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ABSTRACT

Robot-mediated training has seen a plethora of implementations of
shared-control haptic guidance, intended to teach novices to per-
form dynamic tasks by providing them with real-time visual and
haptic feedback from real or virtual experts. The efficacies of these
paradigms are difficult to quantify and compare, as the paradigms
have typically been developed in an ad-hoc manner to suit specific
devices and tasks. This work proposes a novel guidance paradigm
taxonomy intended to help classify and compare the multitude of
implementations in the literature, as well as a revised proxy render-
ing model to allow for the implementation of two relatively novel
guidance paradigms (in addition to existing paradigms). The effica-
cies of these two paradigms, plus two more paradigms representing
the vast majority of implementations in the literature, are compared
in a controlled study with 50 healthy subjects. The results show
that none of these paradigms are superior to visual-only guidance
(the control condition), and that the two newer paradigms are ac-
tually detrimental to training for a target-hitting task. These re-
sults contradict many intuitions about how haptic guidance should
be implemented and raise doubts about the efficacies of the most
commonly-implemented paradigms.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O

1 INTRODUCTION

Dynamic tasks are part of our everyday lives. Shooting a basketball,
driving a car, or simply taking a sip of water are all characteristi-
cally dynamic tasks that require sensory feedback (especially haptic
feedback), on-line movement planning, and adaptation to changing
task conditions. Most importantly, these are all tasks that have one
or more optimal solutions that either maximize a “positive” metric,
such as likelihood of making a basket, or minimize a “negative”
metric, such as the amount of effort required. These optimal so-
lutions are learned through a combination of practice and training,
either by direct intervention from a coach or through focused ob-
servation of other people performing the task. Similarly, there are
many less common but more consequential dynamic tasks requir-
ing extensive training, such as performing a laparoscopic surgery,
flying an airplane, or teleoperating a remotely-operated vehicle.

Training for these tasks can be either human-mediated or robot-
mediated. An expert surgeon gripping a novice’s hand in order to
physically help that novice complete a surgery would be an exam-
ple of human-mediated training. Conversely, a novice training to
complete the surgery in a virtual environment with the assistance
of either a live or virtual expert surgeon would be an example of
robot-mediated training.

While the question of how to apportion control of the system
between expert and novice has been studied to some extent in the
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Figure 1: A subject performing a target-hitting dynamic task.

literature, the question of how to provide haptic feedback, espe-
cially to the novice, has been studied comparatively little. While
haptic feedback can enhance a novice’s sense of presence and co-
operation [1, 2], its efficacy at improving training outcomes has not
been thoroughly demonstrated. Such feedback, if coming directly
from an expert (be they human or pre-programmed), is generally
referred to as haptic “guidance,” as it is generally used to guide a
novice through the successful completion of a task.

Most guidance schemes used for robot-mediated training have
been developed in an ad-hoc fashion to work with a specific device
or task, making it difficult to compare the multitude of guidance
schemes present in the literature. We propose that the many various
existing guidance schemes can be distilled into a set of essential and
representative characteristics, and that these characteristics can be
used to develop a taxonomy for classifying guidance paradigms, as
discussed in Section 3. Some of the more novel paradigms cannot
be easily implemented using the traditional proxy rendering model;
thus, an improved shared-control proxy model is proposed in Sec-
tion 4. The efficacies of four guidance paradigms at training 50
healthy subjects to perform a target-hitting task are compared in a
controlled study as described in Section 5. The results presented in
Section 6 demonstrate that none of these haptic guidance paradigms
are significantly better than visual guidance alone, and in fact some
are significantly worse. The implications of these findings are dis-
cussed in Section 7.

2 BACKGROUND

Guidance during robot-mediated training is usually provided via
simple perceptual overlays such as virtual fixtures. Virtual fixtures,
as proposed by Rosenberg [3], are simply perceptual overlays that
passively prevent participants from entering forbidden regions of a
work environment, and are most often used to constrain a novice’s
motions to an optimal trajectory.



Guidance might also take a more active form, such as the
“record-and-replay” strategy used by Gillespie et al. [4] to train
novices to balance a inverted pendulum. Such “assistive” meth-
ods are based on a number of intuitions about how people learn to
perform visuo-motor tasks. Unfortunately, there is little evidence to
back up some of these intuitions or to suggest how they can best be
applied to enhance the efficacy of assistive strategies. A common
assumption is that physically guiding a novice through the success-
ful completion of a task will help the novice to somehow internalize
and encode that pattern, and thus help the novice to repeat the pat-
tern on his or her own in the future. While sounding plausible, this
assumption is only weakly supported by the literature in the context
of rehabilitation [5, 6], and has been refuted in many cases in the
context of training healthy individuals [7, 8, 9]. Schmidt and Bjork
[10] showed that guidance in many sorts of training (not just in
visuo-motor tasks) can actually impair learning and retention, and
proposed the “guidance hypothesis” to account for this discrepancy
between the expected and actual results of guidance-based training.

The probable flaw in the assumption that assistive guidance im-
proves training is that while the proprioceptive sensory pathways
are active in the presence of guidance, the motor pathways are com-
paratively less active. Israel et al. [11] showed that when physically
guided through a task, novices tend to become “passive partici-
pants” and exert less energy (reflecting less motor pathway activ-
ity) than when they perform the task on their own. Shadmehr and
Mussa-Ivaldi [12] showed that the CNS relies on encoding and stor-
ing control loops between proprioceptive input and motor output in
order to perform dynamic tasks, and thus if this control loop is weak
or absent in the presence of guidance, the CNS will not be able to
encode and retain it as it would during practice.

Another problem with assistive guidance is that because novices
are passive and constrained to an optimal trajectory, they are going
to make fewer errors than they would during practice. Thorough-
man and Shadmehr [13] and others have shown that error drives
the learning of dynamic tasks and building of internal models, and
thus assistive guidance is likely to impair learning by preventing the
commission of error.

Finally, a significant problem with assistive guidance is that it
corrupts the inherent dynamics of a task as perceived by the novice.
Most guidance methods are impedance-based, meaning that they
apply a force in order to control the novice’s position. Thus, a
movement made during practice will result in force-feedback based
on the inherent task dynamics, while an identical movement during
training will result in force-feedback based on some combination
of the task dynamics and guidance forces. If novices spend a bulk
of their time in training, then in effect they will be learning the
wrong task, as found by Crespo and Reinkensmeyer [14], who say
that “subjects who trained with guidance reacted as if the assistance
provided on assisted trials was a perturbation rather than following
its example.”

Gillespie et al. [4] proposed the use of a virtual teacher, a more
active form of guidance than virtual fixtures that instructs novices
to perform dynamic tasks by giving them shared control of a task
with a virtual expert. O’Malley et al. [15] showed that such shared-
control systems were as effective as virtual fixtures at facilitating
skill transfer. The model of a virtual teacher proposed by Gille-
spie et al. replicates real-world teaching methods in order to facili-
tate skill transfer and reconcile the problem of guidance force cor-
rupting task dynamics. He presents the example of a tennis expert
teaching a novice how to swing a racket using hands-on demonstra-
tion. There are three ways that this demonstration could occur, as
shown in Figure 2. In an “indirect contact” paradigm, the expert and
the novice grasp the racket in different locations and perform the
swing together. In a “double contact” paradigm, the novice grasps
the racket while the expert grasps the novice’s hand and guides the
novice through the swing. In a “single contact” paradigm, the ex-

pert grasps the racket and the novice grasps the expert’s hand. In the
indirect and single contact paradigms, the task forces (those gener-
ated by the dynamics of the tennis racket) are simply summed with
the guidance forces (those generated by the expert exerting control
over the racket). In the double contact paradigm, the forces are sep-
arated spatially, with task forces being applied to the novice’s palm
and guidance forces to the back of his or her hand. Gillespie et al.
[4] hypothesized that this double contact paradigm would be the
most effective at eliciting skill transfer, because it passes the great-
est amount of haptic information to the novice and allows the novice
to easily discriminate between guidance and task forces. However,
they were not able to conclusively determine whether the double
contact paradigm was better than the others.

Figure 2: Gillespie et al. [4]’s Virtual Teacher paradigms. From left to
right: indirect-contact, double-contact, and single-contact paradigms.

3 GUIDANCE PARADIGM TAXONOMY

We propose that all guidance paradigms currently implemented in
the literature in human-human, human-robot, and human-robot-
human training architectures can be classified as one of the five
types in this section based on two characterizing factors. By ab-
stracting the principles of existing guidance paradigms from their
specific implementations, we can develop a set of representative
paradigms from the taxonomy and then compare the effectiveness
of each of those paradigms while holding constant the specifics of
the implementation (such as the choice of haptic device and dy-
namic task). The first factor that differentiates guidance paradigms
is whether they assist or resist the novice in completing the task.
The second factor is how paradigms reconcile the co-presentation
of task and guidance forces, whether by separation or summation.

3.1 Gross Assistance
Classic virtual fixtures are the archetypal example of gross assis-
tance (GA). By their nature, virtual fixtures have to be relatively
stiff in order to keep novices from entering forbidden regions of
the workspace, and thus guidance forces generated by collisions
with virtual fixtures will dominate any extant task forces. Sim-
ple spring-damper couplings or attractor potential models used to
“pull” novices towards a target are also typically implemented
as GA, and can interfere with the perceived dynamics of tasks
in a more subtle way than virtual fixtures. Shared-control guid-
ance schemes such as the indirect-contact and single-contact virtual
teacher paradigms also qualify as GA.

Gross assistance has been shown to be generally ineffective at
improving training outcomes compared to practice without guid-
ance. Reinkensmeyer [5] showed in simulation that “continual
guidance” (GA) is “never beneficial compared to no assistance”.
Crespo and Reinkensmeyer [16] showed that “fixed guidance”
(GA) produced only “slightly better immediate retention than did
training without guidance,” but did not show that this improvement
was statistically significant.



3.2 Temporally Separated Assistance
The characterizing factor of temporally separated assistance (TSA)
is that it separates guidance and task forces temporally, displaying
each type alternately in quick succession via a single haptic device.
Novices primarily experience unadulterated task forces, but train-
ing is frequently (on the order of 1Hz) punctuated by brief periods
of pure guidance, intended to “cue” novices as to the appropriate
movements to make. In this way, the expert exerts “cognitive dom-
inance” over the novice, while allowing the novice to retain “physi-
cal dominance”- in other words, allowing a novice to commit errors
and actively generate movement plans in order to better learn the
task dynamics.

Endo et al. [17] are the only group known to have proposed and
tested a TSA paradigm. In a pilot study, they showed that TSA was
effective at training subjects to grip a virtual object using proper
grasping forces and fingertip placements. However, they did not
study its effectiveness at training for dynamic tasks, and there are
no other implementations of TSA in the literature.

3.3 Spatially Separated Assistance
Whereas TSA separates the presentation of task and guidance
forces temporally in order to present them via a single haptic chan-
nel, spatially separated assistance (SSA) makes use of two haptic
channels in order to present task and guidance forces simultane-
ously via the separate channels. The first and perhaps best exam-
ple of SSA is the double-contact paradigm proposed by Gillespie
et al. [4], which makes use of a specialized haptic device in order
to present guidance from a virtual expert via one haptic channel
(through the back of a novice’s hand) and forces arising from the
task dynamics via a second channel (through the novice’s palm).
Gillespie et al. [4] could not conclusively show that SSA was supe-
rior to practice.

There are no other known implementations of SSA in the litera-
ture, likely due to the relative complexity and propriety of the haptic
devices necessary to implement e.g. the double-contact paradigm.
While replicating a real-world teacher is an elegant and intuitive
approach to implementing SSA, the utility of the double-contact
paradigm is limited to cases where the physical constraints of the
task being taught allow for this specific type of spatial separation of
forces. Presenting forces in this manner effectively requires haptic
devices with up to twice as many degrees of actuation and signifi-
cantly higher complexity. In some cases, presenting forces in this
manner may simply not be possible given the physical constraints
of the task. Providing guidance and task feedback via separate but
identical haptic devices might be a more feasible solution, and is
tested in this study.

3.4 Gross Resistance
Gross resistance (GR) can take a number of different forms, but
is generally characterized by increasing the difficulty of a task or
resisting a novice’s optimal completion of a task in some way. The
theory behind GR is simply based on over-training: after training
extensively in the presence of artificial resistance, novices will find
it relatively easy to execute the same task in the absence of the
resistance. There are three common implementations of GR: as a
constant force-field or viscous force opposing movement, as a force
that augments errors, or as forces producing random disturbances.

Lee and Choi [18] showed that training in the presence of ran-
dom noise-based disturbance was superior to GA and practice at
training healthy novices to perform a path-following task. Such
noise-based GR has not been discussed elsewhere in the literature
and is a prime candidate for further evaluation.

4 SHARED-CONTROL PROXY MODEL

Zilles and Salisbury [19] proposed a “constraint-based god-object”
rendering algorithm (commonly referred to as a “proxy model”) for
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Figure 3: Traditional and Shared-Control Proxy Models. k is stiffness,
b is damping, FG is guidance force, and FT is task force.

calculating and displaying interactions between a haptic interface
and a virtual environment. In this traditional proxy model, a mass-
less “god-object”, “avatar”, or “proxy” represents the user in the
virtual environment, and must obey all of the physical constraints
of the virtual environment (i.e. walls, friction, etc...). The proxy is
then connected to the haptic device by a virtual spring and damper
coupling. This coupling allows the haptic device to penetrate vir-
tual surfaces without necessarily leading to instability or requiring
a specialized physical model.

If a perceptual overlay or virtual expert is added to the envi-
ronment, one can imagine that there are two qualitatively different
types of forces in the system: “guidance” forces, which arise from
interactions with the perceptual overlay or virtual expert, and “task”
forces, which arise from interactions with the virtual environment.
A distinction should be made between these types of feedback be-
cause they should contribute to a user’s learning in fundamentally
different ways: “guidance” forces should be used to shape the
user’s actions, whereas “task” forces should be incorporated into
the user’s internal model of the environment. The problem with the
traditional proxy model is that it cannot discriminate between guid-
ance and task forces in shared-control systems, and thus the forces
are confounded when displayed to the user. This precludes the use
of the more advanced separation guidance paradigms described in
Section 3.

The proposed shared-control proxy model overcomes this de-
ficiency by adding a second proxy and replacing the traditional
spring-damper couplings with a series of “biased” spring and
damper couplings. Whereas traditional couplings can only exert
equal and opposite forces on attached nodes, biased couplings can
exert opposite but arbitrarily scaled forces on each node and are
only realizable in a virtual environment, as they essentially break
Newton’s Third Law. These couplings link the novice, expert,
“shared proxy”, and “avatar proxy” as illustrated in Figure 3, where
arrows indicate the general directions of force transfer (in other
words, the end of the coupling with a higher force gain).

The massless shared proxy’s position is influenced equally by the
expert and the novice, but is not influenced at all by the position of
the avatar proxy, nor does it interact with the virtual environment.
Thus, the shared proxy remains exactly between the novice and ex-
pert at all times, representing the averaged input of the novice and
expert. Note that this average could be weighted in order to ad-
just the control authority α (as proposed by Nudehi et al. [20]) by
simply changing the relative stiffnesses of the expert and novice
couplings. The force generated by the coupling between the novice
and shared proxy represents a pure guidance force FG, since it is
proportional to the deviation from the expert and unaffected by the
virtual environment. Note that in this case, the expert will not re-
ceive any force feedback and thus will not be affected by the novice,
which is the logical setup for tasks with a virtual expert. However,
with a human expert present, force-feedback could be provided in
a way similar to how the novice receives force feedback.

The avatar proxy must obey all of the constraints of the virtual
environment and is coupled to the shared proxy, so that in free space
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both proxies ideally share the same position. However, when the
user comes into contact with a virtual surface, the invisible shared
proxy will penetrate the surface to the same extent as the haptic de-
vice, while the avatar proxy will remain outside the surface. The
force generated by the coupling between the two proxies then rep-
resents a pure task force FT , since it is proportional to the deviation
between the commanded position of the shared proxy and actual
position of the avatar proxy.

5 METHODS

5.1 Experimental Design
Four prototypical guidance schemes were implemented using Im-
mersion IE2000 2-DOF haptic joysticks, and their effectiveness at
training subjects to perform two dynamic tasks was evaluated in a
50-subject controlled study. Subjects trained with the assistance of
a virtual expert using the shared-control proxy model described in
Figure 3, which allowed for the discrimination of task and guidance
forces. The physics and haptics were rendered in C++ and updated
at the servo rate of 1000Hz, the visual display was rendered by
OpenGL at 60Hz, and experimental data was recorded at 100Hz.

5.1.1 Evaluation and Training Trials

Subjects performed the tasks over a number of trials. Each trial was
20 seconds long and generally categorized as either an “evaluation”
trial or a “training” trial. In evaluation trials, subjects had sole con-
trol over the system via a single joystick and were instructed to
perform the task to the best of their ability. During training trials, a
virtual expert was also present in the system. This expert followed
a predefined optimal trajectory for each task, and shared control of
the system with each subject under one of the experimental con-
ditions. Subjects were instructed to track the expert as closely as
possible during training; by exactly matching the expert, they could
achieve the best score possible in each task.

5.1.2 Structure

Subjects performed the task over a single one-hour session consist-
ing of 106 trials grouped into a number of different blocks, as shown
in Figure 4. Evaluation blocks consisted of three evaluation trials,
training blocks consisted of 12 training trials, and a final general-
ization block consisted of 12 generalization trials. Subjects were
allowed a one-minute familiarization trial with an easier version of
the task prior to starting the session, as well as a 5-minute break
midway through the session in order to prevent fatigue.

5.2 Subjects
A total of 50 subjects enrolled in the primary study, and were di-
vided evenly between 5 experimental groups: no guidance, GA,
TSA, SSA, and GR. Five subjects were left-handed, 45 right-
handed, 33 male, and 17 female. All subjects controlled the task
with their dominant or preferred hand. All subjects provided their
informed consent as approved by the Rice University Institutional
Review Board, had no significant visual or motor impairments
and no or little prior experience with virtual dynamic target-hitting
tasks. Gift cards were awarded to the highest-performing subjects.
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Figure 5: Target-hitting task and proxy models used for training and
evaluation trials.

Table 1: Force outputs for guidance conditions. Both FT and FG are
calculated according to the shared-control proxy model described in
Section 4. The resistive force FPN is calculated according to a Perlin
noise function. For these experiments, t0 = 100ms and t1 = 500ms.

Guidance Force output (Joystick 1)
Control FT (t)
GA FT (t)+FG(t)

TSA
FT (t)+ sin( t∗π

t0 )FG(t) if t mod t1 ≤ t0;
FT (t) if t mod t1 > t0.

SSA FT (t)
GR FT (t)+FPN(t)

5.3 Task

The target-hitting task used in these experiments was based largely
on a task originally used by O’Malley and Gupta [22] and O’Malley
et al. [15]. Subjects controlled the position of an on-screen pointer
using a 2-DOF haptic joystick (Immersion, Inc.’s IE2000), as shown
in Figure 1. The joystick, displaying up to 9N, was connected to a
5kg virtual mass by a spring with stiffness k = 100N/m and damp-
ing b = 3Ns/m, as shown in Figure 5. Thus, subjects could control
the position of the mass only indirectly. Two targets were posi-
tioned equidistant from the center of the screen and at a 45◦ angle
to the horizontal. At any given time, one target was inactive (blue)
and the other active (orange). The active target could only be “hit”
by the swinging mass, at which point the opposite target would be-
come active. Each task trial was 20 seconds long, and the goal
during evaluation trials was to hit as many targets as possible in
this time frame. Thus, by moving the pointer at the resonant fre-
quency of the system (0.71Hz) along a straight line connecting the
targets, subjects could achieve the highest hit-count possible (ap-
proximately 28 hits). During training, subjects shared control of
this system with a virtual expert, represented on-screen by an or-
ange pointer that tracked the optimal trajectory (a straight-line path
between the targets at a frequency of 0.71 Hz). During evaluation
trials, subjects were instructed to hit as many targets as possible,
while in training trials they were instructed to follow the expert as
closely as possible.

5.4 Guidance Conditions

The mathematical representations of the guidance paradigms used
during training trials are given in Table 1.



5.4.1 No Guidance (Control)

Only task forces were displayed as a control condition. Thus, sub-
jects could track the expert visually on-screen but received no haptic
indication of his position.

5.4.2 Gross Assistance (GA)

Task forces and guidance forces were combined by simple summa-
tion and presented via a single joystick. The two types of forces
were scaled so as to each have a peak magnitude of about half of
the maximum force output level of the joystick.

5.4.3 Temporally Separated Assistance (TSA)

Task forces were displayed at all times, and guidance forces were
overlaid in 100ms sinusoidal pulses at a frequency of 2Hz (the op-
timal frequency and ratio as experimentally derived by Endo et al.
[17]). Subjects described these guidance forces as “pulsating” and
interpreted them as nudges or resistance that indicated the direction
that they should be moving. The pulses were not frequent enough
or large enough in magnitude to exert significant control over the
task; thus, this mode prevented subjects from becoming reliant on
guidance forces, a problem described by Li et al. [21].

5.4.4 Spatially Separated Assistance (SSA)

Subjects used two joysticks during the experiment. Subjects con-
trolled the system using the primary joystick, onto which only task
forces were displayed. Guidance forces were displayed on the sec-
ondary joystick so that its trajectory matched that of the expert’s,
also visible on-screen. Subjects were instructed to lightly grasp
this secondary joystick with their non-dominant hand and to repli-
cate the movements displayed there on the primary joystick. This
allowed subjects to intuitively mimic the expert’s trajectory while
still experiencing undistorted task dynamics. This paradigm also
shares with temporal separation the advantage of forcing the sub-
ject to take control and do the “heavy lifting” in the task.

5.4.5 Gross Resistance (GR)

Task forces were combined with a randomly-generated disturbance
force in the manner described by Lee and Choi [18]. A Perlin noise
function with a nominal range of −1.2N to 1.2N was randomly
generated for each joystick axis using the open-source libnoise li-
brary. At each timestep, the guidance force was generated from the
values of these functions and summed with the task force to produce
the net force displayed to the joystick.

6 RESULTS

Outliers were defined for each cell (each unique combination of
group and trial) as points further than 1.5 interquartile ranges from
the cell mean and were replaced with their respective cell mean.

Mixed ANOVAs were performed on evaluation trial outcomes
with hit counts as the dependent variable, guidance condition
(“group”) as a between-subjects factor, and trial number (“trial”) as
the within-subjects factor (repeated measure). Plots of the data for
evaluation trials alone are shown at group-level in Figure 6. Out-
comes for the omnibus ANOVA and for pairwise multiple com-
parisons, corrected using a Tukey-Kramer (TK) adjustment, are
shown in Figure 7. A Ryan-Einot-Gabriel-Welch adjustment would
preserve more power and be preferred, but was unavailable in the
statistics software procedure used for analysis.

All groups exhibited a consisting learning trend. Multiple com-
parisons based on the mixed ANOVA showed that both the control
and GR groups performed significantly better than the TSA and
SSA groups, and that the GA group performed significantly better
than the TSA group.
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Figure 7: Mixed ANOVA results for evaluation trials. Fixed effect of
group: F(4,113) = 9.46, p < .001. The interaction effect of group and
trial was not significant. Lines indicate pairwise significance at α =
.05, family-wise error-corrected using a TK adjustment.

7 DISCUSSION

Numerous previous studies have shown GA to be ineffective, as de-
scribed in Section 3.1, so it is not surprising that it performed no
better than the control group. Conversely, it is quite surprising that
the separation paradigms (TSA, SSA) actually led to worse perfor-
mance than either of the gross guidance paradigms (GA, GR), given
that previous studies have shown TSA to be effective (as described
in Section 3.2) and that SSA was specifically developed to over-
come deficiencies identified with gross guidance. This unexpected
result might be explained by several factors. Generally speaking,
it is possible that subjects were simply unfamiliar with these novel
forms of guidance, and did not fully understand how they were sup-
posed to use the guidance. Anecdotally, subjects had a relatively
easy time understanding the operating principles of GA and GR,
while they had a comparatively harder time understanding how to
use TSA and SSA. Thus, it is possible that more thorough train-
ing for how to use these somewhat complex paradigms would lead
to improved results. Additionally, subjects were not informed of
the theory behind the separation paradigms in order to obviate any
placebo effects resulting from the power of suggestion or experi-
menter bias. However, it is possible that if subjects had understood
why such complex guidance methodologies were being used, then
they would be less frustrated with the guidance and better under-
stand how to fully utilize it.

Overall, the results corroborate a strong form of the guidance
hypothesis: namely, that any attempts at guidance (even resistive
forms) can impair training as compared to practice. Previous stud-
ies have shown that subjects can become dependent on assistive
guidance, and the guidance hypothesis theorizes that challenge is
necessary to the learning process. The results of this study sup-



port that notion, but also suggest that even additional challenge
can impair learning, and indeed that any interference with the task
(through attempts at guidance) will impair training compared to
straight practice. This is supported by the fact that both of the
novel guidance separation paradigms (TSA, SSA), which were de-
signed specifically to discourage dependency, led to significantly
worse performance than the control group. Additionally, the results
suggest that the gross guidance paradigms (GA, GR) led to worse
performance than the control group, though this effect was not sta-
tistically significant.

These results indicate that perhaps a new approach to guidance
is needed. For instance, instead of taking an “objective-oriented”
approach and teaching subjects to simply follow an expert in order
to complete task objectives, it might be more beneficial to take a
“skill-oriented” approach to guidance by identifying and teaching
the specific component skills necessary to complete a task. It is
also possible that the best way to enhance training is to increase
the difficulty of a task without altering the inherent task dynamics
or interfering with task execution through explicit guidance. For
instance, decreasing the target size might both be effective ways
of enhancing training. Finally, this study compared combined vi-
sual and haptic guidance to visual-only guidance, and so the results
might simply indicate that visual guidance is sufficient for complete
training. This might be explained by the same reasoning behind
the development of the separation guidance paradigms: by exerting
cognitive dominance without any physical interference whatsoever,
visual-only guidance is the ultimate separation guidance paradigm.

8 CONCLUSIONS

The results of this study show that many of our instincts about hap-
tic guidance are wrong: conventional approaches to haptic robot-
mediated training are not significantly better than practice, and
more complex guidance paradigms can in fact be detrimental to
the learning process. To facilitate continued research, this work has
made a number of additional contributions. A guidance paradigm
taxonomy has been proposed that will allow for easier discus-
sion, classification, and comparison of haptic guidance paradigms.
The traditional shared-control proxy model has also been improved
in order to accommodate a number of more complex guidance
paradigms, and a novel paradigm (SSA) has been developed.
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