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Abstract— This paper presents the experiment design, results,
and analysis of a human user study that tests and validates the
minimum hand jerk (MHJ) model for a human forearm reach-
ing movement task when manipulating a multi-mass object. This
work validates and extends prior work that demonstrated the
MHJ criteria, a mathematical approach to human movement
modeling, more accurately represents movements with multi-
mass objects than the alternate optimally smooth transport
(OST) model. To validate the prior work, we developed a
visual and haptic virtual environment with a five-mass system
with friction connected by springs and viscous dampers. The
point to point reaching task we implemented required partici-
pants to move their hand with the set of masses to a target
position, thereby generating movement profiles for analysis.
Our experimental design uniquely extends the application of
the MHJ criteria to forearm pronation movements and our
results show that the MHJ model holds. Our extension to
forearm movements and the more general MHJ criteria are
economic models of human movements applicable to fields such
as computer animation and virtual environments.

1. INTRODUCTION

This paper presents the experiment design, results and
analysis of a human user study that tests and validates the
minimum hand jerk (MHJ) model for a human forearm
reaching movement when manipulating a multi-mass object.
The MHJ model is a mathematical optimal control model of
human reaching movements that can be used for analysis.
Analysis of human movement is achieved via two broad
computerized approaches which in turn serve to capture and
represent these movements precisely. The two approaches are
motion capture and mathematical modeling. In the motion
capture approach, a human subject must perform the motion
under consideration in the presence of a motion capture de-
vice, such as dedicated cameras or electromechanical position
sensors. Typically the captured position data must be merged
across trials or subjects to obtain some type of average or
representative movement. Intensive post-processing into a
3-D representation is often required as well. While these
systems do allow movement researchers to access and utilize
reliable and detailed data, the method relies on expensive
equipment and software thus limits the implementation of the
technology. Furthermore, if a modification to the represented
trajectory is desired, the modified motion must be re-captured
and processed again.
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Mathematical modeling is another approach to represent
human movement. In this approach, an equation represents
a family of movements. Movements can be modified by
changing the equation parameters. The primary benefits of
modeling are the ease with which trajectories are modified
as well as its low processing costs. The disadvantage of this
approach is difficulty in developing representative equations
that are accurate enough for a range of applications. Numer-
ous researchers have chosen to develop these mathematical
representations via optimal control theory. More specifically,
hand reaching movements are excellent candidates for the
application of optimal control theory. The movement paths
tend to be straight and smooth, despite the fact that rev-
olute and spherical joints generate the movements. These
joints create a redundancy that allows many different state
trajectories for a given reaching task. In general, however,
the path taken by the hand tends to be a straight line with
smooth bell-shaped velocity profiles [4]. Current research in
the functioning of the central nervous system (CNS) indicates
that the path of the hand is planned in the coordinate system
defined by the eye and the target location [6]. The CNS then
computes the smoothest trajectory based on a cost function.
Flash and Hogan proposed to quantify the smoothness of
a human reaching movement via the minimization of the
jerk function, one that they defined as the third derivative
of position [4]. Our work extends the validity of the MHJ
model to forearm pronation movements in the presence of a
multi-mass system.

The minimum hand jerk (MHJ) model, experimentally
confirmed by Flash and Hogan, was limited to point to point
reaching movements in free space. Dingwell et al. proposed
the optimally smooth transport (OST) method, also called
minimum object crackle, as the model of choice for reaching
movements with a two-mass system [2]. Dingwell suggested
that people adopt the external end effector as an extension to
their own limb [2]. Recent work by Svinin et al. broadened
the original MHJ model to include dynamic constraints,
namely the equations of motion of the multi-mass system.
In the same work, Svinin et al. compared the two criteria
and found that the OST representation does not adequately
apply to multi-mass systems. The MHJ model, on the other
hand, can sufficiently represent any multi-mass system as
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long as it has an added dynamic constraint [7] In the case
of a multi-mass system, Svinin and his collaborators showed
that the end effector’s velocity is upper bound limited when
using MHJ model but not when using the OST. Our work
first replicates the results of Svinin et al. Then, we present
and resolve two significant deficiencies in their experiment.
Finally, we arrive at the same result that MHJ is a more
accurate representation than OST of upper extremity reaching
movements. Our work extends their model to a forearm
pronation reaching movement and the results show that the
MHJ mathematical model matches experimental data while
the OST model does not.

II. METHODS

We conducted a user study in human performance to
record data for comparison analysis of the two mathematical
movement models. Similar to the work of Svinin and his
collaborators, we chose to represent the dynamic task in a
haptic virtual environment rather than build a physical model
for motion capture. In the user study, we demonstrate smooth
output profiles and we use viscous damping both of which are
absent in Svinin’s experimental setup. Additionally, our ex-
periment featured a forearm pronation movement rather than
a compound shoulder, elbow, wrist movement as Svinin et
al. tested. For simplicity, we limiter our analysis to only
one joint. Position and velocity data were captured from
the virtual environment during task performance for later
analysis.

A. Participants

Seven participants (all healthy males, ages 18-39, 5 right-
handed and 2 left-handed who both chose to perform the task
right-handed) completed the experiment. A university IRB-
approved form was used to obtain informed written consent
from all participants. The data from the first two participants
were used as pilot trial data for further refinement of the
experiment and therefore were not included in the analysis.
The remaining five participants (ID’s 3 through 7) took part
in the three-session study comprised of one familiarization
session, one training session, and one evaluation session.
Each session lasted approximately 10 minutes. The first two
sessions were separated by a time period of 10 minutes to 4
hours, while the last two sessions were separated by a time
period of anywhere from 2 hours to 24 hours. Only data
from the evaluation session (the third session) were used in
the analysis of human movements in the virtual environment.

B. Apparatus and Virtual Environment

The experimental apparatus and virtual environment used
in this experiment are shown in Fig 1. The physical apparatus
included a nineteen-inch LCD display with a 60 Hz graphics
software loop rate for visual display and a force feedback joy-
stick (Immersion IE2000) for haptic interaction. Participants
interacted in a visual and haptic enabled virtual environment
providing both position and velocity input to the joystick
by rotating the forearm in pronation and simultaneously
receiving feedback via both the visual display and the haptic

force display. The environment was a sufficiently accurate
virtual representation of the multi-mass system and did not
demonstrate chatter on the output or any instabilities.

participant

— joystick

Fig. 1. The experimental setup for the participant to interact with the
task in a virtual environment included position input as well as haptic
force and visual feedback. The participant provided positional input to the
virtual environment via the joystick encoder. A LCD display provided visual
feedback to the participant while a haptic joystick provided force feedback.

While the force feedback joystick is a two degree of
freedom (2-DOF) device, the experiment required only 1-
DOF. Therefore, we mechanically restricted the rotation
of the joystick in ulnar/radial deviation. With the flexion
deviation of the wrist restricted by the shape of the fixed
joystick handle, the only motion allowed was the pronation
and supination of the participant’s forearm. The setup was
different from Svinin’s planar setup that allowed participants
to move shoulder, elbow and wrist. We chose the 1-DOF
rotational setup in order to limit the analysis to one-joint
human movements rather than three joint movements that
allow an infinite set of kinematic configurations for the
reaching task.

The hardware and simulation are controlled by a 2 GHz
Pentium computer operating the haptic loop at 1kHz while
movement data was stored at SOHz. The virtual multi-mass
system was modeled as a linear second order system on one
axis of movement with five point masses: mpguq, M2, M3,
my, and ms as shown in Fig 2. The location of the first mass,
Mpand, Was the joystick encoder position, thereby transferring
the hand states directly to the the virtual environment. The
remaining four masses were connected to my,,, via parallel
spring and damper links (k; and by in Fig 2 respectively).

target start
@ "eniisyee” @
| bs |
|——= 200mm —
Fig. 2. The virtual environment included the joystick location and four

equal masses linked by springs (k) and viscous dampers (bs) connected in
parallel. The experimental task presented to the participants was to move
all five masses and their hand from the start position to the target position
200mm away within a specified time.
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Since the participant could only directly manipulate my,4,4,
the 5-DOF system was under actuated, thereby differentiating
the task from a simple reaching task in free space that Fitts’s
Law is based on and that Flash and Hogan originally studied
[3], [4]. The parameters of the system dynamics were masses
my_s =3.0Kg and spring stiffness ks = 120N /m as modeled
by both Dingwell et al. and Svinin et al. [2], [7]. In order to
ensure settling, we added both viscous damping b; = 10 and
viscous friction ¢y = 0.1N /m. The mass of the hand (mpg,q)
depended on the mass of the joystick and the dynamics of
the participant which are assumed to be much larger than
the masses of the virtual task. Each spring-damper link force
is computed solely from the positions and velocities of the
attached masses as follows:

Fdisp :k‘Y(XZ*xh)‘i’bs(VZ*Vh)y (D
Fy = ky(xit1 — xi) + bs(vig1 —vi), (2)
F= ks(XS 7)C4) +bs(v5 7)64). 3)

In Eq. 1, Fy;qp, is the force displayed to the participant via the
DAC output current to the haptic joystick motor. F; in Eq. 2
is the force across the ith spring and F5 in Eq. 3 is the spring
force acting on the 5th mass which is the end effector. At
each haptic iteration, the acceleration, velocity, and position
of the end effector (x5, vs,as), were computed according to
Newtonian dynamics as follows:

1
X5 = vsdt + §a5dt2, @)
vs = asdt, )
F:
as = —S—V5cf. (6)
ms

The end effector mass is ms and ¢y is the coefficient of
viscous friction applied to all of the masses except Mmpgug.
The positions, velocities and accelerations of the intermediate
masses were computed in a similar fashion and in the
same order. In the same way, all kinematic and dynamic
information was updated within three iterations of the haptic
loop during performance of the task.

C. Experimental Task

The experimental task consisted of the participant moving
all masses from a start position to a target position as shown
in Fig 2. The start position was located at 45° of forearm
supination. The rotational distance from the start position to
the target location was 60° of forearm pronation. The 60°
rotation mapped to 200mm of linear travel on the 2D visual
display. The task presented to the participants was to move
all five masses and their hand from the start position to the
target 200mm away. At the start position the five masses
are collocated. Position, velocity, and time constraints must
be met at the target location for the trial to be successful.

The task had three experimental conditions (A, B, and C),
each with its own set of constraints as listed in Table I.
Having three different conditions of the task permitted the
participants to complete the task in a single oscillation or
multiple oscillations as Svinin et al. reported. We obtained the
constraints both from pilot tests and by matching the success
rates that Svinin et al. reported. The constraint values chosen
show both single oscillation solutions (Condition C) as well
as multiple oscillation solutions (Condition A).

TABLE I
SUCCESSFUL COMPLETION TOLERANCES FOR THE THREE TIMED
CONDITIONS OF THE TASK WHERE 7' IS THE BASE COMPLETION TIMES,
AT 1S THE TIME TOLERANCE, Ax IS THE FINAL POSITION TOLERANCE
AND Av IS THE FINAL VELOCITY TOLERANCE.

Parameter  Condition A Condition B Condition C
T 2.25s 1.35s 1.00s
AT +0.5s +0.5s +0.5s
Ax 0+ 6mm 0+ 12mm 0+ 12mm
Av 0+ 6mm/s 0+12mm/s  0+24mm/s

D. Data Collection and Analysis

Point to point reaching data was obtained for the five
participants over three sessions. The first session consisted
of 90 familiarization trials without any time requirement.
This session permitted success in every trial. The second
session, used for training in the task, consisted of all three
timed conditions (A, B and C), with 50 trials for each and
presented to all participants in the same order from the
slowest to the fastest condition as listed in Table I. The third
session, identical to the second session, was the evaluation
session. Only the successful trials of the evaluation session
were used for analysis. In other words, only those trials
that met the constraints for all parameters in the current
condition were kept for analysis (see Table I). Filtering out
the unsuccessful trials ensured comparable velocity profiles
for each condition. A wider tolerance in the completion
times would have allowed participants to complete the trial
successfully more often; however, the raw data had to be
normalized for trial matching. Also, if the time tolerance were
kept small, it would ensure that the profiles being compared
were similar. During the pilot testing we observed, as did
Svinin and his collaborators, that when longer completion
times are permitted, participants may use either a single
oscillation or a double oscillation velocity profile to complete
the task, thereby making comparison difficult.

By choosing small time tolerances for all three conditions
and ensuring single oscillation patterns, the only post process-
ing required was to time-shift the peak velocity in order to
normalize the trial. One participant’s joystick (m,4,4) and end
effector (ms) velocity profiles for Condition B are shown in
Fig. 3 to illustrate the data shifting. Once the data was shifted,
the velocity profiles were consistent enough for analysis and
comparison to the mathematical models. For the MHJ model
of the end effector trajectory we used:

x(1) = xo + (%, — x7) (157* — 67° — 107°) (7)

801



My ond Velocity (m/s)

Time (sec)

(a) Joystick (myqnq) velocity profiles.
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(b) End effector (ms) velocity profiles.

Fig. 3. Velocity profiles of successful trials in Condition B for Participant 5,
a typical participant. Profiles are peak velocity shifted for time normalization
of the data. The end effector velocity profiles shown in (b) are consistent.
The hand velocity profiles shown in (a) are also consistent and smooth.

where T =1/ts, x, is the initial object position and xs is
the final position [4]. The OST model of the end effector
trajectory used was:

x(t) = LT°(126 — 4207 + 5407% — 3157° +707%)  (8)

where T =1/t; and L is the length of the trajectory [2]. The
inverse dynamics of the system were used to compute the
theoretical hand trajectories for both models.

III. RESULTS

All five of the participants completed all three conditions.
During the third session, the worst success rate was 55%
while the best success rate was 98% as listed in Table II.
As previously stated, the pilot data from participants 1 and
2 were not included in this work. The success rates were
comparable to the rates obtained by Svinin et al. , namely
25% to 93% success. Our success rates are higher than
Svinin’s in part because all of our participants had previous
experience with force feedback haptic devices whereas theirs
did not.

TABLE I
SUCCESS RATES IN PERCENTAGES FOR EACH PARTICIPANT DURING THE
EVALUATION SESSION.

Participant ~ Condition A Condition B Condition C
3 92 55 96
4 94 98 98
5 90 90 90
6 82 55 63
7 86 92 90

To achieve a comparison of all participants, each par-
ticipant’s average velocity profile is presented in one plot
per condition as shown in Fig. 4(a), (c), and (e). Joystick
data represents the hand motions and provides a reasonable
estimate of velocity and position of the multi-mass system.
The end effector velocity profiles are emphasized in this
experiment in order to compare them with the theoretical
MHJ and OST models. Joystick and end effector velocity
variances decrease as the time requirement of the condition
decreases. In fact, under Condition A the joystick velocity
average for each participant shows the most variance due
to Condition A’s slower completion time permitting a wider
range of successful trajectories. Because Condition C has the
fastest completion time, it requires a trajectory pattern that
approaches optimal in order to have success.

The end effector velocity profiles for the three movement
conditions are shown in Fig. 4(b), (d), and (f). As the
task increases in speed, the MHJ theoretical curve with an
amplitude of 2.5m/s aligns closely with the experimental end
effector velocity profiles with amplitudes between 2m/s and
2.5m/s. Condition A is the slowest condition and has the
largest envelope of time to complete the task. Therefore, the
theoretical profiles for Condition A have a visibly greater dif-
ference from the experimental end effector velocities. The op-
timally smooth transport (OST) trajectories with amplitudes
of 3.5m/s do not match the experimental end effector velocity
data with amplitudes of 2.5m/s for multi-mass systems.

IV. DISCUSSION

The experiment results show that the MHJ model with
a dynamic constraint represents human reaching movements
with a multi-mass system closer than the OST model. While
these results are the same as Svinin’s, there are three note-
worthy differences between the studies. The first difference
is in the physical model of the virtual environment. Svinin
and his collaborators reported using a simple mass-spring
system model [7]. In a simple under-damped mass-spring
system, once energy has been input to the system, the end
effector settles by oscillating around the joystick. Svinin’s
data do not show such oscillations [7]. Furthermore, even for
an over-damped system, the settling time is too brief to obtain
completion times similar to Svinin’s. Therefore, we included
viscous friction between the masses and a modeled virtual
surface under the masses to further reduce the settling time.
For these reasons, our model of the dynamic system explicitly
includes viscous damping and friction. By matching all the
other system parameters to the Svinin et al. model, we then
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Fig. 4. The thick dashed line represents the theoretical MHJ with dynamic constraint model. The thin dashed line represents the theoretical OST model.
The thin solid lines are the experimental participant velocity profile averages for all successful trials for that condition. End effector velocity profiles show
that the experimental data is more accurately represented by the MHJ model.
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varied the damping in an attempt to approach the success
rates and times presented in their work.

The second difference between our work and Svinin’s was
the choice of apparatus and virtual environment implemen-
tation. Svinin and his collaborators implemented the haptic
virtual environment on a PHANToM 1.5 with 3 DOF. There-
fore, they had to implement virtual walls in the directions
orthogonal to the movement line [7]. Interactions with these
orthogonal forces may be the cause of chatter in Svinin’s
experimental data as shown in the end effector velocity
profiles such as the one in Fig. 5(a). In our implementation of
the virtual environment, we chose to use a 2-DOF device and
further simplify the environment by mechanically securing
one of the axes of the device. One axis limits movements of
the handle along the task axis, thereby avoiding the need for
virtual walls. As can be seen from Fig. 5(b) the experimental
end effector velocity has no chatter.

The last significant difference between our work and
Svinin’s regards the results with peak variations of the
velocities across each of the three conditions. The peak
velocity of the end effector is directly related to the system
dynamics through its natural frequency. Thus, regardless of
the completion time and velocity profile of the hand, the
maximum velocity of the end effector should remain constant
[5]. Svinin’s data showed different peak velocity for each
condition while our peak velocities are constant across all
three conditions.

V. CONCLUSIONS

We have presented the results of a human user study
conducted to verify the minimum hand jerk (MHJ) criteria
as a valid and accurate representation of human movements
when constrained by a multi-mass dynamic system. We
extend the results obtained by Svinin et al. for compound
shoulder, elbow and wrist movements are extended in this
work to the unique case of forearm pronation. We also verify
that the optimally smooth transport (OST) model is not an
accurate representation of the velocity profiles when applied
to a multi-mass system. We have shown that the MHJ math-
ematical model can represent a family of human reaching
movements such that by changing only the parameters of
the equation, similar reaching movements can be modeled.
These types of mathematical models of human movement
can be implemented in rehabilitation robotics as the “ideal”
movements with which to measure the patients’ movements
to determine their current condition and their improvements
over time. Significant correlation between measures and
clinical measures has already been demonstrated [1]. This
work in mathematical modeling can also be applied to human
reaching movements described in such fields as computer
animations, surgical tasks, and sports training.
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Fig. 5. Comparison of Svinin et al.’s results in (a) and our results in (b)
show first that the experimental data from both works match the MHJ criteria
much closer than the OST criteria. Secondly, the end effector chatter evident
in the Svinin result is not present in our results.
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