
Journal of Software Engineering for Robotics 7(1), July 2016, 100-119
ISSN: 2035-3928

Modeling Electromechanical Aspects of
Cyber-Physical Systems

Yingfu Zeng1 Chad Rose1 Walid Taha1,2 Adam Duracz2

Kevin Atkinson1 Roland Philippsen2 Robert Cartwright1 Marcia O’Malley1

1 Department of Computer Science, Rice University, Houston 77051, USA
2 School of Information Technology, Halmstad University, Halmstad 30118, Sweden

Abstract—Model-based tools have the potential to significantly improve the process of developing novel cyber-physical systems (CPS).
In this paper, we consider the question of what language features are needed to model such systems. We use a small, experimental
hybrid systems modeling language to show how a number of basic and pervasive aspects of cyber-physical systems can be modeled
concisely using the small set of language constructs. We then consider four, more complex, case studies from the domain of robotics.
The first, a quadcopter, illustrates that these constructs can support the modeling of interesting systems. The second, a serial robot,
provides a concrete example of why it is important to support static partial derivatives, namely, that it significantly improves the way
models of rigid body dynamics can be expressed. The third, a linear solenoid actuator, illustrates the language’s ability to integrate
multiphysics subsystems. The fourth and final, a compass gait biped, shows how a hybrid system with non-trivial dynamics is modeled.
Through this analysis, the work establishes a strong connection between the engineering needs of the CPS domain and the language
features that can address these needs. The study builds the case for why modeling languages can be improved by integrating several
features, most notably, partial derivatives, differentiation without duplication, and support for equations. These features do not appear
to be addressed in a satisfactory manner in mainstream modeling and simulation tools.

Index Terms—Domain-Specific Language, Cyber-Physical Systems.

1 INTRODUCTION

M ODEL-BASED design tools can revolutionize the process
of developing new products. This is especially the case

for cyber-physical systems (CPSs), which consist of networks
of computational and physical components. The presence of
computational and networking components means a bigger
state space and more non-determinism, both of which limit

Regular paper – Manuscript received September 02, 2015; revised June 1,
2016.

• This manuscript revises and consolidates two papers published under
similar titles at the DSLRob 2012 [1] and DSLRob 2013 [2] workshops. A
shortened revision of the second paper was also published at ICESS 2014
[3]. The work reported on is substantially extended, including the addition
of new examples and case studies. A key technical improvement on what
is presented in these papers is the introduction of support for Lagrangian
modeling in Acumen. This makes it possible to express the dynamics of the
RiceWrist-S model in a more direct manner. The syntax of the language
has also been updated, as well as the 3D graphics library (and associated
figures in the paper).

• This work was supported by US NSF CPS award (No.1136099), Swedish
KK-Foundation CERES and CAISR Centres, and the Swedish SSF NG-Test.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

the utility of physical testing. This observation has also been
made in the context of automotive systems with advanced
driver assistance and autonomy functions [4],[5], and smart
home design [6].

Model-based tools provide functions on models such as
simulation, analysis, verification, and conformance testing [7],
[8], [9], [10], [11]. Using such tools shifts the user’s focus from
building and maintaining disjointed software artifacts like the
“simulation code” or the “analysis code” to “the model of the
product” being studied or developed. In addition to what is
often described as “raising the level of abstraction,” the model-
based approach reduces the pressure to maintain different
(often implicit) models of the same system. Avoiding such
duplication reduces the work needed to ensure the consistency
of these different models.

Modeling and simulation tools can improve software devel-
opment for robotics in two ways. First, they can virtualize
the robot and allow fast and cheap testing of real robots.
Second, they make it easier to explore and gradually develop
the specification of software and hardware before we start
implementing it. For example, we can start with an idealized
controller, gradually adding more realistic constraints such as
quantization, discretization, and energy consumption.

www.joser.org - c© 2016 by Y. Zeng, C. Rose, W. Taha, A. Duracz, K. Atkinson, R. Philippsen, R. Cartwright, M. O’Malley

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 101

The overarching goal of our research is to develop the
semantic foundations for rigorous simulation languages for the
cyber-physical systems domain (see, for example [12], [13],
[14], [15], [16], [17]). Because semantics research must focus
primarily on minimal calculi, it is critical that the choice of
constructs in a calculus has domain-based justification that is
grounded in an accurate understanding of the needs of the CPS
domain. There is a need for guidelines for the demands of the
CPS domain in terms of modeling language features, as well
as evaluations of the extent to which particular features are
able to meet these demands. Domain-based justification is of
significance not only for our own research but for any other
research effort on the semantics of hybrid systems modeling
languages. Beyond the research community, such guidelines
can also illuminate the design space for providers of such
tools. It affects decisions about syntax, semantics, building
implementations, and understanding how a language could and
should be used. This paper reports on the results of our efforts
to address this question.

1.1 Contributions
The main contributions of this paper are:

1) Identifying a number of aspects that are representative of
some of the most basic and prominent modeling needs
of the CPS domain.

2) Showing that a small language for modeling hybrid
(continuous/discrete) systems is sufficient for modeling
these aspects.

3) Reporting on four larger case studies expressed within
the same language.

After introducing the syntax and the informal semantics of
Acumen, a minimalist language used for the investigation
(Section 2), we compare it with other standard modeling and
simulation tools that are widely used in the robotics domain
(Section 3). Then we turn to the different aspects identified
and treated. Each section explains an aspect and how it can
modeled in a minimal formalism. Simpler and more self-
evident aspects are presented in earlier sections. Naturally, a
larger part of these earlier sections is spent explaining the
formalism than is the case in later sections.

Visual and geometric presentation is a critical aspect of
analytical modeling that can hide in plain sight. We begin
by showing how to support visual and geometric presentation
in both static and dynamic scenes, as well as in simple and
composite components (Section 4). Traditionally, visualization
is not part of analytical modeling, but it is indispensable for
efficiently understanding both the specification and the results
of model-based simulations or analysis. Basic mechanics and
dynamics come next (Section 5), along with a range of
analytical principles used to model physical systems. After
a brief introduction to the notion of sub-models (Section 6),
we return to expressing the differential equations needed to
model control (Section 7). We then consider how to express a

more realistic model of control systems by capturing the way
in which implementation on a digital computer introduces both
discretization and quantization (Section 8).

The four larger case studies carried out as part of this
work are drawn from the robotics domain. The first is a
quadcopter, a non-trivial, rigid body system that is often used
as a CPS example. This case study shows that the language
can simply and directly express Newtonian models (Section
9). The second case study is a research robot called the
RiceWrist-S. For this robot, developing a Newtonian model
is difficult and inconvenient. The case study helps illustrate
how the more advanced technique of Lagrangian modeling can
be advantageous for some problems. As a prelude to modeling
the RiceWrist-S robot [18], we consider two ostensibly simple
dynamic systems, namely a single pendulum and a double
pendulum. For the second system, we show that Lagrangian
modeling leads to a much simpler mathematical formalization
(Section 10). We then confirm this insight by showing how
Lagrangian modeling enables us to construct a simple model of
the dynamics for the RiceWrist-S (Section 11). The third case
study is an example of an integrated electromechanical system,
namely a linear solenoid actuator. This case study illustrates
the core language’s ability to model multiphysics, such as
coupled mechanical and electrical subsystems. Whereas the
first three case studies are continuous systems, the fourth
study (Section 13), a compass gait biped, is a classic example
drawn from the domain of robotic walking. It shows how to
model hybrid systems with non-trivial dynamics using the core
language. We summarize our observations about the needs of
the CPS domain and language constructs (Section 14), and
then conclude.

2 A SMALL, EXPERIMENTAL LANGUAGE FOR
HYBRID MODELING

In this section we introduce the syntax and the (informal)
semantics for the small language that we will use in the rest
of this paper.

The syntax for the Acumen language [25], [26] consists of
the following constructs:
• Constant literal values (e.g., true, 5, 1.3, "Hello")
• Vectors and matrices (e.g., (1,2), ((1,2),(3,4)))
• Expressions and operators on ground and composite types

(+, -, ...)
• Model definitions (model C (x,y,z) = ...)
• Model instantiation and termination operations (create,
terminate)

• Variable derivatives (x’, x’’, ...) with respect to time
• Variable declarations (initially ... always). For

convenience, we included in the set of variables a special
variable called _3D for generating 3D animations.

• Time and partial derivatives (e.g.,(xˆ2)’, (x+y)’[x])
• Continuous equation and discrete equations (=, + =)
• Conditional constraints (if, and match)

102 Journal of Software Engineering for Robotics 7(1), July 2016

TABLE 1: Comparison of Modeling and Simulation Tools

MATLAB
R2015b [19]

Simscape
R2015b [11]

Octave
4.0 [20]

OpenModelica
1.9.3 [21]

Dymola
5.3 [22]

Mathematica
7.0 [23]

20-sim
4.6 [24]

This paper

Partial derivatives Yes No No Limited No Yes Yes Yes
Compact derivatives No No - - - No Unknown Yes
Support for equations No Yes No Yes Yes Yes Yes Yes

Derivatives can be applied to expressions or variables. The
time derivative on a variable has special status, in that it
can both be used in expressions to mean the value of the
derivative at a given time and can also be equated to a value.
When there is a constraint that equates a time derivative of a
variable to a value, the effect is that integration can be used
to compute the value of the variable itself. In principle, one
can imagine that, in an equational language, if a symbolic
expression for the variable is known, the derivative variable
can be determined from that expression. In practice, it is rare
that a closed form expression for the result of a simulation
is known. Instead, it is more common to have the value
of the derivative known, and then numerical integration can
be used to compute the value of the variable itself. The
partial derivative is an operator that takes two expressions
and returns the result of the first expression differentiated
with respect to the second expression. The syntax for this
operator is expr’[expr]. For two scalars, the result is
simply the first expression partially differentiated with the
second one. If one expression is a scalar, and the other a
vector, the operator is applied to all elements of the vector.
For two vectors, a matrix is generated where every row is
the result of the corresponding element in the first vector,
partially differentiated with the second vector. For example,
let f = x+ y, g = (x2, y2) and q = (x, y), then the operators
f ′[x] and f ′[y] would both result in 1. Moreover g′[x], f ′[q],
g′[q] will return (2 ∗ x, 0), (1, 1) and ((2 ∗ x, 0), (0, 2 ∗ y))
respectively. Allowing arbitrary expressions instead of just
variables in partial derivatives allows us to express families
of equations like the Euler-Lagrange equation directly.

Continuous equations are used for equating continuous
behaviors (as in differential equations). Discrete equations are
use to define values at discontinuities, where an instantaneous
change of a value (a reset) can occur in juxtaposition to
continuous dynamics. Initial values for variables (at the time
of the creation of a new instance) are treated as discrete
equations. Currently, we take a conservative approach to initial
conditions, which requires users to express them explicitly
even for variables where there is a continuous equation that
may immediately override this explicit initial value. For the
sake of minimality, Acumen has no special notation for
introducing constants (in the sense of variables that do not
change value over time).

This language is used for a term-long project in a course on
CPSs [27], which has been enthusiastically received in the first

four offerings (see for example [28], [29]). The parsimonious
language seems to help students connect different concepts
and avoid the introduction of artificial distinctions between
manifestations of the same concept in different contexts. This
bodes well for the utility of such a language for reducing the
need for different notations to model the same system during
different phases of a product development process. However,
to fully overcome this challenge, we must develop a clear
understanding of how different features in such a language
match up with the demands of different types of cyber-physical
systems.

The Acumen distribution contains implementations of dif-
ferential equation solvers for simulation, accessible from a
“Semantics” menu. For this paper, we pick the “Traditional”
semantics, which simply uses a Runge-Kutta method and a
constant time step for integration.

3 RELATED WORK

Today, a wide range of tools exists to support the modeling
and simulation of cyber-physical systems [7]. In this section
we identify the main differences between these tools and the
language that used in the present research. Table 1 provides
an overview of how several related tools compare on key
properties of relevance to the present work. The table sum-
marizes the presence of the features discussed in this paper in
important modeling languages. We emphasize that Acumen
is an experimental research prototype, and that the other
languages have numerous features not present in Acumen.
Furthermore, we have not evaluated how complex it would be
to add such constructs to the existing languages. The properties
are:
• Partial derivatives: The ability of a tool to support the

expression of a partial derivative of two expressions
directly.

• Compact derivatives: The ability to compute symbolic
derivatives without producing exponentially large expres-
sions.

• Support for equations: The ability to write equations
instead of just assignments.

The main observations summarized in the table are as
follows. Scripting or programming languages such as Octave
[20], MATLAB, and its graphical extension Simulink, focus
on providing a convenient programming language for a broad
class of scientific problems. However, these formalisms are not
intended to capture equational mathematical models directly.

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 103

For example, they limit the user to only expressing so-called
causal models, which are not expressed as equations, but
rather, as directed (continuous or discrete) assignments. The
Simscape [11] language from MathWorks is based on MAT-
LAB and is a dedicated textual language for modeling physical
systems. It supports equations but not partial derivatives. To
express equations that require partial derivatives, one must use
another toolbox to compute the derivative symbolically and
then copy and paste the result into the model manually [11].
Copying and pasting are problematic because they make it
difficult to avoid code duplication in differentiation, and harm
the traceability/maintainability of the code.

Symbolic algebra tools such as Mathematica [23] and
Maple, in principle, can assist in manipulating analytical mod-
els and in making them executable. In practice, however, as the
size of the physical system being modeled increases, symbolic
computing systems can both take an exponentially long time
to compute a symbolic result and produce a result that is
exponentially larger than necessary. To avoid this problem,
Acumen uses a specialized symbolic differentiation procedure
that operates on partial derivatives as they appear in the context
of the equations. The procedure computes compact derivatives
by avoiding any inlining and by reusing any expressions either
appearing in the original system of equations or that have
been generated during symbolic differentiation anywhere in
the system of equations. For many common situations, this
procedure outperforms Mathematica by being polynomial both
in time and size, with respect to size of the term being
differentiated [12].

With regard to the discussion of Lagrangian modeling, the
paper includes a comparison between code in Acumen, MAT-
LAB, and Modelica. The code for the latter two languages is
included in the Supplemental Material (Section 14).

OpenModelica [21] and Dymola support equational mod-
eling and provide many solvers for differential algebraic
equation (DAE) systems. However, partial derivatives of ar-
bitrary expressions are not directly supported in the current
implementation of Modelica. While partial derivatives can
be included by advanced Modelica users, for example, with
inline semantics and the user-defined pder() operator [30],
this indirect method does not lend itself to many modeling
methods, such as the Euler-Lagrange.

The language that comes closest to supporting the language
features emerging from our study is 20-sim. It is a commercial
modeling and simulation language for multidomain dynamic
systems. It supports both equational modeling and partial
derivatives [24]. However, it is unclear whether the symbolic
differentiation produces a compact result.

Finally, it is worth addressing the relation to the Robot
Operating System (ROS), which is not addressed in Table 1.
ROS is a middleware designed to be a communication inter-
face for sending and receiving sensor data in many robotic
devices [31]. It is concerned more with interactions between
each individual component rather than the overall design of

Fig. 1: The 3D output generated for an instance of the model
sphere.

the mechatronic system. Thus, it does not help with modeling
the physical context or the intended continuous dynamics of
the system. Rather, it is intended to help with implementing
real-time control of the hardware.

4 GEOMETRY AND VISUAL FORM

Most physical systems either take up space or have an effect
on space. As a result, visual presentation has a role in CPS
design. For many people, it is hard to imagine a design
without conjuring an image of a general visual form. If we
want to replace physical prototyping with virtual prototyping,
visualization becomes a necessity. Animating the evolving
state of a hybrid system using visual geometric presentation
often reveals behaviors of the system that might otherwise be
undetected.

A hybrid modeling and simulation language can be naturally
extended with a lightweight mechanism for three-dimensional
(3D) visualization [32]. In the core language of Acumen, the
user can specify 3D visualizations through a special variable
called _3D. This variable is read by the implementation and
used to generate a dynamic 3D scene. In principle, any graph-
ical rendering technology can be used by an implementation
to realize these visualizations. The current implementation
uses the jPCT library [33] and supports four primary objects:
Sphere, Cylinder, Box, and Cone. The following Acumen
model illustrates how simple a visualization primitive can be:

model sphere (m,D) =
initially
q = (0,0,1), _3D = ()
always
_3D = (Sphere center = D+q

size = 0.03*sqrt(m)
color = (m/3,2+sin(m),2-m/2))

This is a custom-made model that a user may have created
to represent a particle with a given mass and position. The

104 Journal of Software Engineering for Robotics 7(1), July 2016

parameter m represents the mass of the sphere. In this example
the mass is reflected in the size and color of the sphere object
displayed in the 3D view. The parameter D is a display refer-
ence point. Passing different D values to an individual instance
facilitates creating visualizations where instances of the same
model can appear in different places. The initially section
declares variables present in each instance and their initial
values at simulation time, when an instance of the model is
created. The variable q represents the position of the sphere.
The special variable _3D must be bound to a vector with a
format determined by the 3D visualization system used in our
implementation of the core language. The continuous equation
is computed for as long as the instance exists in simulation.
The _3D vector has the following format. The first field,
in this case Sphere, indicates the shape we want in the
visualization. The second field is the coordinates for the center
of the shape. The third field is the radius. In this example
the user has chosen to make the radius a simple function of
the mass. This function is not intended to have any physical
meaning other than to produce an illustrative visualization.
The next field is a vector that represents the red/green/blue
(RGB) color components for this sphere, using an ad hoc
formula to generate a color based on the mass. Fig. 1 depicts
a visualization generated using this model.

We can create an instance of the model described
above by writing s = create sphere (5,(0,0,0))
in the initialization (initially) section and then s.q =
(0.1,0.2,0.3) in the body. To generate 3D animations,
all we have to do is to let the value of q vary over time, as
in the following code:

model moving_sphere (m, D) =
initially s = create sphere(m,D),

t = 0, t' = 0
always
t' = 5,
s.q = (sin(t)*sqrt(1 - (sin(t/10)ˆ2)),

cos(t)*sqrt(1 - (sin(t/10)ˆ2)),
sin(t/10))

Here the variable t and its derivative t’ are introduced to
model a local variable that progresses at exactly five times
the rate of time. All that is needed to accomplish this is to
include the equation t’=5. The time-varying variable t is
then used to generate some interesting values for the X, Y,
and Z components of the position field q that represents the
center of the sphere model s.

As noted earlier, we can place different instances of a
model (such as moving_sphere) at different locations by
varying the D parameter. By changing the value of the position
parameter q, we can create an animation with two spheres
moving in a synchronized fashion.

It is useful to note that a 3D visualization facility can be
used to visualize not only spatial parameters and dimensions
but also abstract values such as energy. For example, it can be

useful to define models that assist in visualizing such values
during a simulation. The following code defines a model
to visualize a scalar value as a cylinder, whose length is
proportional to that value:

model display_bar (v,c,D) =
initially
_3D = ()

always
_3D = (Cylinder center=D+(0,0.2,v/2)

radius=0.02 length=v color=c
rotation=(-1*pi/2,0,0))

Following the 3D primitive name Cylinder, the next
argument represents the center of the cylinder. We take this
to be v/2 because this will allow us to keep one end of
the cylinder fixed as the value of v changes. The next two
arguments specify the radius and length of the cylinder. The
next argument is color, and the last specifies orientation
angles for the cylinder.

In addition to having a mechanism for specifying visual
form, working with geometry places some intuitive but nev-
ertheless specific requirements on the modeling languages. In
particular, it is generally necessary to perform some vector and
trigonometric calculation to create the desired shape. This need
arises even in simple situations. An example of such a context
is drawing a cylinder between two points. Often, visualizations
cannot be specified directly because the underlying library uses
a different approach to describe the orientation of a figure. In
the case of cylinders, it is common to use polar coordinates
(two angles) to specify the orientation of the axis of a cylinder.
Once we have figured out all necessary calculations, they can
be encapsulated in one model as follows:

model cylinder (D) =
initially
q1 = (0,0,0), q2 = (0,0,0),
dis = (0,0,0), r = 0.01,
l = 0.01, alpha = 0, theta = pi/2,
x = 0, y = 0, z = 0, _3D = ()

always
dis = q1 - q2,
x = dis(0), y = dis(1), z = dis(2),
l = norm(q1-q2), alpha = asin(z/l),
if y>0 then
theta = asin(x/(l*cos(alpha)))

else
theta = -asin(x/(l*cos(alpha)))+pi,

_3D = (Cylinder center=(q1+q2)/2+D
radius=r length=l color=(1,1,1)
rotation=(alpha,0,-theta))

The dot and norm operators compute the dot product and
the vector norm (or length). Creating such a model is a good
exercise in making customized building blocks for visualiza-

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 105

tion.
If we are used to programming in a typical programming

language where such functions are present, the convenience
of such operations is no surprise. From the semantic point of
view, what is significant is their necessity. The necessity of
supporting transcendental functions means that approximating
the set of real numbers with the set of rationals is not possible,
as the results of transcendental functions are not rational. In
addition to having significant implications for representability
and computability of approximations to these operations, their
presence implies that nonlinearities are hard to avoid when
working with general physical systems. All of these complica-
tions arise even before there is any consideration of dynamics
or a time dimension in the description of physical systems.

5 PARTICLE DYNAMICS AND IMPACTS

The most basic approach to model the mechanical dynamics of
a system is to view it as a point mass, or a particle. In contrast
to the syntax needed to describe geometric and visual objects,
describing particle dynamics can be done more concisely.

A point mass that can only move in one dimension can be
represented as follows:

model mass_1d (m,q0,D) =
initially
q = q0, q' = 0, q'' = 0,
f = 0, e_k = 0,
s = create sphere (m,D)

always
q'' = f/m,
e_k = 0.5 * m * (q')ˆ2,
s.q = (0,0,q)

The model constructor takes three parameters: a mass m, an
initial position q0, and a reference point for visualization.
Internally, the mass keeps track of a position q, its first and
second derivatives q’ and q’’, a force f, and the kinetic
energy e_k. For visualization, a sphere instance is created
during initialization. The body of the model definition specifies
that the acceleration of the object, q’’, is determined by
Newton’s law F = ma, where we are solving for acceleration
(which is just q’’ here). Finally, we set the position q of the
visual sphere instance to be the same as the position q of the
current instance.

Supporting vector operations makes it possible to define a
similar model that has a three-dimensional position almost as
simply:

model mass (m,q0,D) =
initially
q=q0, q'=(0,0,0), q''=(0,0,0),
f=(0,0,0), e_k=0,
s = create sphere (m,D)

always

q'' = f/m,
e_k = 0.5 * m * (dot(q',q'))ˆ2,
s.q = q

Note that it is convenient in technical discourse in science
and engineering to refer to the derivatives of vectors (and
not just scalars) in specifications of dynamics. We can in-
duce continuous behaviors in such models by means of an
external continuous equation. For example, the effect of a
gravitational force on a mass m by a continuous equation
m.f =m.m*(0,0,-9.81). The expression for energy uses
the built-in dot product operation on vectors. An idealized 3D
spring can be modeled as follows:

model spring (k,L0,D) =
initially
q1=(0,0,0), q2=(0,0,0),
f1=(0,0,0), f2=(0,0,0),
dl = (0,0,0), e_p=0

always
dl = q2-q1 * (1-L0/norm(q2-q1)),
f1 = k*dl, f2 = -k*dl,
e_p = 0.5 * k * dot(dl,dl)

This model associates a different force with each end of the
spring. It computes a potential energy e_p rather than a kinetic
energy. No visualization is included in this model, but this can
be easily achieved using the techniques presented above. An
important physical effect in dynamics is impact, often modeled
as a sudden change. Discrete equations can be used for this
purpose. The following model provides an example of the use
of discrete equations to model a classic hybrid system, the
bouncing ball:

model bouncing_ball (D) =
initially
m = create mass_1d (10, 2,D) ,
bk = create display_bar

(0,(3,0.2,0.2),D+(0.1,0.2,0)),
bp = create display_bar

(0,(0.2,3,0.2),D+(-0.1,0.2,0)),
bt = create display_bar

(0,(0.2,0.2,3),D+(0,0.2,0))
always
m.f = m.m * -9.81,
if (m.q < 0 && m.q' < 0) then
m.q' + = -0.9 * m.q'

noelse,
bk.v = m.e_k / (m.m * 9.81),
bp.v = (m.m * 9.81 * m.q)

/ (m.m * 9.81),
bt.v = bk.v + bp.v

The model uses the mass model along with a continuous
gravity model and a ground-impact model, where the ball loses
10% of its velocity. The model display_bar is used to

106 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 2: The IDE of the implementation with the bouncing
ball model and simulation results. The green bar indicates
the potential energy, the red one is the kinetic energy, and
the blue bar is their sum. The total energy decreases with
each ground impact, and during the free flight phase the two
energies behave as expected.

display colored bars to present some additional information
in the 3D output. The mass model used here has only one
degree of freedom along the Z axis. We use three display
bars to visually represent the kinetic and potential energy, as
well as their sum. The discrete equation occurs inside the if
statement that detects impact with the ground plane. Fig. 2
shows a sequence of screenshots, one including the Integrated
Development Environment (IDE), which results from running
this example. It can be seen that, as expected, the total energy
decreases at each impact, while the kinetic and potential
energies reach their respective maxima and minima at the
height of the bounce and the impact at ground level.

Thus, to describe even the basic Newtonian dynamics for
simple particles, there is a need for not only ordinary differen-
tial equations (ODEs) but also hybrid ODEs. It is worth em-
phasizing that modeling these seemingly elementary aspects
of physical systems necessitates the support of continuous
equations, derivatives, discrete equations, and conditionals.

6 COMPOSITE MODELS
Most systems are composite, in that they consist of smaller,
interacting components. We now consider the specific re-
quirements that the need for modeling such compositions
introduces. The most elementary requirement is that of a
mechanism to connect components by relating fields in differ-
ent components though continuous equations. For example, the
following model specifies a system consisting of three masses
connected by two springs. Note that the model uses an instance

m1 m2 m3

s1 s2

Fig. 3: The diagram of the three-mass/two-spring system.

of the model display_bar to draw a cylinder to display the
kinetic energy in the system.

model example_3 (D) =
initially
m1 = create mass_1d (30,1,D),
m2 = create mass_1d (10,-1,D),
m3 = create mass_1d (5,-1.5,D),
s1 = create spring (5,1.75,D),
s2 = create spring (5,0.5,D),
b = create display_bar(0,(0.1,3,0.1),D),

always
s1.q1 = m1.p, s1.q2 = m2.p,
s2.q1 = m2.p, s2.q2 = m3.p,
m1.f = s1.f1,
m2.f = s1.f2 + s2.f1,
m3.f = s2.f2,
b.v = (m1.e_k + m2.e_k +

m3.e_k + s1.e_p + s2.e_p)*12

This example uses the mass and spring model. The system
consists of three masses and two springs as shown in Fig. 3.
The interaction between them can be expressed though exter-
nal continuous equations. For example, the effect of the two
spring forces acting upon mass m2 is captured by a continuous
equation m2.f = s1.f2 + s2.f1.

Some modeling languages such as Modelica support more
sophisticated mechanisms for expressing connections. In par-
ticular, they support notions of connectors that can serve
as sum-equalizing or value-preserving junctions. These no-
tions can make it more intuitive to model systems built by
connecting more basic components. However, they do not
appear to provide the ability to express connections that cannot
be expressed using the more elementary notion of equality
presented here. As such, they do not have a natural place in a
minimal formalism for modeling cyber-physical systems. Their
utility, however, suggests that additional syntactic extensions
can make such a minimal formalism more convenient for
practical modeling.

7 CONTROL

A pervasive aspect of physical systems is the presence of one
or more mechanisms to drive their operation to a certain goal
or function. The basic role of control is to bring a certain
quantity close to a desired target by manipulating the value
of some parameters that affect this quantity. For the model

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 107

presented above, and given a controller instance c, control
can be introduced as follows:

// Goal is spring length at rest
c.r = s1.l+s2.l,

// Value is actual spring length
c.y = m1.p-m3.p,
// Add c.u
m1.f = s1.f1 + c.u, m2.f = s1.f2 + s2.f1,

// Subtract c.u
m3.f = s2.f2 - c.u;

In this model the goal value for the controller is to have the
length of the system be the same as the natural lengths of
the two springs. The quantity that we wish to control is the
position of the first mass minus the position of the third one.
The way we will achieve this is to take a force value u that is
generated by the controller, and apply it to both sides of the
system that we have constructed, but in opposing directions.

Now the question that remains is how the controller c
should compute its output force u, given the goal r and
measured value y. This is a prototypical question in the design
of control systems, and one that can be approached in a variety
of different ways. Three of the most basic types of controllers
are 1) proportional feedback, 2) proportional/differential feed-
back, and 3) proportional/integral/differential feedback. The
first type can be used successfully in some systems, such as
those governed by first-order differential equations, or higher-
ordered systems that can dissipate energy. It can be modeled
as follows:

model controller_p (k_p) =
initially
r = (0,0,0), y = (0,0,0), u = (0,0,0),
e = (0,0,0)

always
e = r - y, u = k_p * e

The force u computed is directly proportional (hence the
name) to the error term e, which is the difference between
the goal r and current value y of the quantity that we want to
control. The higher the constant k_p, the higher the force that
will be applied for the same amount of difference between the
goal value and the current value.

If the system has inertia or does not dissipate the extra
energy introduced by the control force, it might oscillate
indefinitely as a result of the proportional control. To deal with
this problem, a slightly more sophisticated controller can add a
force opposing the direction of the motion (or rate of change)
of the value being measured. Such a proportional/differential
(PD) controller can be defined as follows:

model controller_pd (k_p,k_d) =
initially
r = (0,0,0), y = (0,0,0), u = (0,0,0),
e = (0,0,0), r_dot = (0,0,0),

e_dot = (0,0,0), y_dot = (0,0,0)
always
e = r - y,
e_dot = r_dot - y_dot,
u = k_p * e + k_d * e_dot

Note that this controller has two extra fields, r_dot and
y_dot, that should be provided from outside the model to
serve as the speed reading that should affect the final force u.

An interesting feature of the first two types of controllers
described above is that they do not keep track of history. We
may wish to build a controller that exerts a higher force only
after a weaker force has been tested for some time. This can be
helpful, for example, if there are external constant forces (such
as gravity) acting on our system, and we do not know their
precise quantities ahead of time. This type of behavior can be
achieved by adopting a proportional/integral/differential (PID)
controller such as the following:

model controller_pid (k_p,k_i,k_d) =
initially
r = (0,0,0), y = (0,0,0), u = (0,0,0),
e = (0,0,0), r_dot = (0,0,0),
e_dot = (0,0,0), y_dot = (0,0,0),
e_i = (0,0,0), e_i' = (0,0,0)

always
e = r - y,
e_dot = r_dot - y_dot,
u = k_p * e + k_d * e_dot + k_i * e_i,
e_i' = e

The variable e_i is being used to integrate the difference
between the goal r and the value y over time, so no extra
inputs are needed.

Using the formalism presented above, it is easy to model
several instances of the three-mass/two-spring example, and
to visualize the result of simulating it by showing both the
behavior of the mass and the energy of the system with
different controllers. The controllers presented here illustrate
the design of basic, idealized control. The language is also
expressive enough to capture more realistic models, such as
when a system does not have velocity as input but rather
uses discrete sampling of position to compute an estimate of
velocity that is then used in the PD controller. The experiment
shows that a P controller will not dissipate any energy and
therefore will not stabilize the system. In fact, at times it will
add energy to the system and at others absorb energy from
it. This example motivates formally analyzing this system to
show that this controller will function essentially as simply
another spring between the two extreme masses. The PD
controller will suffice in stabilizing the system quickly, and
this will be clear from the height of the bar representing the
energy in the system.

108 Journal of Software Engineering for Robotics 7(1), July 2016

From the point of view of domain needs, it appears that
high-level modeling of controllers as continuous systems does
not introduce additional demands on the modeling language
beyond that presented above for particle dynamics and com-
posite models. In particular, support for ODEs suffices. More
sophisticated controllers can employ different control dynam-
ics in different modes, in which case the full features needed
to model hybrid ODEs would be useful.

8 DISCRETIZATION AND QUANTIZATION

The one aspect of controllers that we have not captured in the
models presented above is that they are generally implemented
by digital computers. The introduction of digital components
in a physical setting introduces a need for both discretization
and quantization. Both notions involve mapping the set of reals
into a discrete set, such as the naturals or an isomorphic set.
The term ‘discretization’ refers to performing this type of oper-
ation on quantities representing time, whereas ‘quantization’
refers to performing it on other values. Both effects can be
concisely expressed with few additional requirements on the
modeling formalism. To model discretization, the key mech-
anism needed is to define a local clock and to allow actions
to be performed or observed only at clock transitions. The
following model describes a proportional/integral/differential
feedback (PID) controller (like the one presented above) with
discretization and quantization effects.

model force_controller_pid_d
(k_p,k_i,k_d,period) =

initially
r=(0,0,0), y=(0,0,0), s=(0,0,0),
u=(0,0,0), t = 0, t' = 0,
e=(0,0,0), sensor = (0,0,0)
r_dot=(0,0,0), y_dot=(0,0,0),
e_i=(0,0,0), e_i'=(0,0,0)

always
t' = 1,
if (t>period) then
t = 0,
sensor = floor(y*10)/10,
u = k_p*e + k_i*e_i - k_d*e_dot,
noelse,
e = r - sensor, e_dot = r_dot - y_dot,
e_i' = e

The variables t and its derivative t’ are used in a manner
similar to that performed earlier in this paper to generate an
interesting signal for a moving sphere. Here we do two new
things with the variable t. Firstly, we have a conditional state-
ment based on this variable that waits until (t > period).
The parameter period models the time it takes the particular
microprocessor that implements our controller to produce the
new value of the result of the controller. Once the condition
is true the first thing we do is reset the counter. The second

action is to reset its value to 0 using the statement t=0 as
soon as that condition is true. In addition to this reset, the
conditional also allows the equation for the variable u in the
original model to take effect only for that instant when t has
surpassed the value of period. Because no other definition
is given for this value until this event occurs again (at the
start of the next period), the value u remains constant until
that change occurs. With this model, it is easy to illustrate
that, as the sampling period goes up, the system that we are
trying to control can become unstable. Quantization can be
modeled using the floor function that quantizes the value
of input signal y by letting sensor = floor(y*10)/10
as shown above. Quantization can also be modeled using a
conditional statement that updates the value of sensor up
or down by a fixed amount, based the parameter quanta,
as shown below. We have one conditional statement that waits
until (sensor + quanta < y), then increases the value of
sensor by quanta. Similarly, there is another conditional
statement that decreases the value of sensor by the same
amount.

...
if (sensor + quanta < y) then
sensor+ = sensor + quanta

else if (sensor - quanta > y) then
sensor+ = sensor - quanta

noelse,
...

Simple equations using if statements and incre-
ment/decrement operations suffice to express the operations
of rounding functions. Thus, there is again no additional
expressivity here beyond the operators we have already
introduced for modeling hybrid systems.

We now consider larger case studies to gain better un-
derstanding of the practical expressivity of this core set of
language constructs.

9 CASE STUDY I : QUADCOPTER

A rigid body system consists of a set of solid bodies with
well-defined masses and inertias, connected by constraints
on distances and/or angles between the solid bodies. The
dynamics of many robotic systems can be modeled with
reasonable accuracy as rigid body systems. It is widely used
for describing road vehicles, gear systems, walking bipeds,
etc. In this section, we consider an example of a complex
system that can be successfully modeled as a simple rigid
body, namely, the quadcopter.

9.1 Background
The quadcopter is a popular mechatronic system with four
rotor blades to provide thrust. This robust design has seen use
in many UAV applications, such as surveillance, inspection,

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 109

Fig. 4: Free body diagram of the quadcopter.

and search and rescue. Modeling a quadcopter is technically
challenging, because it consists of a close combination of
different types of physics, including aerodynamics and me-
chanics. A mathematical model of a quadcopter may need
to address a wide range of effects, including gravity, ground
effects, aerodynamics, inertial counter torques, friction, and
gyroscopic effects.

9.2 Reducing Model Complexity Through Control

Even if we limit ourselves to considering just six degrees
of freedom (three for position and three for orientation), the
system is underactuated (one actuation from each rotor vs.
six degrees of freedom) and is therefore not trivial to control.
Fortunately, controllers exist that can ensure that actuation is
realized by getting the four rotors to work in pairs, to balance
the forces and torques of the system. With this approach, the
quadcopter can be usefully modeled as a single rigid body
with mass and inertia, by taking account of abstract force,
gravity, and actuation control torques. This model is depicted
in Fig. 4.

9.3 Mathematical Model

To generate the equations for the dynamics of our common
quadcopter model [34], we first construct the rotational matrix
to translate from an inertial (globally-fixed) reference frame to
the body-fixed reference frame shown in Fig. 4. This matrix
represents rotation about the y axis (θ), followed by rotation
about the x axis (φ), and then rotation about the z axis (ψ).

R =

cψcθ cψsθcφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcθ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (1)

Here, c , s and t refer to cos, sin, and tan, respectively. Next,
summing forces on the quadcopter results in:∑

F = mā = G+RT (2)

where G is the force due to gravity, R is the rotational matrix,
and T is the thrust from the motors. This expands to:ẍÿ

z̈

 = −g

0
0
1

+
T

m

cψsθcφ + sψsφ
sψsθcφ − cψsφ

cθcφ

 (3)

Finally, by summing moments about the center of mass, the
equations for the dynamics for each of the rotational degrees
of freedom can be determined as follows:

φ̈θ̈
ψ̈

 =

0 φ̇cφtθ + θ̇
sφ
c2θ

−φ̇sφcθ + θ̇
cφ
c2θ

0 −φ̇sφ −φ̇cφ
0 φ̇

cφ
cθ

+ φ̇sφ
tθ
cθ
−φ̇ sφcθ + θ̇cφ

tθ
cθ

 ν
+W−1

η ν̇ (4)

Where

ν =

pq
r

 = Wη

φ̇θ̇
ψ̇

 =

1 0 −sθ
0 cφ cθsphi
0 −sφ cθcφ

φ̇θ̇
ψ̇

 (5)

ν̇ =


(Iyy − Izz) qr

Ixx

(Izz − Ixx) qr
Iyy

(Ixx− Iyy) qr
Izz

−Ir


 q
Ixx−p
Iyy

0

ωΓ +

 τφ
Ixx
τθ
Iyy
τψ
Izz

 (6)

τφτθ
τψ

 =

lk
(
−ω2

2 + ω2
4

)
lk
(
−ω2

1 + ω2
3

)∑4
i=1 τMi

 (7)

9.4 Acumen Model for Quadcopter
The equations derived earlier for the dynamics can be ex-
pressed simply in the core language for hybrid systems, and
are included with the supplementary materials. Fig. 5 presents
snapshots of a 3D visualization of the quadcopter responding
to a signal from a basic stabilizing controller [34]. Here the
controller is bringing the quadcopter from an initial setting,
indicated by the green sphere, to the desired height and to the
roll, pitch, and yaw angles of zero. Yellow arrows attached
to each rotor indicate the relative thrust. This example shows
that the Acumen core language can model the dynamics of
non-trivial robots that are widely used in both research and
education today.

10 LAGRANGIAN MODELING, AND WHY WE
NEED IT

While the quadcopter case study does not point to the need
for additional constructs, working with other case studies
does reveal this need. Mathematical modeling of rigid body
systems draws heavily on the field of classical mechanics. The
goal is to derive the mathematical expression of the system’s

110 Journal of Software Engineering for Robotics 7(1), July 2016

Fig. 5: The simulation results of the quadcopter model with PID control.

dynamics. It so happens that with the quadcopter the Newton
method for analysis is convenient. However, as we will see in
this section, there are many systems for which other methods
are noticeably more convenient.

The Newton method is focused on taking into consideration
the forces and torques operating on a rigid body, and then
computing the linear and angular accelerations of the center of
mass of that body. In general, this method consists of isolating
the rigid body of interest in a free body diagram, selecting
coordinate frame and summing forces and torques on the body
with respect to that frame, then using kinematics to express the
linear and angular acceleration terms, before finally deriving
the equations for the dynamics. Since the Newton method
requires each rigid body to be isolated, forces and torques are
modeled explicitly for the interfaces between them in multi-
body systems, thus yielding models where forces are readily
available for inspection and/or analysis.

It is standard practice for mechanical engineers to use
the Lagrangian method to analyze rigid body systems when
modeling internal forces between rigid bodies are not the focus
of the investigation. However, supporting this method requires
constructs beyond the ones discussed so far. The Lagrangian
method is based on the notion of a function called Lagrangian
L = T−V , which is the difference between the kinetic energy
T and potential energy V . In Lagrangian modeling of physical
systems, this condition should be seen as the analogy of the
combined conditions ΣF = ma and Στ = Iω′′ in Newtonian
mechanics. The Euler-Lagrange equation is as follows:

∀i ∈ {1...|q|)}, d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Q (8)

The ∀ quantifier is used to introduce the index variable for
a family of equations. In the Acumen syntax, the keyword
foreach represents this quantifier. The name contained in
the ith element of the tuple is looked up. Q represents
non-conservative forces (e.g., friction) acting on the system.
Using just this equation, the modeling process is reduced to
specifying the kinetic and potential energy in the system.
Part of the power of the method comes from the fact that
this can be done using Cartesian, polar, spherical, or any
other generalized coordinates. The Euler Lagrange equation
makes it possible to describe large and complex systems in a
modular fashion, since all that is needed for each new object

is an expression for both its potential and kinetic energy.
For example, this method makes modeling the interactions
between electrical and mechanical subsystems much more
straightforward than with other methods. Compared to the
classic Newtonian, force-vector based methods, the Euler-
Lagrange equation can provide a more direct specification of
the dynamics, particularly in systems with coupled dynamics.
The Lagrangian modeling process consists of four steps:

1) Start with a description of the components of the system,
consisting of rigid bodies and joints. This description
generally comes with a set of variable names which
are collectively called the generalized coordinates vector
q. While more commonly associated with Newtonian
modeling, a basic free body diagram can be an intuitive
way to capture the potential and kinetic energy infor-
mation, as well as assisting in judiciously choosing the
generalized coordinates.

2) Determine the expression for the total kinetic and po-
tential energy T and V , respectively, of the system, in
terms of q.

3) Identify and include any external forces Q, such as
friction.

4) Substitute the values into the Euler-Lagrange equation
(8).

This process and its benefits can be illustrated with two
small examples. The benefits apply whether or not the
language supports directed or undirected equations. Fig. 6
presents a free body diagram marked up with generalized
coordinates (θ in one, and θ1, θ2 in the other) for a single
and a double pendulum system. First, we consider the single
pendulum. A direct application of the angular part of Newton’s
law gives us the following equation:

θ̈ =
g

l
cos θ (9)

which can be easily expressed in Acumen.
Lagrangian modeling can be applied to the single pendulum

problem, but Newton’s method works well enough here.
However, Lagrangian modeling does pay off for a double
pendulum. It is instructive for language designers to recognize
that such a seemingly small change in the complexity of the
rigid body makes the model that most of us learn about in high-
school much more cumbersome than necessary. Whether or not

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 111

y

x

m

θ

l

y

x

m1
θ1

l1

m2

θ2
l2

Fig. 6: Diagram for single and double pendulums.

this difficulty in modeling is due to a weakness in Newtonian
modeling or intrinsic complexity in this seemingly simple
example is not obvious: The double pendulum is sophisticated
enough to be widely used to model a human standing or
walking [35], or a basic two-link robot such as the MIT-
Manus [36].

To derive a model for the double pendulum using La-
grangian modeling, we proceed as follows:

1) A minimal set of generalized coordinates is chosen, q =
(θ1, θ2), for this case it is the angle related to the pose
of each link of the pendulum.

2) The kinetic and potential energies are defined as follows:

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 (10)

V = m1gy1 +m2gy2 (11)

where we have introduced shorthands for velocities
v2

1 = l21θ̇1
2

and v2
2 = v2

1 + 1
2m2(l21θ̇1

2
+ l22θ̇2

2
+

2l1l2θ̇1θ̇2 cos(θ2 − θ1)) and positions of center of mass
y1 = l1sinθ1, y2 = y1 + l2sinθ2. Substituting these
terms we get:

T =
1

2
m1(l1θ̇1)2

+
1

2
m2(l21θ̇1

2
+ l22θ̇2

2
+ 2l1l2θ̇1θ̇2 cos(θ2 − θ1)) (12)

V = m1gl1 sin θ1 +m2gl2 sin θ2 +m2gl1 sin θ1; (13)

3) We assume frictionless joints, and so there are no
external forces (Q = 0).

4) A Euler-Lagrange equation (8) is written in Acumen
syntax.

The equations derived earlier for the dynamics can be ex-
pressed in our core language as follows:

model double_pendulum(m_1,m_2,L_1,L_2,g)=
initially

t_1 = 0, t_2 = 0,
t_1' = 0, t_2' = 0,

Fig. 7: The RiceWrist-S, with superimposed axes of rotation.

t_1'' = 0, t_2'' = 0,
q = (0,0)

always
q = (t_1, t_2),
T = 0.5*m_1*(l_1*t_1')ˆ2 +

0.5*m_2*(l_1ˆ2*t_1'ˆ2 +
l_2ˆ2*t_2'ˆ2 +
2*l_1*l_2*t_1'*t_2'*cos(t_2-t_1)),

V = m_1*g*l_1*sin(t_1) +
m_2*g*l_2*sin(t_2) +
m_2*g*l_1*sin(t_1),

L = T - V,
foreach i in length(q)

L'[(q(i))']' - L'[q(i)] = 0

Here L’[q(i)] is the Acumen syntax for partial derivatives
of ∂L

∂qi
and L’[(q(i))’]’ is the syntax for d

dt

(
∂L
∂q̇i

)
.

To illustrate why supporting partial derivatives and equa-
tions in the language can make the modeling process easier,
let us consider the same double pendulum model in MATLAB
and OpenModelica. As already shown in Section 3, MATLAB
does not support writing equations directly. In order to use the
ODE solver it provides, one has to manually differentiate the
Euler-Lagrange equations and transform them into the explicit
ODE form. In OpenModelica, writing equations directly is
supported, however, no partial derivatives can appear in the
equations. Thus, it is the responsibility of the user to eliminate
the partial derivatives and transform the Euler-Lagrangian
equations into differentiation algebraic equation from. The
complete model in MATLAB and OpenModelica can be seen
in Supplemental Material (Section 14).

11 CASE STUDY II : THE RICEWRIST-S
ROBOT

Engineers utilize Lagrangian modeling in the manner pre-
sented above to model multi-link robots much more directly
than with the Newtonian method. In this section we present
one such case study, using the RiceWrist-S research robot.

112 Journal of Software Engineering for Robotics 7(1), July 2016

x̂1

ẑ2

θ2

ẑ0

ẑ1, x̂0

L2

θ3

L1 θ1

L3

x̂2

m3

m1

m2

Fig. 8: Diagram of the RiceWrist-S as a gimbal

11.1 Background
Each year, approximately 795,000 people suffer a stroke in
the United States, where stroke injuries are the leading cause
of long-term disability. The RiceWrist-S is a research robot
designed to assist in the rehabilitation of the wrist and forearm
after neurological injuries such as stroke (Fig. 7). It consists
of a revolute joint for each of the three degrees of freedom at
the wrist. A good starting point for its dynamic modeling is
the gimbal, a commonly studied mechanical device that, like
the RiceWrist-S, features several rotational axes intersecting
at one point.

11.2 Analytical Model
We can apply the Lagrangian modeling process to determine
the dynamics of a gimbal as follows:

1) We take q = (θ1, θ2, θ3), where each of the angles
corresponds to one of the three rotations possible in the
RiceWrist-S (Fig. 8). We choose to represent the mass
of the system as centralized to three locations, one at
the origin, one at the bottom of the outermost ring, and
one at the end of the third link. The masses in this figure
correspond to the motors and handle depicted in Fig. 7.

2) To describe the energies concisely, it is convenient to use
the following angular velocities of the gimbal frames in
the kinetic energy terms, and the resulting heights for
the potential energy terms:

ω1 = θ̇1 · ẑ0 (14)

ω2 = θ̇1 · ẑ0 + θ̇2 · ẑ1 (15)

ω3 = θ̇1 · x̂1 + θ̇2 · ẑ1 + θ̇3 · ẑ2 (16)

where x̂iŷiẑi refers to the unit vector and coordinate
frame about which these rotations occur, as shown in
Fig. 8.

TABLE 2: Denavit Hartenberg parameters.

Joint rot(x) tr(x) rot(z) tr(z)
Forearm 0 0 θ1 0

Wrist F/E −π
2

0 θ2 0
Wrist R/U −π

2
0 θ2 0

Here, the ωi terms correspond to the mi masses, and
describe the angular velocities of each mass. Since this
is a rotational system, many of the rotations do not
occur in the coordinate frames of the respective gimbal.
Therefore, in order to express each ωi in terms of the
same coordinate frame, we apply the following coordi-
nate transforms, which follow the Denavit-Hartenberg
convention:

ω1 = θ̇1 · ẑ0 (17)

ω2 = θ̇1 · ẑ0 + T 0
1 · θ̇2 · ẑ1 (18)

ω3 = θ̇1 · ẑ0 + T 0
1 · θ̇2 · ẑ1 + T 0

1 T
1
2 · θ̇3 · ẑ2 (19)

where the elements of T i−1
i are given in Table 2 and

each coordinate rotation is defined as:

T i−1
i =

cθi −sθicαi sθisαi
sθi cθicαi −cθisαi
0 sαi cαi

 (20)

Note that these coordinate transforms are essential for
the standard development of multi-link robot kinematics.
Since the gimbal’s frames are all coincident, only the
rotation about the individual x and z frames, αi and
θi, respectively, can be non-zero. Next, we express the
heights above the predefined plane of zero potential
energy (in Fig. 8, the plane perpendicular to x0) of
each of the masses m1,m2,m3, respectively, as the
following:

h1 = l2(1− cos(θ1)) (21)
h2 = 0 (22)
h3 = − l3 cos(θ1) sin(θ3) (23)

With this completed, the T and V terms can be quickly
and easily defined. Since this is a purely rotational-only
system, T is defined as the sum of the rotational energy
terms, shown below:

T =
1

2
(I1ω1 · ω1 + I2ω2 · ω2 + I3ω3 · ω3) (24)

where Ii is the rotational inertia corresponding to θi,
and ωi is defined as above. Since there are no potential
energy storage elements other than those caused by
gravity, V can be expressed with these heights:

V = m1gh1 +m2gh2 +m3gh3

= m1gl2(1− cos(θ1))−m3gl3 cos(θ1) sin(θ3) (25)

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 113

(a) Rotation about θ1 (b) Rotation about θ2 (c) Rotation about θ3 (d) Compound motion

Fig. 9: RiceWrist-S modeled as gimbal in Acumen.

3) Again, we assume frictionless joints, so Q = 0. In this
model, we neglect electrical motor dynamics, due to the
prevalence of high-performance motor drivers with fast
or negligible dynamics.

4) Substitute the values into the Euler-Lagrange equation.
The Euler-Lagrangian model above can be expressed in

Acumen as follows:

model RWS_3DOF_gimbal
(m1,m2,m3,I1,I2,I3,l1,l2,l3) =

initially
t1 = 0, t2 = 0, t3 = 0,
t1' = 0, t2' = 0, t3' = 0,
t1''= 0, t2''= 0, t3''= 0,
g = 9.81, q = zeros(3),
T = 0, V = 0, L = 0,
T01 = zeros(3,3), T12 = zeros(3,3),
w1 = zeros(3), w2 = zeros(3),
w3 = zeros(3)

always
m1 = 2, m2 = 1, m3 = 1, I1 = 1,
I2 = 1, I3 = 1, l1 = 3, l2 = 1.5,
q = (t1,t2,t3), g = 9.81, l3 = 0.75,
T01 = ((-cos(t2),-sin(t2), 0),

(0, 0, 1),
(-sin(t2), -cos(t2), 0)),

T12 = ((-cos(t3),-sin(t3), 0),
(0, 0, -1),
(sin(t3), cos(t3), 0)),

w1 = (0,0,t1'), w2 = w1 + (0,0,t2') * T01,
w3 = w2 + (0,0,t3') * (T01 * T12),
T = 0.5 * (I1 * dot(w1,w1) +

I2 * dot(w2,w2) +
I3 * dot(w3,w3)),

V= m1*g*l2*(1- cos(t1))-
m3*g*l3*sin(t1)*sin(t3),

L = T - V,
foreach i in length(q)
L'[(q(i))']' - L'[q(i)]= 0

Fig. 9 shows the compound motion of the RW-S Gimbal
model. This model led us to understand the need for La-
grangian modeling and, as a result, provides us with con-

crete justification for introducing support for static partial
derivatives and undirected equations. Supporting static partial
derivatives and Euler-Lagrangian equations allows the modeler
to specify the dynamics directly instead of performing sym-
bolic differentiation and equation solving (acasual to casual
transformation) manually.

12 CASE STUDY III: ELECTROMECHANICAL
SYSTEMS.
In this section we present a case study of an integrated
electromechanical system, the basics of which are integral for
fields such as robotics.

12.1 Background
Simple electromechanical systems like the solenoid attached
to a mechanical spring and damper, shown in Fig. 10, exhibit
the coupled dynamics of much more complicated systems.
They can demonstrate the core language’s ability to perform
multiphysics simulations, such as coupled mechanical and
electrical subsystems.

This system in Fig. 10 is powered by an input voltage
e(t) that drives a solenoid with a core of mass m and
inductance L(x), which is the inductance of the solenoid given
as a function of the core’s position. The system also has
an electrical resistance R, coupled to a linear stiffness and
damping of k and β, respectively, constraining its movement
to be in only one direction: perpendicular to gravity.

12.2 Analytical Model
To derive a model for the system, we proceed as follows:

1) Choose generalized coordinates to be the electrical
charge of the circuit and the position of the solenoid’s
core, that is, q1 = q, q2 = x.

2) The kinetic energy term is the sum of the field energy
stored in the inductor and the velocity of the solenoid’s
mass, defined as follows:

T =
1

2
L(x)q̇1

2 +
1

2
mq̇2

2 (26)

Since the solenoid travels in a direction perpendicular to
gravity, and neglecting any capacitance of the electrical

114 Journal of Software Engineering for Robotics 7(1), July 2016

e(t)

q̇

R

m

L(t)

x

k

β

Fig. 10: A simple coupled electromechanical system

circuit, the potential energy term is simply the mechan-
ical energy stored in the spring, defined as:

V =
1

2
kq2

2 (27)

3) The dissipation energy term of the electrical resistance
and mechanical damping can be included in the external
forces:

Q = −∂D
∂q̇

+ e(t) (28)

where D is defined as

D =
1

2
Rq̇1

2 +
1

2
βq̇2

2 (29)

4) Write the Euler-Lagrange equation (8) in Acumen syn-
tax.

While this example seems straightforward, it does show one
important benefit of using the Euler-Lagrange method, namely
the development of coupled dynamics expressions. In this case,
the coupled terms are the force exerted on the solenoid’s mass
by the magnetic field of the inductor, and the induced voltage
due to the translation x, which can be seen to be:

F =
1

2

∂L

∂q2
q̇1

2 (30)

and
V =

1

2

∂L

∂q2
q1q2 (31)

If we use Newton’s method, these terms would need to be
known so that we can create the free body diagrams.

13 CASE STUDY IV : A COMPASS GAIT
BIPED

McGeer first introduced the concept of passive dynamic
walking (PDW) in 1990 [37], shedding light on achieving
stable human-like locomotion without any external forces. A
number of biped robots have been developed following this
model, including the Cornell biped [38] and Amber [39],
[40], demonstrating great success in the domain of robotic
walking. Hence it is worthwhile to investigate how well the

x

y

θ1

M

mm

θ2

γ

l

Fig. 11: A Compass Gait Biped [41].

core formalism that we have identified in this paper can model
such systems.

The compass gait biped model is a two-dimensional unactu-
ated rigid body system placed on a downward surface, inclined
with a fixed angle γ from the horizontal plane. A diagram of
the model is shown in Fig. 11 with its physical parameters.
The configuration of this two-link mechanism can be described
by the generalized coordinates q = [θ1, θ2], where θ1 is the
angle from the vertical line to the stance leg, and θ2 is the
angle between the two legs. It is a hybrid model featuring two
phases. At the start of each step, the system is governed by
its continuous dynamics until the swing leg hits the ground.
The discrete event can be modeled as an inelastic collision
conserving angular momentum. The stance and swing legs
switch instantaneously during the collision and go into the
next step after.

13.1 Continuous Dynamics

The continuous phase of this system can be modeled using
the same Lagrange method shown earlier. Let point (xi, yi)
denote the position of centralized masses shown in Fig. 11,
from which it is easy to define the kinetic and potential energy
of the system as follows:

T =
1

2
m1(ẋ1

2 + ẏ1
2 + ẋ2

2 + ẏ2
2 + ẋ3

2 + ẏ3
2)

V = m1g(y1 + y3) +m2gy2

Applying the same Lagrange equation shown in Equation 1
with q = (θ1, θ2), we have the dynamic equations of the
system during the swing phase.

13.2 Discrete Events

When the swing foot impacts the surface of the slope, a
discrete event is triggered to update the angular velocities, in
order to prevent the biped from falling through the floor. The

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 115

perpendicular distance from the walking surface to the tip of
the swing leg is given by

guard = lsinγ(sinθ1 + sin(θ2 − θ1))

where γ is the slope of the ground. Impact occurs when the
tip of the swing leg hits the walking surface in a downward
direction, which can be described as follows:

guard ≤ 0 ∧ ˙guard < 0

Using conservation of angular momentum [41], the explicit
solution of post-impact velocities is as follows:

H1 =

[
m1l

2(5
4 −

cosθ−2
2) +m2l

2 m1

4 l
2(1− 2cosθ−2)

m1

2 l
2cosθ−2

m1

4 l
2

]

H2 =

[
−m1

4 l
2 + (m2l

2 +m1l2)cosθ−2 −m1

4 l
2

−m1

4 l
2 0

]
θ+

1 + = θ−2 − θ
−
1 θ+

2 + = −θ−2

[θ̇1
+
, θ̇2

+
]T = H−1

1 ·H2 · [θ̇1
−
, θ̇2
−

]T

Fig. 12 in the Supplementary Material section shows the com-
pass gait biped mathematical model and the Acumen program.
This example shows that the core language can support a direct
mapping from a mathematical model to simulation code for a
hybrid system model with complex dynamics.

Thus, this case study suggests that a a formalism supporting
hybrid ODEs and partial derivatives suffices to model the
dynamics of non-trivial robot rigid body dynamics.

14 CONCLUSION AND FUTURE WORK

In this paper we have identified a number of aspects of
cyber-physical systems that are arguably pervasive, and have
identified the requirements that these aspects place on a
modeling language. These requirements were checked against
a small collection of language constructs that were found
to be a reasonable match, both when considering minimal
examples and larger examples. Many of these constructs are
supported in existing modeling languages, although usually
not in exactly the same form, and not with the same degree
of minimalism. For example, while the Acumen language
is minimal, it can express many examples more concisely
than mainstream tools such as MATLAB and Modelica. Fur-
thermore, there are important constructs in such modeling
languages, such as partial derivatives, that do not currently
enjoy sufficient support in most languages considered in the
paper. One example of particular importance from the point
of view of classical mechanics is partial derivatives, which
are essential for Lagrangian modeling. The only language that
appears to have the necessary support is 20-sim.

The study illustrates clearly how a small language suffices to
address the needs of several aspects of cyber-physical systems,
including visualization, geometry, particle dynamics and im-
pact, control, quantization and discretization, and composition.

It also illustrates that it suffices for expressing rather concise
models of several interesting subsystems that arise in real
robot design projects. The analysis of these aspects is thorough
in that it used an implementation that supports the language
constructs described, and all the examples discussed were
expressed fully in this language. The models were also tested
to check their soundness.

The collection of aspects identified and studied in this work
is not intended to be exhaustive by any means. Most notably,
it is not based on an exhaustive analysis of the needs of
modeling all types of physical phenomena, nor is it based
on case studies in modeling CPSs. Rather, it is intended to
illustrate a minimal set of requirements from this domain on a
modeling and simulation language, and is a starting point for
further studies on the linguistic needs of multi-physics and
large-scale modeling.

In future work, we would like to further develop the set of
basic aspects in several directions. For example, we would like
to explore the possibility of supporting different coordinate
systems (especially relative coordinate frames) to facilitate
modeling composite mechanical systems. A key question in
this respect is whether special language support may be
needed, or whether developing appropriate modeling patterns
will suffice. Similarly, we would like to study the needs
of more sophisticated types of control, including parameter
tuning, optimal control, and model-based control. We expect
that providing support for minimization of values and func-
tions will be key questions in this respect. At this time it is
not obvious whether such support requires special language
extensions or whether finding suitable modeling patterns and
libraries would suffice. Similar questions apply for path and
trajectory planning. The current prototype of the modeling
language focuses on creating a ‘minimum viable prototype’
to enable research such as that reported on here. It is an
interpreter-based prototype and not tuned for performance. It is
sufficient for reasonably accurate near real-time simulation of
the models presented in this paper. However, for larger models,
it is important to improve the efficiency of the implementation
Finally, we would like to explore the space of physically-
inspired modularity, for example, to support physical connec-
tivity network structure and/or abstraction constructs that can
facilitate the development of larger (composite) models in a
way that mimic physical connectivity.

SUPPLEMENTAL MATERIAL

This section contains additional codes referred to in the paper.
The complete Acumen model of the quadcopter is as follows:

model QuadCopter(P,phi,theta,psi) =
initially
g = 9.81, m = 0.468,
l = 0.225, k = 2.98*10ˆ(-6),
b = 1.140*10ˆ(-7),
IM = 3.357*10ˆ(-5),

116 Journal of Software Engineering for Robotics 7(1), July 2016

Ixx = 4.856*10ˆ(-3),
Iyy = 4.856*10ˆ(-3),
Izz = 8.801*10ˆ(-3),
Ax = 0.25, Ay = 0.25,
Az = 0.25,
w1 = 0, w2= 0, w3 = 0,
w4 = 0, wT = 0, f1 = 0,
f2 = 0, f3 = 0, f4 = 0,
TM1 = 0, TM2 = 0, T = 0,
TM3 = 0, TM4 = 0,
P' = (0,0,0), P'' = (0,0,0),
phi' = 0, theta' = 0, psi' = 0,
phi'' = 0, theta'' = 0, psi'' = 0,
p = 0, q = 0, r = 0, p' = 0,
q' = 0, r' = 0, Ch=0, Sh=0,
Sp=0, Cp=0, St=0, Ct=0, Tt=0

always
T = k* (w1ˆ2 + w2ˆ2 + w3ˆ2 + w4ˆ2),
f1 = k * w1ˆ2, TM1 = b * w1ˆ2,
f2 = k * w2ˆ2, TM2 = b * w2ˆ2,
f3 = k * w3ˆ2, TM3 = b * w3ˆ2,
f4 = k * w4ˆ2, TM4 = b * w4ˆ2,
wT = w1 - w2 + w3 - w4,

Ch = cos(phi), Sh = sin(phi),
Sp = sin(psi), Cp = cos(psi),
St = sin(theta), Ct = cos(theta),
Tt = tan(theta),

P'' = -g * (0,0,1) + T/m

*(Cp*St*Ch+Sp*Sh,Sp*St*Ch-Cp*Sh,Ct*Ch)
-1/m*(Ax*P'(0),

Ay*P'(1),
Az*P'(2)),

p' = (Iyy-Izz)*q*r/Ixx - IM*q/Ixx*wT
+ l*k*(w4ˆ2 - w2ˆ2)/Ixx,
q' = (Izz-Ixx)*p*r/Iyy-IM*(-p)/Iyy*wT
+ l*k*(w3ˆ2 -w1ˆ2)/Iyy,
r' = (Ixx - Iyy)*p*q/Izz + b*(w1ˆ2
+ w2ˆ2 -w3ˆ2 -w4ˆ2)/Izz,
phi'' = (phi'*Ch*Tt+ theta'*Sh/Ctˆ2)*q
+ (-phi'*Sh*Ct+theta'*Ch/Ctˆ2)*r
+ (p'+q'*Sh*Tt+r'*Ch*Tt),
theta'' = (-phi'*Sh)*q + (-phi'*Ch)*r
+ (q'*Ch+r'*(-Sh)),
psi'' = (phi'*Ch/Ct+phi'*Sh*Tt/Ct)*q
+ (-phi'*Sh/Ct+theta'*Ch*Tt/Ct)*r
+ (q'*Sh/Ct+r'*Ch/Ct),

% MATLAB model
theta_1 = pi; der_theta_1 = 0;theta_2 = pi;
der_theta_2 = 5; g = 9.81; m1 = 1; m2 = 1;
l1 = 1; l2 = 1; L = 0;Tend = 20; fps = 10;
ivp=[theta_1; der_theta_1; theta_2;

der_theta_2; g; m1; m2; l1; l2];
nsteps=Tend*fps;
sol=ode23(@ODEs,[0 Tend], ivp);
t = linspace(0,Tend,nsteps);

function xdot = ODEs(t,x)
g=x(5); m1=x(6); m2=x(7); l1=x(8); l2=x(9);
xdot=zeros(9,1);
xdot(1)=x(2);
xdot(2)=-((g*(2*m1+m2)*sin(x(1))+
m2*(g*sin(x(1)-2*x(3))+2*(l2*x(4)ˆ2+
l1*x(2)ˆ2*cos(x(1)-x(3)))*sin(x(1)-
x(3))))/(2*l1*(m1+m2-m2*cos(x(1)
-x(3))ˆ2)));

xdot(3)=x(4);
xdot(4)=(((m1+m2)*(l1*x(2)ˆ2+g*cos(x(1)))+
l2*m2*x(4)ˆ2*cos(x(1)-x(3)))*
sin(x(1)-x(3)))/(l2*(m1+m2-m2*
cos(x(1)-x(3))ˆ2));

xdot(2) and xdot(2) are the second order derivatives
of the two angles.

// OpenModelica model
model doublependulum
type angle = Real(unit = "rad");
parameter Real m1 = 1; parameter Real m2 = 1;

parameter Real l1 = 1;
parameter Real l2 = 1;
parameter Real g = 9.81;
parameter Real pi = 3.14;
parameter angle t10 = pi;
parameter angle t20 = pi;
parameter angle t1prime0 = 0.0;
parameter angle t2prime0 = 5.0;
angle t1; angle t1prime;
angle t2; angle t2prime;

initial equation
t1 = t10;
t2 = t20;
t1prime = t1prime0;
t2prime = t2prime0;

equation
der(t1) = t1prime;
2*l1*(m1+m2-m2*cos(t1-t2)ˆ2)*der(t1prime) =
-(g*(2*m1+m2)*sin(t1)+
m2*(g*sin(t1-2*t2)+
2*(l2*t2primeˆ2+
l1*t1primeˆ2*cos(t1-t2))*sin(t1 - t2)));
der(t2) = t2prime;
l2*(m1+m2-m2*cos(t1-t2)ˆ2)*der(t2prime=
((m1+m2)*(l1*t1primeˆ2+g*cos(t1)) +
l2*m2*t2primeˆ2*cos(t1-t2))*sin(t1 - t2);

end doublependulum;

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 117

q = [θ1, θ2] m1 = 1 m2 = 2 l = 1 q = (t1,t2), m1 = 1, l = 1, m2 =2,

γ = 0.044 g = 9.8 r = 0.044, g = 9.8,

x1 = 1
2 lsinθ1 y1 = 1

2 lcosθ1 x1 = l/2*sin(t1),y1 =l/2*cos(t1),

x2 = lsinθ2 y2 = lcosθ2 x2 = l*sin(t2), y2 = l*cos(t2),

x3 = x2 + l
2sin(θ2 − θ1) y3 = y2 − l

2cos(θ2 − θ1) x3 = x2+l/2*sin(t2-t1), y3 = y2-l/2*cos(t2-t1),

L = T − V guard = lsinγ(sinθ1 + sin(θ2 − θ1)) L=T-V, guard=l*sin(r)*(sin(t1)+sin(t2-t1)),

T = 1
2m1(ẋ1

2 + ẏ1
2 + ẋ3

2 + ẏ3
2) T = 1/2*m1*((x1)’ˆ2+(y1)’ˆ2+(x3)’ˆ2+(y3)’ˆ2)

+ 1
2m2(ẋ2

2 + ẏ2
2) + 1/2*m2*((x2)’ˆ2 + (y2)’ˆ2),

V = m1g(y1 + y3) +m2gy2 V = m1*g*(y1+y3)+m2*g*y2,

H = H−1
1 ·H2 · [θ̇1

−
, θ̇2
−

]T H = inv(H1)*H2*trans((t1’,t2’)),

∀i ∈ {1...|q|)}. ddt
(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 foreach i in length(q)

L’[(q(i))’]’ - L’[q(i)] = 0 ,

H1 = H1 =

[m1l
2(5

4 −
cosθ−2

2) +m2l
2 m1

4 l
2(1− 2cosθ−2) ((m1*lˆ2*((5/4-cos(t2)/2)+m2*lˆ2),

m1/4*lˆ2*(1-2*cos(t2))),

m1

2 l
2cosθ−2

m1

4 l
2] (m1/2*lˆ2*cos(t2), m1/4*lˆ2)),

H2 = [−m1

4 l
2 + (m2l

2 +m1l2)cosθ−2 − m1

4 l
2 H2 =

((-m1/4*lˆ2+(m2*lˆ2+m1*lˆ2)*cos(t2), -m1/4*lˆ2)
m1

4 l
2 0] (m1/4*lˆ2, 0),

if guard < 0 ∧ ˙guard < 0 then if guard <0 && (guard)’ then
θ+

1 = θ−2 − θ
−
1 θ+

2 = −θ−2 t1 += t2 - t1, t2 += -t2,

θ̇1
+

= H(0) θ̇2
+

= H(1) t1’ += H(0), t2’ += H(1) noelse

Fig. 12: Compass Gait Biped in Mathematical Notation and in Acumen Syntax

The mathematical model and Acumen model of the compass
gait biped is presented in Fig 12.

ACKNOWLEDGMENTS
We would like to thank the reviewers of DSLRob 2012
DSLRob 2013 and ICESS 2014 for comments and feedback
on earlier versions of this manuscript.

REFERENCES
[1] W. Taha and R. Philippsen, “Modeling basic aspects of cyber-physical

systems,” arXiv preprint arXiv:1303.2792, 2012. (document)

[2] Y. Zeng, C. Rose, P. Brauner, W. Taha, J. Masood, R. Philippsen,
M. O’Malley, and R. Cartwright, “Modeling basic aspects of cyber-
physical systems, part ii,” arXiv preprint arXiv:1312.5952, 2013. (doc-
ument)

[3] Y. Zeng, C. Rose, P. Brauner, W. Taha, J. Masood, R. Philippsen,
M. OMalley, and R. Cartwright, “Modeling basic aspects of cyber-
physical systems, part ii,” in The 11th IEEE International Conference
on Embedded Software and Systems, 2014, pp. 550–557. (document)

[4] J. Masood, R. Philippsen, J. Duracz, W. Taha, and H. Eriksson, “A case
study on design-time verification of automatic emergency breaking,”
in International Federation of Automotive Engineering Societies 2014
World Automotive Congress, 2014. 1

[5] A. Duracz, H. Eriksson, F. Á. Bartha, Y. Zeng, F. Xu, and W. Taha,
“Using rigorous simulation to support iso 26262 hazard analysis and risk

118 Journal of Software Engineering for Robotics 7(1), July 2016

assessment,” in The 12th IEEE International Conference on Embedded
Software and Systems, 2015. 1

[6] J. Bruneau, C. Consel, M. O’Malley, W. Taha, and W. M. Hannourah,
“Virtual Testing for Smart Buildings,” in Proceedings of the 8th Inter-
national Conference on Intelligent Environments (IE’12), Guanajuato’s,
Mexico, 2012. 1

[7] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli,
Languages and Tools for Hybrid Systems Design. now Publishers Inc,
2006. 1, 3

[8] J. Jensen, D. Chang, and E. Lee, “A Model-Based Design Methodology
for Cyber-Physical Systems,” in Proceedings of The First IEEE Work-
shop on Design, Modeling and Evaluation of Cyber Physical Systems
(CyPhy’11), Istanbul, Turkey, Jul. 2011. 1

[9] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu,
G. L. Steele Jr., and S. Tobin-Hochstadt., “The Fortress Language
Specification,” Technical report, Sun Microsystems, Inc., 2007. 1

[10] P. Fritzson and P. Bunus, “Modelica A General Object-Oriented Lan-
guage for Continuous and Discrete-Event System Modeling and Simula-
tion,” in SS ’02: Proceedings of the 35th Annual Simulation Symposium.
Washington, D.C., USA: IEEE Computer Society, 2002, p. 365. 1

[11] Simscape Language Guide, http://se.mathworks.com/help/physmod/
simscape, 2015. 1, 1, 3

[12] Y. Zhu, W. Edwin, J. Inoue, A. Chapoutot, C. Salama, M. Peralta, T. M.
s, W. Taha, M. O’Malley, and R. Cartwright, “Mathematical equations
as executable models of mechanical systems,” in Proceedings of the
1st ACM/IEEE International Conference on Cyber-Physical Systems.
ACM, 2010, pp. 1–11. 1, 3

[13] M. Konecny, W. Taha, J. Duracz, A. Duracz, and A. Ames, “Enclosing
the behavior of a hybrid system up to and beyond a zeno point,” in
Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013
IEEE 1st International Conference on. IEEE, 2013, pp. 120–125. 1

[14] M. Konečnỳ, J. Duracz, A. Farjudian, and W. Taha, “Picard method
for enclosing odes with uncertain initial values,” in 11th International
Conference on Computability and Complexity in Analysis, Darmstadt,
Germany, July 21-24, 2014, 2014, pp. 41–42. 1

[15] J. Duracz, A. Farjudian, M. Konečnỳ, and W. Taha, “Function interval
arithmetic,” in Mathematical Software–ICMS 2014. Springer, 2014, pp.
677–684. 1

[16] M. Mohaqeqi, M. R. Mousavi, and W. Taha, “Conformance testing of
cyber-physical systems: A comparative study,” in The 14th International
Workshop on Automated Verification of Critical Systems, University of
Twente, Enschede, Netherlands, 24–26th September, 2014. European
Association of Software Science and Technology, 2014. 1

[17] W. Taha and R. Cartwright, “Some challenges for model-based sim-
ulation?” in The 4th Analytic Virtual Integration of Cyber-Physical
Systems Workshop, Vancouver, Canada, December 3, 2013. Linköping
University Electronic Press, 2013, pp. 1–4. 1

[18] A. U. Pehlivan, F. Sergi, A. Erwin, N. Yozbatiran, G. E. Francisco,
and M. K. O’Malley, “Design and validation of the ricewrist-s
exoskeleton for robotic rehabilitation after incomplete spinal cord
injury,” Robotica, vol. FirstView, pp. 1–17, 7 2014. [Online]. Available:
http://journals.cambridge.org/article S0263574714001490 1.1

[19] MATLAB Documentation, http://www.mathworks.com/access/helpdesk/
help/techdoc/matlab.html, 2015. 1

[20] Octave Documentation, https://www.gnu.org/software/octave/support.
html, 2015. 1, 3

[21] OpenModelica User Guide, https://www.openmodelica.org/
useresresources/userdocumentation, 12 2015. 1, 3

[22] H. Elmqvist, D. Brück, and M. Otter, “Dymola-user’s manual,” Dynasim
AB, Research Park Ideon, Lund, Sweden, 2004. 1

[23] Mathematica Documentation, http://reference.wolfram.com/
mathematica/guide/Mathematica.html, 2009. 1, 3

[24] Reference Manual 20-sim 4.6, http://www.20sim.com/downloads/files/
20simReference46.pdf, 12 2015. 1, 3

[25] W. Taha, P. Brauner, Y. Zeng, R. Cartrwright, V. Gaspes, A. Ames,
and A. Chapoutot, “A Core Language for Executable Models of Cy-
ber Physical Systems (Preliminary Report),” in Proceedings of The
Second International Workshop on Cyber-Physical Networking Systems
(CPNS’12), Macau, China, Jun. 2012. 2

[26] Acumen website, www.acumen-language.org, 2010. 2

[27] W. Taha, “Lecture notes on cyber-physical systems,” Available online
from www.effective-modeling.org/p/teaching.html, Sep. 2012. 2

[28] W. Taha, R. Cartwright, R. Philippsen, and Y. Zeng, “A First Course on
Cyber Physical Systems,” in 2013 Workshop on Embedded and Cyber-
Physical Systems Education (WESE), Montreal, Canada, October 2013.
2

[29] W. Taha, R. Cartwright, R. Philippsen and Y. Zeng, “A first course on
cyber physical systems,” in Proceedings of the First Workshop on Cyber-
Physical Systems Education (CPS-Ed 2013) at Cyber Physical Systems
Week (CPSWeek 2013), Philadelphia, Pennsylvania, USA, April 2013. 2

[30] P. Fritzson, Principles of object-oriented modeling and simulation with
Modelica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.
3

[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.
3

[32] Y. Zeng, “Lightweight three-dimensional visualization for hybrid sys-
tems simulation,” Master’s thesis, Halmstad University, Halmstad, 2012.
4

[33] “jPCT 3D engine,” http://www.jpct.net. 4
[34] T. Luukkonen, “Modelling and control of quadcopter,” 2011, aalto

University, Espoo. 9.3, 9.4
[35] D. Pekarek, A. D. Ames, and J. E. Marsden, “Discrete mechanics and

optimal control applied to the compass gait biped,” in Decision and
Control, 2007 46th IEEE Conference on. IEEE, 2007, pp. 5376–5382.
10

[36] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon,
“MIT-MANUS: a workstation for manual therapy and training. i,” in
Robot and Human Communication, 1992. Proceedings., IEEE Interna-
tional Workshop on. IEEE, 1992, pp. 161–165. 10

[37] T. McGeer, “Passive Dynamic Walking,” International Journal of
Robotic Research, vol. 9, pp. 62–82, 1990. 13

[38] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots
based on passive-dynamic walkers,” Science, vol. 307, no. 5712, pp.
1082–1085, 2005. 13

[39] R. W. Sinnet and A. D. Ames, “2D bipedal walking with knees and feet:
A hybrid control approach,” in Conference on Decision and Control,
2009, pp. 3200–3207. 13

[40] H.-H. Zhao, W.-L. Ma, A. D. Ames, and M. B. Zeagler, “Human-
inspired multi-contact locomotion with amber2,” in Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE,
2014, pp. 199–210. 13

[41] H. Chen, “Passive dynamic walking with knees: A point foot model,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2007. 11, 13.2

http://se.mathworks.com/help/physmod/simscape
http://se.mathworks.com/help/physmod/simscape
http://journals.cambridge.org/article_S0263574714001490
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
https://www.gnu.org/software/octave/support.html
https://www.gnu.org/software/octave/support.html
https://www.openmodelica.org/useresresources/userdocumentation
https://www.openmodelica.org/useresresources/userdocumentation
http://reference.wolfram.com/mathematica/guide/Mathematica.html
http://reference.wolfram.com/mathematica/guide/Mathematica.html
http://www.20sim.com/downloads/files/20simReference46.pdf
http://www.20sim.com/downloads/files/20simReference46.pdf

Y. Zeng. et al./ Preparation of Papers for Journal of Software Engineering for Robotics 119

Yingfu Zeng received his B. Sc. in electronic
engineering from XiDian University, China in
2010, and his M. Sc. degree in embedded and
intelligent systems in Halmstad University, Swe-
den in 2012. He is currently working toward his
Ph.D in computer science at Rice University.
His research interests include domain specific
languages, cyber-physical systems and partial
evaluation.

Chad Rose received his B.S. degree in me-
chanical engineering from Auburn University,
Auburn, AL, USA in 2012, and his M.S. degree
in mechanical engineering from Rice University,
Houston, TX, USA in 2015. Supported by an
NASA Space Technology Research Fellowship,
he is currently working toward his Ph.D. at Rice
University as a member of the Mechatronics
and Haptic Interfaces Laboratory. His research
interests include rehabilitation robotics, human-
robot physical interaction, and mechatronics.

Walid Taha received his B. Sc.in computer en-
gineering from the Kuwait University, in 1993,
and his Ph. D. degree in computer science from
Oregon Graduate Institute, in 1999. He is a
Professor at Halmstad University. His current
research focus is on modeling, simulation, and
verification of cyber-physical systems, and in
particular the Acumen language (www.effective-
modeling.org). Taha is credited with developing
the idea of multi-stage programming and is the
designer of several multi-stage languages in-

cluding MetaOCaml, ConCoqtion, Java Mint, and the Verilog Prepro-
cessor. He has contributed to other programming language innova-
tions such as statically-typed macros, tag elimination, tagless staged
interpreters, event-driven functional reactive programming (E-FRP), the
notion of exact software design, and gradual typing.

Adam Duracz received his B. Sc. and M. Sc.
degrees in computer science from the Stock-
holm University, in 2005 and 2006, respectively.
From 2007 to 2012, he worked at IBM as an IT
specialist. Currently, he is a Ph. D. student in the
school of information technology at Halmstad
University. His research interest covers hybrid
systems, rigorous simulation and parallel pro-
gramming.

Kevin Atkinson received his B. Sc. and M. Sc.
degrees in computer science from the University
of Maryland in 2001 and 2005, respectively, and
his Ph. D. degree from the University of Utah,
Salt Lake City in 2011. His research interests
focus on language design, extensible syntax and
macro systems.

Roland Philippsen received his Ph.D. from
EPFL, Switzerland, in 2005 for work on mobile
robot path planning and obstacle avoidance.
During his thesis and subsequent positions at
LAAS-CNRS, ETH, and Stanford University, he
has contributed to real-world robots such as the
autonomous tourguides of the Swiss Expo.02,
educational robots for a student contest, robotic
theater actors, a Cognitive Robot Companion,
the PR2 of Willow Garage, and the Meka robot
of HCRL at UT Austin. His expertise lies in inter-

weaving reasoning, planning, and control, which he applies to intelligent
vehicles and his interest in robots that take an active part in modifying
their environment.

Robert Cartwright received his B. Sc. in applied
mathematics from the Harvard College , in 1971,
and his Ph. D. degree in computer science from
Stanford University, in 1977. He has served as
Program Chair of the ACM Conference on LISP
and Functional Programming and ACM Sympo-
sium on Principles of Programming Languages
and as General Chair for the SIGPLAN Con-
ference on Programming Language Design and
Implementation. His current research interests
include developing programming languages and

environments to support cyber-physical computing (CPS).

Marcia O’Malley Marcia K. O’Malley received
her B.S. degree in mechanical engineering from
Purdue University, West Lafayette, IN, USA, in
1996, and her M.S. and Ph.D. degrees in me-
chanical engineering from Vanderbilt University,
Nashville, TN, USA, in 1999 and 2001, respec-
tively. She is currently a Professor of mechan-
ical engineering and computer science, Rice
University, Houston, TX, USA, and directs the
Mechatronics and Haptic Interfaces Laboratory.
Her research addresses issues that arise when

humans physically interact with robotic systems, with a focus on training
and rehabilitation in virtual environments.

	Introduction
	Contributions

	A Small, Experimental Language for Hybrid Modeling
	Related Work
	Geometry and Visual Form
	Particle Dynamics and Impacts
	Composite Models
	Control
	Discretization and Quantization
	Case Study I : Quadcopter
	Background
	Reducing Model Complexity Through Control
	Mathematical Model
	Acumen Model for Quadcopter

	Lagrangian Modeling, and Why we Need it
	Case Study II : The RiceWrist-S robot
	Background
	Analytical Model

	Case Study III: Electromechanical Systems.
	Background
	Analytical Model

	Case Study IV : A Compass Gait Biped
	Continuous Dynamics
	Discrete Events

	Conclusion and Future work
	References
	Biographies
	Yingfu Zeng
	Chad Rose
	Walid Taha
	Adam Duracz
	Kevin Atkinson
	Roland Philippsen
	Robert Cartwright
	Marcia O'Malley

