BMI Control of a Therapeutic Exoskeleton to Facilitate Personalized Robotic Rehabilitation of the Upper Limb

Rice PI: Prof. Marcia K. O'Malley¹ omalleym@rice.edu

UH PI: Prof. Jose L. Contreras-Vidal² jlcontreras-vidal@uh.edu

UTHSC PI: Dr. Gerard E. Francisco³

Gerard.E.Francisco@uth.tmc.edu

Nikunj A. Bhagat², Anusha Venkatakrishnan², Berdakh Abibullaev², Edward J. Artz¹, Amy A. Blank¹, James A. French¹, Colin Losey¹, Nuray Yozbatiran³, Christof Karmonik⁴, and Robert G. Grossman⁴

¹Mechatronics & Haptic Interfaces (MAHI) Lab, Mechanical Engineering Department, Rice University ²Laboratory for Non-Invasive Brain Machine Interface Systems, Electrical & Computer Engineering Department, University of Houston ³ NeuroRecovery Research Center at TIRR Memorial Hermann and University of Texas Health Science Center ⁴Houston Methodist Research Institute

Motivation

- **4M stroke survivors** require physical therapy that is labor intensive, highly repetitive at an annual cost of \$43 billion
- Intensive and repetitive movement training achievable with robotics may be **more effective** than traditional approaches
- **Detecting motor intent** using scalp EEG enables "patient-inthe-loop" robotic therapies to encourage active user engagement and cortical plasticity, potentially maximizing therapeutic benefits

Objective

To accelerate the development, efficacy and use of **robotic** rehabilitation after stroke by capitalizing on the benefits of subject intent and real-time assessment of impairment

Results

Results from feasibility study (exemplified for a single subject)

> Motor intent detected during different exoskeleton training modes

User-driven mode

User-triggered mode

Clinical Study

Experiment Setup

EEG-based closed-loop BMI control of MAHI Exo-II

Protocol for Clinical Study

Record EEG data in Triggered and Backdrive modes

- The MAHI Exo-II exoskeleton for upper limb rehabilitation supports 4 DOF:
 - Elbow flexion-extension
- Forearm pronation-supination
- Wrist flexion-extension
- Radial-ulnar deviation
- Three control modes for calibration and training:

Day 14 Closed-loop testing of BMI control Data collection in blocks of 20 trials

Source Localization of Motor Intent

Significant activations from t-statistic (p < 0.05) are shown on the cortex

Different activation regions can be due to difference in BMI calibration, i.e. userdriven vs. user-triggered modes

Distributed current source maps (weighted MNE) at time points associated with motor intent for the group averaged trials

Preliminary Results from Ongoing Clinical Study

- Train EEG classifier
 - Calibration Closed-Loop Control

Motor Intent Classifier Design

Novel adaptive window technique for optimal feature separation

Future Work

- Conduct longitudinal study to evaluate effectiveness of BMI-**Robot therapy** in stroke subjects by monitoring functional recovery, movement coordination, and neuroplastic changes
- > Expand the degrees of control by classifying **movement** direction and reconstructing joint kinematics from EEG

Acknowledgement

The authors gratefully acknowledge the support of the National Institutes of Health through grant **NIH-1R01NS081854** with NINDS. This protocol is available as clinicaltrials.gov ID# NCT01948739.

The University of Texas **Health Science Center at Houston**