rest of Section V, when we refer to γd,
γ̃d, or V , we will mean a vector in RN , and we will use
the subscript γd,j to refer to the j-th element of vector γd.
Applying this waypoint parameterization, the energy of the
trajectory deformation is defined as

E(γ̃d) = E(γd) + (γ̃d − γd)T (−F̂h)+

1

2α
(γ̃d − γd)TR(γ̃d − γd) (18)

Examining (18), the trajectory deformation’s energy is a
summation of (a) the undeformed trajectory’s energy, (b) the
work done by the trajectory deformation to the human, and
(c) the squared norm of V with respect to the matrix R. We
will separately discuss (b) and (c).

The desired trajectory should continually change in response
to the human’s applied force, fh. For this reason, we have
included the second term in (18), which will enable fh to
affect the energy of the trajectory deformation. Let Fh ∈ RN
be defined as the human’s force applied along the variation
vector V , where we recall from (11) that V = γ̃d − γd. Thus,
Fh,1 is the force applied at V1, Fh,2 is the force applied at V2,
and so on. While we know that Fh,1 = fh(τi), i.e., the current
human force, we of course cannot know what Fh,2 through
Fh,N will be, since these forces occur at future times. So as to
develop a prediction of Fh—denoted as F̂h—we refer to work
by Chipalkatty et al. [34]. These authors considered a situation
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where, given the current human input, the robot attempts to
both accomplish a high-level task and minimize the difference
between its future actions and the human’s future inputs. After
human experiments, the authors found that simpler prediction
methods outperform more complex approaches, and are also
preferred by users. Like in [34] and [32], we therefore assume
that future applied forces will be the same as the current input

F̂h = ~1fh(τi), F̂h ∈ RN (19)

Note that ~1 ∈ RN is just a vector of all ones. Substituting (19)
into (18), the second term is equivalent to the negative of the
total waypoint displacement multiplied by the current force,
i.e., the work done to the human. Interestingly, if we compare
(18) to the energy function used for deriving the update rule
within the CHOMP algorithm [22], we observe that ∇E(γ) =
−F̂h. This implies that F̂h is the direction of steepest descent,
and, by deforming the desired trajectory in the direction of
the human’s applied force, we will move down the gradient of
their energy function. Thus, rather than attempting to explicitly
learn E in (18), we are instead allowing the human to define
the direction of steepest descent through pHRI.

The third term in (18) ensures that the resulting trajectory
deformation will seem natural to the human operator. De San-
tis et al. [4] explain that robotic trajectories for pHRI should
resemble human movements. In particular, the trajectory of
human reaching movements can be accurately described by a
minimum-jerk model [35], and, more recently, the minimum-
jerk model has been extended to account for human trajectory
modifications [36]. Thus, we wish to assign lower energies to
natural, minimum-jerk choices of V = γ̃d − γd. To achieve
this end, let A be a finite differencing matrix such that—when
ignoring boundary conditions [22]—we have

...
V = δ−3 ·AV

A =



1 0 0 0
−3 1 0 0
3 −3 1 · · · 0
−1 3 −3 0
0 −1 3 0
0 0 −1 0

...
. . .

...
0 0 0 1
0 0 0 −3
0 0 0 · · · 3
0 0 0 −1



, A ∈ R(N+3)×N (20)

Next, we define R, a positive definite and symmetric matrix
formed using (20)

R = ATA, R ∈ RN×N (21)

Both A and R are unitless quantities. By construction,

‖
...
V ‖2 =

...
V
T ...
V = δ−6 · V TRV = δ−6 · ‖V ‖2R (22)

and so R in (21) determines an inner product on RN . Un-
winding these definitions, we additionally find that ‖V ‖2R is
proportional to the sum of squared jerks along the variation.
As a result, the third term in (18) associates lower energies
with natural shapes of V , i.e., those which minimize jerk.

B. Constrained Optimization

Our definition of E(γ̃d) trades-off between the work done
to the human and the variation’s total jerk. In order to find
V , we would like to optimize E(γ̃d) subject to the constraints
derived in Section IV; however, (14) and (15) must first be re-
written using our waypoint parameterization. Let us introduce
a matrix B, where

B =


1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1

 , B ∈ R4×N (23)

Using (23), we concisely express (14) and (15) as

B(γ̃d − γd) = 0 (24)

Intuitively, the four constraints in (24) guarantee that the first
two and last two waypoints of γ̃d are the same as γd, which,
in our prior terminology, implies that V (t) = V̇ (t) = 0 at the
endpoints of the trajectory deformation, τi and τf . Combining
(18) and (24), we now propose our optimization problem

minimize E(γ̃d)

subject to B(γ̃d − γd) = 0
(25)

Solving (25) both provides a “best” choice of V , and ensures
that the resulting trajectory deformation does not interfere with
the impedance controller. Furthermore, we can augment this
optimization problem by adding terms to the energy equation
[22], [23], [25], and/or providing additional constraints [22],
[24]. Although we focus only on the simplest case, (25), we do
wish to point out that aspects of other optimal motion planners
could also be incorporated within our approach.

As demonstrated by [37], the optimization problem (25) can
be solved through a straightforward application of the method
of Lagrange multipliers. Let the Lagrangian be defined as

L(γ̃d, λ) = E(γ̃d) + λTB(γ̃d − γd) (26)

where λ ∈ R4 is a vector of Lagrange multipliers. We use ∇X
to represent a gradient operator with respect to some vector
X . Following the procedure in [33], the first-order necessity
conditions for an extremum of L are given by

∇γ̃dL(γ̃d, λ) = −F̂h +
1

α
R(γ̃d − γd) +BTλ = 0 (27)

∇λL(γ̃d, λ) = B(γ̃d − γd) = 0 (28)

After some algebraic manipulation of (27) and (28), and then
substituting (19) in for F̂h, we obtain

γ̃d = γd+αGfh(τi) (29)

We observe that the vector G ∈ RN is formed using the
identity matrix I ∈ RN×N , R from (21), and B from (23).
Accordingly, G is both unitless and constant, and can be
completely defined once N from (16) is known

G =
(
I −R−1BT (BR−1BT )−1B

)
R−1~1 (30)
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Although we have found an extremum, it is not yet clear
whether γ̃d in (29) actually minimizes the energy function
(18). To resolve this question, consider the Hessian of (18)

∇γ̃dγ̃dE(γ̃d) =
1

α
R (31)

Because we have already established that R is positive definite,
and we define the constant α > 0, we conclude that the
Hessian (31) is also positive definite. This implies that γ̃d in
(29) minimizes E(γ̃d) subject to the equality constraints—
solving the optimization problem (25), as desired.

C. Invariance and Arbitration

Comparing the result of our constrained optimization, (29),
to the original relationship between γ̃d and γd, (11), we have
revealed that V = αGfh(τi). We next discuss our selection
of the constant α, where we have already constrained α > 0.
Because the variation V is a geometric object, the manner in
which that object is represented should not alter its underlying
shape [22]; hence, the shape of V should be invariant with
respect to N , the number of waypoints. Indeed, referring back
to Fig. 3, our method for physically interactive trajectory
deformations should additionally be invariant with respect
to 1/δ, the rate at which trajectory deformations occur. To
achieve both types of invariance, we recall that G in (30) is a
constant vector, and so we define

α = µδ ·
√
N

‖G‖
, H =

√
N

‖G‖
G (32)

where µ is a positive scalar. Then, substituting this choice of
α into (29), we reach our final equation for γ̃d

γ̃d = γd+µδHfh(τi) (33)

Due to the constraints found in Section IV, the energy function
from Section V-A, the optimization problem within Section V-
B, and the invariance just discussed, we have ultimately arrived

Ideal Shape
as N→∞

Fig. 4. Shape of the optimal variation (H) vs. the number of waypoints
(N ). The elements 1 through N of each vector H ∈ RN are plotted, where
we evaluated (32) for H and (30) for G. As N increases, H converges to
the border of the shaded region. Increasing the number of waypoints leads to
a better approximation of the ideal shape, but does not alter the ideal shape
itself. Thus, the shape of V is invariant with respect to N . The first and last
two elements of H have zero magnitude due to our endpoint constraints (24).

at V = µδHfh(τi). Notice that the shape of V is determined
by the constant, unitless vector H ∈ RN . Plots illustrating
both the shape of our optimal variation and the invariance of
H with respect to N can be seen in Fig. 4.

Our choice of µ in (33) arbitrates how V is impacted by
fh. The user-specified parameter µ ∈ R+ has SI units m/(N·s),
and is therefore analogous to an admittance. Although there is
some similarity between this parameter and the virtual springs
in [21], or the “level of assistance” in [7], our use of µ is most
similar to L in [9]. Erden and Tomiyama leverage L, also a
positive scalar, to relate the integral of the controller force
to a change in the desired trajectory [9]. Like this L, µ can
be tuned to arbitrate between human and robot. When µ is
large, our method for physically interactive trajectory defor-
mations arbitrates towards the human—smaller input forces
cause larger deformations. Conversely, as µ approaches zero,
our method for physically interactive trajectory deformations
arbitrates towards the robot—it becomes increasingly difficult
for users to deform xd.

D. Algorithm for Implementation

We have thus far focused on deriving an optimal variation
for the current trajectory deformation. Of course, after γ̃d is
found using (33), xd is updated to include γ̃d, and the process
iterates at the next trajectory deformation (see Fig. 3). Here
we present our algorithm to implement this iterative process
in real time. The algorithm has two loop rates; the computer
interface—and impedance controller—have a sample period
T . Physically interactive trajectory deformations, on the other
hand, has a sample period of δ, since δ is the time interval
between waypoints along xd. Let us define the ratio r as r =
δ/T . We assume that r ∈ Z+, since it is impractical to update
the desired trajectory faster than the impedance controller can
track xd. Our algorithm simplifies if r = 1, but, with r = 1,
the algorithm could become too computationally expensive as
T decreases; this trade-off will be explored in Section VI.
Finally, we observe that xd is implicitly treated as a series
of waypoints, where the desired position and velocity are held
constant between those waypoints. Explicitly, we will maintain
only the most recent waypoint, xd,curr, and the subsequent
waypoint, xd,next, which correspond to sample times kδ and
(k + 1)δ. From these two waypoints, discrete differentiation
can be used to extract ẋd,curr. Considering the ZOH between
waypoints, xd as a function of time becomes

xd(t) = xd,curr(kδ) ∀t ∈ [kδ, (k + 1)δ
)

(34)

ẋd(t) = ẋd,curr(kδ) ∀t ∈ [kδ, (k + 1)δ
)

(35)

With these details in mind, we refer the reader to Algorithm 1.
This algorithm can be seen as complementary to Fig. 3,
where the algorithm implements the “digital” portion of that
block diagram. To make Algorithm 1 more concise, we have
initialized h and k as −1, noting that, within the while loop,
they are non-negative integers (h, k ∈ N).

E. Extending to Multiple Degrees-of-Freedom

Now that physically interactive trajectory deformations has
been established for a 1-DoF linear robot, we will show how
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Algorithm 1 method for combining impedance control with
physically interactive trajectory deformations

Given:
• Sampling periods: T , δ
• User-selected parameters: τ , µ
• Original desired trajectory: x∗d(t)
• Desired stiffness and damping: kd, bd

Precompute:
• Vector H from (32), where N = τ/δ + 1 from (16)

Initialize:
• γd ← [x∗d(0), x∗d(δ), x

∗
d(2δ), . . . , x

∗
d(τ)]T . (17)

• h← −1, k ← −1
• xd,curr ← ∅, ẋd,curr ← ∅

while h is less than tstop/T do . tstop is the stop time
h← h+ 1
if h is equal to r(k + 1) then . r = δ

T
k ← k + 1
τi ← kδ . τf = τi + τ
fh ← sampleForce(τi)
γ̃d ← γd+µδHfh . (33)
output:
xd,curr ← γ̃d,1 . γ̃d,1 = xd,curr
ẋd,curr ← 1

δ (γ̃d,2 − γ̃d,1) . γ̃d,2 = xd,next
update:
γd ← [γ̃d,2, γ̃d,3, . . . , γ̃d,N , x

∗
d(τf + δ)]T

end if
x← samplePosition(hT )
ẋ← sampleVelocity(hT )
fv ← kd(xd,curr − x) + bd(ẋd,curr − ẋ) . (2)

end while

this method can be extended to n-DoF. In particular, we will
consider a serial manipulator with forward kinematics x =
Φ(q), such that q ∈ Rn is the configuration in joint space, and
x ∈ Rm is the end-effector pose in task space (m ≤ 6). Here
bold denotes the generalization of previously defined scalars
into m-length vectors, so, for instance, fh ∈ Rm becomes the
wrench applied by the human at the robot’s end-effector. From
[38], the joint space dynamics of the robotic manipulator are

M(q)q̈ + C(q, q̇)q̇ + g(q) = ur+J(q)Tfh (36)

where M ∈ Rn×n is the inertia matrix, C ∈ Rn×n contains
the Coriolis and centrifugal terms, and g ∈ Rn is the gravity
vector. The robot actuators apply joint torques ur ∈ Rn, and
J(q) ∈ Rm×n is the robot’s Jacobian matrix, which defines
the mapping ẋ = J(q)q̇, and is assumed to be full rank.

As before, we would like this robotic manipulator to track
a desired end-effector trajectory, xd, while rendering a virtual
stiffness and damping. Hence, the virtual wrench—the wrench
that the robot ideally applies in task space—can be written

fv(hT ) = Kd

(
xd(hT )− x(hT )

)
+

Bd

(
ẋd(hT )− ẋ(hT )

)
∀h ∈ N (37)

Within (37), Kd ∈ Rm×m and Bd ∈ Rm×m are the desired
stiffness and damping matrices, respectively. Let us define

Kd = diag(k1d, k
2
d, . . . , k

m
d ) and Bd = diag(b1d, b

2
d, . . . , b

m
d ),

where kjd and bjd are the desired stiffness and damping of the j-
th task space coordinate. Re-examining (37) using these matri-
ces, and introducing the notation fv = [f1v , f

2
v , . . . , f

m
v ]T , we

see that the virtual force or torque f jv is found by implementing
Algorithm 1 on the j-th coordinate in task space. In other
words, because there are no cross-terms in Kd or Bd, fv
can be obtained by performing Algorithm 1 separately with
each of the m task space coordinates, and then combining the
results into an m-length vector. We observe that H from (32),
however, still only needs to be precomputed once.

The control law in (36) should be selected such that the
human operator experiences fv , the virtual wrench, when
interacting with our robotic manipulator. For simplicity of
exposition, we might consider the following controller

ur = J(q)Tfa + uff (38)

Again applying a ZOH, fa at time t is equivalent to fv
evaluated at the most recent sample time, hT . The feedforward
torque vector, uff ∈ Rn, could be used to either compensate
for gravity or apply inverse dynamics [38]. Of course, many
other choices for ur are equally valid—e.g., see [8], [11],
[13]—but our principal finding here is not the design of (38).
Instead, like the CHOMP [22], STOMP [23], and ITOMP [25]
algorithms, we have demonstrated that physically interactive
trajectory deformations can straightforwardly scale to n-DoF
manipulators. More specifically, we must maintain a total of
m · N waypoints, where 1 ≤ m ≤ 6, and so our approach
scales linearly with the dimensionality of the task space.

F. Unintended Interactions and Trajectory Constraints

When implementing physically interactive trajectory defor-
mations on single-DoF or multi-DoF robots, we must consider
(a) unintended interactions and (b) trajectory constraints. Up
until this point, it has been assumed that fh measures the
external forces applied only by the human, and that all pHRI
is intentional. In practice, however, the robot could collide
with some unknown obstacle, or the human might accidentally
interact with the robot. These unintended interactions alter fh,
and, from Algorithm 1, change xd. Therefore, to mitigate the
effects of unintended interactions, we recommend filtering the
external force fh. For instance, [9] and [12] address similar
issues by requiring the magnitude of fh to exceed a predefined
threshold for a given length of time, and then adjust the desired
trajectory or shared control allocation based on that filtered
fh. During our human-subject experiments in Section VII,
we will apply both a low-pass filter and minimum-force
threshold before using fh for physically interactive trajectory
deformations. As an aside, recall that these deformations only
affect the future desired trajectory, and—since the stability of
an impedance controller does not depend on the future desired
trajectory [38]—we can conclude that our approach will not
influence impedance controller stability.

After using Algorithm 1 to deform xd, the updated desired
trajectory may not satisfy some trajectory constraints; for
instance, xd could surpass the robot’s joint limits, or collide
with known obstacles. Like we previously indicated, this
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TABLE I
BASELINE PARAMETERS USED IN SIMULATIONS

Parameter T [s] δ [s] τ [s] µ [m/N·s]

Value 10−3 10−2 1 1

problem can be addressed by incorporating additional costs
or constraints within (25), as shown by [22]–[25]. A more
straightforward solution, however, is simply to reject defor-
mations which violate the trajectory constraints, and maintain
the acceptable desired trajectory from the previous iteration.
After computing (33) in Algorithm 1, we first check whether
γ̃d satisfies some margin of safety with respect to the robot’s
joint limits, free space, or other constraints. If γ̃d passes this
check, proceed as usual; otherwise, reset γ̃d = γd before
continuing. Readers should be aware that—because of the
computational time associated with collision checking—this
additional procedure may decrease the rate at which physically
interactive trajectory deformations are performed.

VI. SIMULATIONS

To validate our method for physically interactive trajectory
deformations and understand the effects of our user-specified
parameters, we performed 1-DoF simulations in MATLAB
(MathWorks). These simulations demonstrate how the desired
trajectory, xd, deforms in response to forces applied by the
human, fh. Unlike the hardware experiments in Section VII,
here we will omit any robotic device. Simulations were con-
ducted using the “Trajectory Deformation” portion of the block
diagram in Fig. 3, or, equivalently, Algorithm 1, excluding the
final lines involving x, ẋ, or fv . In each simulation, we defined
the human’s force input to be a pulse function

fh(t) =

{
1 if 1 ≤ t < 2

0 otherwise
(39)

where fh is measured in Newtons. Likewise, the original
desired trajectory, x∗d, was set as a sin wave

x∗d(t) = −0.75 · sin(t) (40)

Both x∗d and xd were measured in meters. So that readers
can more easily reproduce our results, we have listed our
simulation parameters in Table I. Note that kd and bd are not
necessary, since the virtual force fv is never computed. Given
these parameters, fh in (39), and x∗d in (40), we ran Algo-
rithm 1 with (34) to find xd as a function of time. Parameters
δ, τ , and µ were then separately varied in different figures,
where the parameters not currently being tested maintained
their values from Table I. Our results are shown in Figs. 5-8.
Fig. 5 shows how xd smoothly and progressively deforms over
time as the user continues to apply force fh. Fig. 6 illustrates
that changing δ, the sampling period for physically interactive
trajectory deformations, does not alter xd. Figs. 7 and 8, on the
other hand, display the different ways in which user-specified
parameters τ and µ can affect xd.

Viewing these figures together, it is clear that our method
for physically interactive trajectory deformations enables the

Fig. 5. Desired trajectory xd corresponding to different durations of applied
force fh. The magnitude of fh is the same in every plot, but we have added a
visual offset for clarity. x∗d from (40) is the dashed red line. The plot t = 1.1 s
shows xd after force is applied for 0.1 s, the plot t = 1.5 s shows xd after
force is applied for 0.5 s, and the plot t = 2.0 s shows xd after force is
applied for 1.0 s. As the user applies force, xd iteratively deforms; these
deformations aggregate smoothly over time.

Fig. 6. Effect of the sample period δ on the desired trajectory xd. Both
fh from (39), with units N, and x∗d from (40), with units m, are plotted
for reference. Regardless of the value chosen for δ, we follow the same
underlying trajectory. Hence, our method is invariant with respect to δ.
Note that decreasing δ leads to a better approximation of the underlying
trajectory, but it also increases N , the number of waypoints. For example,
when δ = 10−1 s we have N = 11, but when δ = 10−3 s, N = 1001.

human to actively vary the desired trajectory. When applying
force fh = 1 N, the simulated user induces xd to iteratively
deform, and, when no force is applied, xd again follows x∗d
after τ seconds. Importantly, we observe that the transitions
between xd and x∗d are smooth; moreover, the deformed
portions of the desired trajectory are also smooth. Note that
xd deforms in the direction of fh, maximizing the work done
by the human’s applied force. Besides validating Algorithm 1,
these simulations have additionally resolved the previously dis-
cussed trade-off between r = 1 and computational efficiency.
In order to have r = 1, here we must choose δ = 10−3 s,
which means we will have to constantly maintain 1000τ + 1
waypoints. As τ increases, this could eventually prevent real
time implementation—however, even when r = 1 and τ = 5 s,
i.e, N = 5001, the simulations were still ten times faster
than real time on a laptop computer. Finally, Figs. 7 and
8 provide some guidelines behind the selection of the user-
defined parameters τ and µ. Increasing τ both causes the
trajectory deformation to occur over a longer time interval, and
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0.25s

1s

2s

Fig. 7. Effect of the parameter τ on the desired trajectory xd. Both fh from
(39), with units N, and x∗d from (40), with units m, are plotted for reference.
We observe that xd smoothly returns to the original desired trajectory τ
seconds after the human stops applying an input force (marked time intervals).
Increasing τ not only allows the human deform xd over a longer timescale,
but it also increases the magnitude of the total deformation.

Fig. 8. Effect of the parameter µ on the desired trajectory xd. Both fh from
(39), with units N, and x∗d from (40), with units m, are plotted for reference.
Increasing µ arbitrates towards the human, so that the given force input causes
a larger change in xd. The relationship between µ and the total deformation
is not linear, although µ does linearly scale a single trajectory deformation.

increases the magnitude of the total deformation; therefore, to
keep the total deformation magnitude constant, µ should be
decreased as τ is increased. In general, the choice of τ and µ
may depend on the given robot, environment, and human-robot
arbitration. During implementation, we recommend setting τ
and µ at values close to zero, and then gradually increasing
these values in accordance with our guidelines until the desired
performance is achieved.

VII. EXPERIMENTS

To compare impedance control (IC) and impedance control
with physically interactive trajectory deformations (IC-PITD),
we conducted human-subject experiments on a multi-DoF
haptic device, as shown in Fig. 9. Here the human and robot
collaborated to follow a desired trajectory, where the human
must intervene to help the robot avoid “unknown” obstacles.
The physical robot was coupled to a virtual environment—
which visualized these obstacles—and the virtual robot repre-
sented the position of the actual haptic device. We performed
repetitions of the same tracking and obstacle avoidance task

with IC and IC-PITD. We hypothesized that (a) humans would
better complete the task with IC-PITD, both in terms of less
torque applied and increased movement smoothness, and (b)
differences in tracking error and obstacle collisions between
IC and IC-PITD would be negligible.

A. Experimental Setup

Ten subjects (three females) participated in this experiment
after signing a consent form approved by the Rice University
Institutional Review Board. Subjects physically interacted with
the flexion/extension (FE) and radial/ulnar (RU) joints of the
OpenWrist, a robotic exoskeleton recently developed for wrist
rehabilitation [39]. Thus, the human and robot shared control
over 2-DoF. In order to measure the human’s input torque
about both axes of rotation—FE and RU—we employed the
nonlinear disturbance observer originally proposed in [40], and
specifically applied to haptic devices by [41]. This disturbance
observer, along with the IC and IC-PITD algorithms, were
implemented upon a desktop PC through Matlab/Simulink
(MathWorks) together with the QUARC blockset (Quansar).
The computer communicated with the haptic device using a
Q8-USB data acquisition device (Quansar), and the sample
period T was set as T = 10−3 s.

Subjects observed a computer monitor (see Fig. 9), where
the virtual task was displayed. An image and explanation of
this virtual task is provided by Fig. 10. The robot’s original
desired trajectory, x∗

d, was defined as a circle in joint space

x∗
d(t) = π/9 · [cos(t), sin(t)]T (41)

The robot’s position at time t, i.e., x(t), was denoted by an
orange torus. Subjects were instructed to move this torus to
follow (41), while also interacting with the robot to avoid two
obstacles. A single trial consisted of a complete revolution
around x∗

d. It should be noted that—because of the IC and
IC-PITD algorithms—this was a shared control task, where
the robot could autonomously track (41) if no human inputs
were present. The virtual stiffness, Kd ∈ R2, and virtual
damping, Bd ∈ R2, were the same for both IC and IC-PITD.
Based on our prior experience and preliminary experiments,
we heuristically selected Kd = diag(kd, kd), with kd =
35 Nm/rad, and Bd = diag(bd, bd), with bd = 0.5 Nm·s/rad.

1

2

Fig. 9. Experimental setup. (1) participants grasped the handle of the Rice
OpenWrist, a multi-DoF haptic device. (2) by interacting with this robot,
participants could move their cursor within the virtual task.
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obstacle

obstacle

x(t)

xd(t)

xd*

*

Fig. 10. Virtual task. By rotating the flexion/extension and radial/ulnar joints
of the haptic device, subjects changed x(t), their current position (orange
torus). The original desired position at the current time, x∗

d(t), was denoted
by the blue sphere. Without any human intervention, x(t) tracks x∗

d(t) around
a circular trajectory (dashed line), and intersects both obstacles. Participants
were asked to interact with the robot such that the torus avoids each obstacle.

Recalling our findings from Section VI concerning computa-
tional efficiency, we additionally chose δ = 10−3 s, noting
that, as a result of T and δ, r = 1 for this experiment. The
IC-PITD parameters τ and µ were identified offline during
preliminary experiments, where we iteratively increased τ and
µ until we obtained interaction behavior that was noticeably
different from impedance control. Using this heuristic process,
we selected τ = 1.25 s and µ = 0.35 rad/Nm·s.

We utilized a within-subjects design, where all ten partici-
pants completed the same experimental protocol twice: once
with IC, and once using IC-PITD. To better eliminate ordering
effects, we counterbalanced which controller was tested first.
Given a controller—either IC or IC-PITD—the experimenter
initially demonstrated the virtual task for the subject. Once
that subject understood the task, he or she then practiced for
approximately five minutes by performing 50 unrecorded trials
(revolutions). This training period was meant to familiarize the
participant with the current controller, and also to help alleviate
any learning effects or differences within initial skill [26].
After the training phase, subjects executed 15 more trials, the
last 10 of which were recorded for our data analysis. Next, the
same protocol—demonstrating, training, and recording trials—
was repeated for the second controller. Accordingly, every
participant performed a total of 20 recorded trials, i.e., 10
with both controller types (IC and IC-PITD).

B. Data Analysis

For each recorded trial we computed the (a) applied torque,
(b) interaction percent, (c) collision percent, (d) tracking error,
and (e) movement smoothness. Applied torque was defined as∫ 2π

0
‖fh(t)‖dt, where fh(t) ∈ R2 is the human’s torque about

the FE and RU axes at time t, as estimated by the disturbance
observer. Interaction percent indicates to the fraction of the
trial during which the magnitude of the human’s applied torque
exceeded 0.5 Nm; in other words, 1

2π

∫ 2π

0

(
‖fh(t)‖ > 0.5

)
dt.

We use applied torque and interaction percent to assess not
only the subject’s total effort, but also how persistently the
human interacts with the robot. Collision percent refers to
the fraction of the trial during which the human’s torus is
in contact with an obstacle. Tracking error considers the
difference between x(t) and x∗

d(t), but only when x∗
d(t) is

more than 0.2 radians away from both of the obstacles. Let

us refer to the segments of time where x∗
d(t) is in this free

space as τfree ⊆ 2π; then, the tracking error is calculated as∫
τfree

‖x(t) − x∗d(t)‖dt. We use both collision percent and
tracking error to determine how accurately the participant
completed our virtual task. Finally, movement smoothness
was measured by leveraging the spectral arc-length metric
[42]. Within this spectral-arc length algorithm, an amplitude
threshold of 0.05 and a maximum cut-off frequency of 10 Hz
were selected. We use movement smoothness, as measured by
spectral-arc length, to investigate the human-like quality of the
robot’s movements.

We separately computed each subject’s mean trial metrics
across the 10 recorded trials with IC, as well as their mean trial
metrics across the 10 recorded trials using IC-PITD. As such,
for an individual subject, we obtained their average torque,
interaction, collision, error, and smoothness metrics per trial
when IC was present, along with the same averaged behavior
per trial when IC-PITD was employed. So as to statistically
test the effects of controller type, we then used paired t-tests
with a significance level of α = 0.05. Analysis concerning
statistical significance was conducted using SPSS (IBM).

C. Results and Discussion

Our findings are summarized by Fig. 11, and reported below
in the form mean ± std. For trials with IC, subjects applied
an average torque of 4.64±0.43 Nm, while the same subjects
applied an average torque of 2.25 ± 0.20 Nm during IC-
PITD trials. Similarly, the interaction percent for the IC case,
57.90±8.29%, exceeded the interaction percent with IC-PITD,
20.77 ± 4.97%. We concluded that there was a statistically
significant decrease in both applied torque (t(9) = 15.907,
p < 0.001) and interaction percent (t(9) = 11.530, p <
0.001) when subjects performed our pHRI task using IC-
PITD. In terms of collision percent, we observed a slight
increase between the IC case, 0.71±1.17%, and the IC-PITD
trials, 1.41 ± 1.32%, but this difference was not statistically
significant (t(9) = −1.203, p = 0.260). Interestingly, a similar
pattern was discovered for tracking error; in the IC trials,
subjects had an average tracking error of 0.016 ± 0.005 rad,
which was actually lower than the average tracking error of
0.027 ± 0.015 rad within the IC-PITD trials. This increase
in error, however, was not determined to be statistically sig-
nificant (t(9) = −2.025, p = 0.073). Finally, subjects had an
average movement smoothness of −2.91±0.24 for the IC case
and −2.66± 0.11 during the IC-PITD trials. Recalling that—
within the spectral arc-length metric—more negative values
indicate less smooth movements [42], we found that IC-PITD
lead to a statistically significant improvement in movement
smoothness (t(9) = −2.640, p = 0.027).

Observing the low collision percent and tracking error, it is
clear that subjects were able to successfully avoid the virtual
obstacles and then return to following x∗

d while using either
IC or IC-PITD. On the other hand, controller type did have a
statistically significant effect on the subjects’ efficiency; when
physically interactive trajectory deformations was combined
with the impedance controller, participants could complete the
task while applying less total torque, and did not need to
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Fig. 11. Experimental results. Each plot shows the mean across subjects when impedance control was used (IC, gray), and when impedance control with
physically interactive trajectory deformations was used (IC-PITD, orange). Error bars indicate the standard deviation, and an asterisk (∗) denotes p < 0.05.

physically interact with the robot as frequently. Indeed, the
robot’s resultant movements with IC-PITD were found to be
smoother, and thus natural and human-like. The results from
the described experiment therefore support our hypotheses:
pHRI with IC-PITD was more efficient and smooth, without
noticeably reducing accuracy as compared to IC. It must
be recognized, however, that the same behaviors may not
necessarily occur during other tasks, or for individual users
with different levels of proficiency. As such, the results from
our comparison of IC and IC-PITD should be understood as
practical trends, and not absolute truths. Interestingly, based on
the informal feedback we received from participants after the
experiment, we recommend tuning the impedance controller
to be more stiff when implementing IC-PITD. Subjects might
have informally preferred higher Kd gains because IC-PITD
provides two sources of compliance—both the impedance con-
troller and the trajectory deformations—and so the stiffness of
the impedance controller should be increased in compensation.

VIII. CONCLUSION

We proposed an impedance control algorithm which al-
lows humans to simultaneously deform the robot’s actual and
desired trajectories during pHRI. Under our approach, the
human utilizes physical interactions to alter how the robot
completes some collaborative task. Since the deformed desired
trajectory smoothly returns to the original desired trajectory
in the absence of human interactions, the robot maintains
a level of autonomy, and both human and robot can mean-
ingfully contribute towards collaborative movements. We first
considered a single trajectory deformation, which was defined
by selecting the variation; in particular, endpoint constraints
on this variation were identified to prevent interference with
impedance control. Next, the trajectory deformation’s energy
was written as a balance of the work done to the human
and the variation’s total jerk. After applying the method of
Lagrange multipliers, we found the optimal variation shape
which, in practice, could additionally be made invariant to the
sampling period. We then introduced a real time algorithm
that combined impedance control with physically interactive
trajectory deformations, where the human now continuously
deforms the robot’s desired trajectory by applying wrenches at
the robot’s end-effector. This algorithm is intended for multi-
DoF robots, and scales linearly with the dimensionality of the
task space. To verify our algorithm, and intuitively under-
stand the effects of its user-specified arbitration parameters,
we performed 1-DoF simulations. Finally, we experimentally

demonstrated on human subjects and a 2-DoF haptic device
that impedance control with physically interactive trajectory
deformations yields efficient and smooth pHRI.

Future work includes comparing the deformation method
presented in this paper to learning approaches that re-plan the
robot’s desired trajectory. For instance, we are interested in
explicitly learning the human’s energy function from pHRI—
at each time step where our understanding of the human’s
energy function is updated, we would then re-plan the robot’s
desired trajectory to minimize that energy function. On the one
hand, this learning and re-planning approach could lead to less
pHRI and a desired trajectory that better matches the human’s
preferences. On the other hand, our deformation approach may
be more intuitive, and can be performed faster than re-planning
the entire trajectory. Another topic for future work concerns
the speed at which the task is completed; we recognize that
a limitation of our current work is that the human cannot use
pHRI to change the robot’s overall task timing. In future work,
we would like to extend learning methods in order to infer the
human’s desired timing through pHRI.
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[7] B. Corteville, E. Aertbeliën, H. Bruyninckx, J. De Schutter, and
H. Van Brussel, “Human-inspired robot assistant for fast point-to-point
movements,” in Proc. IEEE Conf. Robot. Autom., 2007, pp. 3639–3644.

[8] Y. Li and S. S. Ge, “Human–robot collaboration based on motion
intention estimation,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 3,
pp. 1007–1014, 2014.

[9] M. S. Erden and T. Tomiyama, “Human-intent detection and physically
interactive control of a robot without force sensors,” IEEE Trans. Robot.,
vol. 26, no. 2, pp. 370–382, 2010.
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