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ABSTRACT

This paper presents an experiment to determine the underlying
learning mechanism by which shared control with error reduction
improves training effectiveness for dynamic manual control tasks
in virtual environments. Specifically, the authors test the hypoth-
esis that the learning mechanism of shared control with error re-
duction is through demonstration of the preferred strategy in the
early phases of training. Three training protocols were utilized in
this study and the experimental results indicate that all the benefits
of shared control in training cannot be incorporated into strategy
demonstration. The authors conclude that learning strategy alone
is not the main mechanism of motor skill acquisition when shared
control with error reduction is employed for training.

Keywords: shared control, virtual fixtures, manual control, haptic
assistance, virtual training

1 INTRODUCTION

Virtual Environment (VE) technology offers a promising means of
training humans for motor skill acquisition. Computationally me-
diated training has many potential advantages over physical train-
ing like lower risk and cost, better data collection and evaluation.
Training in VE aims to transfer what is learned in the simulated en-
vironment to the equivalent real world task. Virtual training can be
designed either to provide avirtual practice mediumthat matches
the targeted physical medium as closely as possible, or to behave as
a virtual assistanceto improve training effectiveness by providing
additional feedback in ways that are possibly not realizable in the
physical world.

Most forms of interaction with computerized simulations involve
only visual and auditory information. However, it is shown that the
addition of haptic feedback to virtual environment simulations pro-
vide benefits over visual/auditory-only displays via reduced learn-
ing times, improved task performance quality, increased dexterity,
and increased feelings of realism and presence [1–5].

To exploit training capabilities of virtual environments with hap-
tic feedback, variousvirtual assistanceparadigms have been pro-
posed. These training paradigms are inspired by various mo-
tor learning theories and are realized through different assistance
schemes such as promoting more practice, demonstrating a strat-
egy, augmenting feedback error and reducing feedback error.

Among these methods, the most common form of haptic as-
sist is achieved through the introduction of forbidden zones in the
workspace via so calledvirtual fixtures [6]. Virtual fixtures are
analogous to the use of training wheels when riding a bicycle, or a
ruler when drawing straight lines. These virtual fixtures have been
shown to significantly improve task performance in virtual environ-
ments [7, 8]. However, since the feedback provided by virtual fix-
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tures is independent from the dynamics of the system to be learned,
and because this feedback becomes available intermittently only to
prevent large errors, from the perspective of training, virtual fixtures
provide nothing more than a safer medium for practice. The assis-
tance provided by virtual fixtures is not aimed to assist the mecha-
nism of learning, but is designed merely to facilitate safer practice.
Learning still takes place throughvirtual practice.

Another form of virtual trainer is motivated through teaching by
demonstration. In theserecord and playstrategies [9–12], the dy-
namics of an expert are recorded while performing the task and
these dynamics are played backed to the novice to assist learning.
In this kind of assist, the novice is not actively involved in the task
during training. Once the preferred strategy to achieve the task has
been played back a couple of times, the novice is allowed to prac-
tice to mimic the demonstrated dynamics. This paradigm does not
account for the differences due to user-specific dynamics, and also
prevents the novice from forming their own strategies.

In [13], error augmentation strategies are used to speed-up hu-
man motor learning of a dynamic task. By amplifying the instanta-
neous error, modified dynamics are displayed to the user to promote
faster convergence of error-based adaptation mechanism. Capital-
izing on a form of assistance not realizable in the physical world,
this technique resulted in significant increases in learning rates. The
limitation of this technique lies in its applicability to complex tasks
since augmenting the error in these cases can significantly degrade
performance, rendering successful task completion infeasible.

Finally, in the authors’ previous work [14, 15], error reduction
has been implemented through ashared controllerfor training.
The authors have proposed shared control as an active assistance
paradigm where the feedback is provided by a controller, which is
dependent upon the system states. By dictating the type and level
of active control between the computer and the human on the vir-
tual system’s dynamics, shared control constitutes the most general
form of virtual training. Virtual fixtures, record and play strategies,
and transient dynamics amplification are all encompassed as special
cases of shared control since these paradigms can easily be realized
through shared controllers of specific structures. Shared control has
been shown to improve task performance in both physical and vir-
tual environments [16, 17]. The authors’ implementation of error
reduction with a shared control architecture is shown to improve
performance of the task as well as affecting motor skill acquisition
through improved retention from one training session to the next
compared to practice without assistance [15].

This paper seeks to determine the underlying learning mecha-
nism by which shared control with error reduction improves train-
ing effectiveness for a dynamic manual control task. The authors
hypothesize that a novice can benefit from an active shared con-
troller designed to reduce the error in one of two ways: the shared
controller can demonstrate the preferred strategy to successfully
perform the task in the early phases of learning, or the shared con-
troller can simplify the task dynamics resulting in a reduced number
of control parameters in the adaptation mechanism, thus promoting
faster learning.



Facilitating learning by reducing the degrees of freedom of a
complex task was first proposed by Bernstein [18]. The core idea
in this hypothesis is inspired from well-developed multi-phase op-
timization techniques, where a coarse global search phase is fol-
lowed by a fine local search that is initialized with the parameters
suggested by the coarse global phase. Simplifying a complex dy-
namic task in early stages of training, making it significantly easier
to learn (in an approximate way), and utilizing the knowledge of
simplified dynamics as a useful foundation to learn the more com-
plex task, termeddevelopmental progression, has been shown to be
the most effective training mechanism for neural networks [19].

In this paper, the authors test only the first hypothesis that
the learning mechanism of shared control with error reduction is
through demonstration of the preferred strategy in the early phases
of training. Three training protocols were utilized in the study,
with one group receiving no assistance throughout training (prac-
tice only), one group receiving active assistance via implementa-
tion of a shared controller that simplifies virtual system dynamics
for each training session, and a third group receiving active assis-
tance only for the first quarter of each training session. The third
group is used to test the hypothesis that shared control demonstrates
a preferred strategy to the subjects. Specifically, the authors inves-
tigate whether all the benefits of shared control in training can be
incorporated into the strategy group which demonstrates the pre-
ferred strategy for the manual control task with a few trials in the
early phase of each training session, allowing more time for prac-
tice with the uncontrolled (hence unaltered) task dynamics.

The paper is organized as follows: Section 2 describes the sys-
tem and manual control task used for the experiment. The shared
controller used in the experiment is introduced in Section 3. Section
4 provides details of the experimental design. The experimental re-
sults for learning of the task and statistical analysis are given in
Section 5. Section 6 discusses the experimental findings. Finally,
Section 7 concludes the paper.

2 SYSTEM AND TASK DESCRIPTION

To determine the underlying training mechanism of shared control
with error reduction, a second order manual control task of a dy-
namic system modeled as two point masses connected by a spring
and a damper in parallel is used. This two-mass system has four de-
grees of freedom (DOF), namely thex andy motion of both masses
m1 andm2. However, subjects can only control directly thex and
y movement of massm1 via a force feedback joystick. The result-
ing x andy motion ofm2 is displayed graphically to the user, and
is determined solely by the system dynamics. Thus, this system is
an underactuated system, since the control inputs are thex andy
motion ofm1.

This task is well-suited for experimental studies of human per-
formance enhancement and training with haptic assistance because
the exhibited dynamics are sufficiently complex to control but not
too complex to analyze. Moreover, the force feedback generated by
the interactions of the two masses connected by the spring-damper
is significant for subjects to accurately control motion of the sys-
tem. Haptic feedback has been shown to be an important factor for
enhancing performance and learning of dynamic control tasks [20].

In this paper, besides the forces of interaction due to the system’s
inherent dynamics, we will also examine the effect of additional
forces that we overlay on the environment for assistance due to the
shared controller. Table 1 lists the three sets of system parameters
that govern the dynamic response of this system. These parameter
sets were varied randomly during the experiment.

Table 1: Parameters of the two mass spring damper system

Parameter m1 m2 k b
Set [kg] [kg] [N/m] [Ns/m]
1 0 5 100 3
2 0 2 80 1
3 0 5 50 5

2.1 Hardware

An Impulse Engine 2000 joystick from Immersion Inc., shown in
Figure 1, was used as the haptic display to provide high fidelity
haptic simulations of the two-mass system. The Impulse Engine
has two degrees-of-freedom and a workspace of 6” x 6”. The de-
vice exhibits low backdrive friction (< 0.14N) and a high sensor
resolution (0.0008”). All simulations ran at the sampling frequency
of 1 kHz. The system bandwidth for the apparatus is 120 Hz and it
is capable of displaying a maximum force of 8.9N in the workspace.
The virtual environment graphics were created using OpenGL.

An impedance control mode was employed in all experiments,
such that user motion was measured via optical encoders on the Im-
pulse Engine, and forces were computed according to the equations
of motion of the system and the additional assistance force algo-
rithms. It should be noted that the joystick itself served as mass
m1. The displayed forces were combinations of interaction forces
betweenm1 andm2 and controller assistance forces. These forces
were then scaled to improve user perception.

When rendering the dynamic virtual environment, the authors
neglect the inherent dynamics of the haptic device itself. This is
based on two primary assumptions. First, the authors assume the
device to be pseudostatic. That is, it is assumed that the motion of
the haptic joystick is sufficiently slow to neglect inertial effects and
Coriolis effects that are proportional to higher-order terms (velocity
and acceleration). Second, the device is assumed high-quality in
mechanical design and construction, such that it is free of backlash,
fully backdriveable, sufficiently stiff, and of relatively low inertia.

Figure 1: Subject seated at IE2000, viewing the target-hitting task.

2.2 Task

A target-hitting task is used to study manual control of the under-
actuated system. Subjects view the virtual environment on a com-
puter monitor and are asked to control the motion of massm1 via a
2-DOF haptic joystick, thus indirectly, through the system dynam-
ics, control massm2 to alternately hit a fixed pair of targets. Figure



1 shows a subject sitting in front of the haptic interface system with
the virtual environment displayed on the monitor. The virtual envi-
ronment display includes a pair of targets and the two-mass system.
Among a target pair, one target is the active target, which is dis-
played in green. The other is the inactive target, displayed in red.
After m2 contacts the active (green) target, the targets change to
indicate that the inactive target (red) is now active.

Figure 2 illustrates the two target pairs that are utilized in the
experiments. They are referred to as follows: Positive Slope (P)
and Negative Slope (N). These sloped orientations were selected
because previous studies indicated that there was a significant dif-
ference in performance of the task with horizontal and vertical tar-
get orientations [14]. Each of the targets in a pair was equidistant
from the origin. Therefore, the subjects needed to move the joy-
stick (coupled to the location ofm1) rhythmically, either along the
positive or negative sloped paths, to causem2 to alternately hit the
target pair.
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Figure 2: Graphical display of tapping experiment. Subjects con-
trol location of m1 in order to cause m2 to hit the desired target.
Targets appear in pairs (N: negative slope; P: positive slope). Inset
shows virtual underactuated system. The user controls the system
by applying forces to mass m1 through a joystick based interface.

3 HAPTIC ASSISTANCE - SHARED CONTROL

The goal of the experiments was to investigate the underlying mech-
anism of shared control with error reduction for training of the task
described in Section 2. The haptic assistance is provided by addi-
tional forces displayed to the subjects via the force feedback joy-
stick. The shared control paradigm for haptic assistance represents
active intervention.

Shared control is an active assistance that depends on the dy-
namic system that the subject is controlling. For the task described
in this paper, assistance in the form of a shared controller applies
forces to the user that are a function of the desired motion of the
entire virtual system and the parameters that govern the system’s
dynamic behavior. The shared controller implemented in this work
reduces the difficulty of the task by altering the dynamics of the
controlled system to help suppress the motion of the disk normal to
the target axis.

Specifically, the shared controller applies forces to decrease per-
pendicular deviations from the preferred trajectory, forcing the mo-
tion of m2 to stay along the active target axis. Effectively, the action
of the shared controller is to feed the constraint forces to be imposed
on m2 to m1 (hence to the subject) via the inverse dynamics of the
dual mass-spring-damper system. Details of implementation of this
shared controller can be found in [15].

4 EXPERIMENTAL DETAILS

Twelve subjects (2 female, 10 male, ages 22-28), primarily graduate
students in engineering, participated in the experiments. These sub-
jects were divided into three different groups, each group with four
subjects. GroupN is referred to as the no assistance group (control
group) that receives no haptic assistance during training portion of
the manual control task. Subjects in GroupScalled strategy group
receive shared control as active assistance during roughly the first
25% of each training portion. Subjects in GroupA, shared control
group, receive shared control for assistance for the duration of each
training portion of the session.

The hypothesis we proposed is as follows: Shared control during
manual task training serves to demonstrate a preferred strategy that
subjects are able to adopt. This is the underlying learning mecha-
nism of shared control.

If this hypothesis holds, we would expect the strategy group (S)
to outperform both the shared control (A) and no assistance (N)
groups during baseline measurements. These baseline measure-
ments are administered before and after each training portion to
assess user performance of the task in an unassisted mode (see Fig-
ure 3). Better performance than no assistance (N) group is expected
since strategy (S) group gets the benefit of demonstration of a pre-
ferred strategy for task completion. Better performance than shared
control (A) group is expected since strategy (S) group has more
time to interact with the baseline (unassisted) system dynamics.
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1 2 3 4 5 6 7 8 9 10 11 12 1413
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A

trials

14 trials 14 trials 14 trials

Shared Control

No Assistance

Pre-training

   Baseline
Training Post-training
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Figure 3: Schematic representation of the training sessions design for
the experiment. Each training session contains three portions: pre-
training baseline, training, and post-training baseline. During each
training session the no assistance (N) group receives no assistance
whereas the strategy (S) group is provided with shared control assis-
tance in the first 4 trials over 14 trials of the training portion and the
shared control (A) group is provided with shared control assistance
throughout all 14 trials of the training portion.

The experiment includes an evaluation session, nine training ses-
sions, and a retention session. In order to control individual differ-
ences in performance across subjects, each subject performed the
task during an evaluation session, administered without haptic as-
sistance. The purpose of the evaluation session was to group the
subjects based on their initial performance of the task. Before the
evaluation session, subjects are given a maximum of five minutes
to become familiar with the haptic joystick and the virtual envi-
ronment. After this introductory period, all subjects complete an
identical evaluation session to determine initial performance. Dur-
ing the evaluation session, the three sets of system parameters (see
Table 1) are presented randomly to the subject with ten repetitions,
for a total of 30 trials, each with duration of 20 seconds. Each



subject is scored based on the total number of target hits. These
subjects are then ranked according to the score, then divided into
quartiles by ranking. Subjects from each quartile are then randomly
assigned into the three groups (no assistance (N), strategy (S), and
shared control (A)) such that the average score for three groups are
roughly equivalent at the start of training.

All groups completed nine training sessions, each training ses-
sion containing three portions: pre-training baseline, training, and
post-training baseline. Moreover, each training portion consists of
14 trials as shown in Figure 3. The no assistance (N) group serves
as the control set and no haptic assistance was provided during the
training portion. The “no assistance” case is akin to practice. In
this interaction mode, subjects feel the forces generated solely due
to the internal dynamics of the system. In contrast, for the shared
control case, subjects felt the forces due to both the internal dynam-
ics of the system and the augmented forces intended to assist in task
completion during the training portion of the session. The strategy
(S) group is provided with shared control assistance in the first 4 tri-
als over 14 trials of the training portion whereas the shared control
(A) group is provided with shared control assistance throughout all
14 trials of the training portion.

In order to assess the improvement of subjects across the nine
training sessions, a baseline test, in which no assistance was ap-
plied, was completed before and after each training portion. For
each baseline test, subjects completed 14 trials, all in no assis-
tance mode. A training portion and its corresponding pre- and post-
training baseline tests took place in a single sitting. The nine train-
ing sessions were separated by two to three days, such that subjects
completed all sessions in no less than three but no more than four
weeks.

One month after the final training session, all subjects completed
one retention session. In the retention session, no haptic assistance
was provided; subjects felt only the interaction forces between the
two masses. The retention session was conducted identical to the
evaluation session, with thirty trials of twenty seconds each, and
each system parameter set presented ten times in random order to
the subject.

5 RESULTS

Figure 4 presents trajectories of massm2 at the first and the last trial
of training sessions for a typical subject. Subjects adapt a preferred
strategy where their trajectories converge to a straight-line path be-
tween targets. All the subjects except one subject in no assistance
group show a similar trend, which implies that they adapt to the
preferred strategy by the end of the training course.

Figure 4: Trajectories of mass m2 for a typical subject. The figure
on left presents the trajectory during the first trial and the figure on
the right depicts the trajectories during last trial of training sessions.

Two performance measures are used to assess subject perfor-
mance of the target-hitting task. These measures are the total target

hit count and average error. Specifically, hit count is the total num-
ber of target hits within one twenty-second trial. The average error
is the average of the position deviation of the massm2 from the tar-
get axis. This average error measure is dependent on the strategy
adopted by the user.

Figures 5-7 show the experiment results in terms of hit count
for pre-training baseline (Fig. 5), training portion (Fig. 6), and
post-training baseline (Fig. 7). The error bars indicate the standard
errors for the results. In the following figuresA stands for shared
control group,N for no assistance group, andS for strategy group.
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Figure 5: Pre-training baseline hit count for different groups over
eleven sessions (including the evaluation session (session #1), nine
training sessions (sessions #2-10) and the retention session (session
#11)). Group A represents the shared control group, N is the no
assistance group, and S is the strategy group, which receives shared
control for assistance for the first quarter of each training session.

In Figure 5, pre-training baseline hit counts for different groups
over eleven sessions including the evaluation session (session #1),
nine training sessions (sessions #2-10), and the retention session
(session #11) are shown. As can be seen from the evaluation ses-
sion, all three groups starts at approximately the same performance
level in terms of hit count. Figures 6 and 7 show the hit counts for
different groups over nine training sessions for the training portion
and post-training baseline, respectively. During these nine training
sessions, subject performance continues to improve. The retention
data in Figure 5 shows that learning continues even one month after
the last training session. The learning effect at the end of the exper-
iment is significant, starting from approximately five hits per trial
and improving to sixteen hits in the retention session.
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Figure 6: Training portion hit count for different groups over nine
training sessions (sessions #2-10). Shared control (A) group outper-
forms no assistance (N) and strategy (S) groups during training.

Figures 8 to 10 are analogous to Figures 5 to 7 with performance
results given in terms of the average error measurements. Since the
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Figure 7: Post-training baseline hit count for different groups over
nine training sessions (session #2-10). Shared control (A) and no
assistance (N) groups outperform strategy (S) group.

score used in evaluation session to group subjects is based on the
hit count instead of average error, the starting average error for the
three groups is different. The no assistance group need not show a
learning trend in this metric since this average error measure is de-
pendent on the preferred strategy. However, the results suggest that
most of the subjects in no assistance group improved in this metric
as can be seen in Figures 8 to 10. There is one particular subject,
calledN1, who failed to adapt to the preferred strategy.N1 uses a
strategy that manipulates the joystick elliptically to achieve target
hitting. The performance of this subject is noticeably different from
others in both measures (hit count and error). SubjectN1’s hit count
and average error measurement remain nearly constant throughout
entire training course. Due to this alternate strategy adopted byN1,
the learning curve for the average error measure of the no assis-
tance groupN does not show any improvement and contains rela-
tively large error bars. To remove the effects ofN1 on the average
measure performance of the non-assistant group, Figures 8 to 10
include plots for the non-assistant whenN1 is ruled out, depicted as
N′.
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Figure 8: Pre-training baseline average error for different groups over
eleven sessions (the evaluation session (session #1), nine training
session (sessions #2-10), retention session (session #11)). Group A
represents the shared control group, N is the no assistance group, and
S is the strategy group, and N’ is the no assistance group without
subject N1’s data.

The baseline performance measured by both the hit count and av-
erage error shows that the shared control (A) group outperforms the
strategy (S) group. When the results for subjectN1 are excluded,
the shared control (A) group exhibits similar performance as the no
assistance (N) group in terms of hit count and average error. Ad-
ditionally, the no assistance (N) group demonstrates better perfor-
mance than strategy (S) group both in hit count and average error.
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Figure 9: Training portion average error for different groups over
nine training sessions (sessions #2-10). Shared control (A) group
outperforms strategy (S) and no assistance without N1 (N’) groups
during training.

0

.05

.1

.15

.2

.25

2 3 4 5 6 7 8 9 10

A N S N'

A
v

e
ra

g
e

 E
rr

o
r

Session

Figure 10: Post-training baseline average error for different groups
over nine training sessions (sessions #2-10). Shared control (A) and
no assistance without N1 (N’) groups outperform strategy (S) group.

A repeated measures Analysis of Variance (ANOVA) was carried
out for the experimental results, and included F-test contrasts that
are constructed simultaneously in order to evaluate a set of custom
hypotheses regarding the main effects. These contrasts also control
for experiment-wise error rate, whereas independent t-tests do not.
Two-way interactions were analyzed, with significant interactions
for the following combinations: the effect between no assistance
(N) group and strategy (S) group is significant, p = 0.0081 and p
= 0.0241. However, the P value based on average error indicates
that although shared control (A) group and no assistance (N) group
have the same hit count performance, the average error effect be-
tween these two groups are significant, p = 0.0087 for pre-training
baseline and p< 0.0001 for post-training baseline.

6 DISCUSSION

The experimental results with hit count as the performance measure
show that the performance of shared control (A) group and strategy
(S) group are significantly different (p = 0.0766) for post-training
baseline. Additionally, the shared control (A) group has better per-
formance than strategy (S) group in terms of hit count. This result
contradicts the hypothesis proposed in Section 4. The differences
between these two groups indicate that the subjects learn this man-
ual control task not simply through demonstration of the preferred
strategy in the early training portion of the experiment.

Moreover, the statistical analysis based on average error shows
that shared control (A) group and strategy (S) group are not sig-
nificantly different (p = 0.9883) for post-training baseline, which
indicates that both of these groups adapt the preferred strategy
demonstrated by the shared controller. Since both of these groups
adapt the preferred strategy but exhibit different performance in hit
count, learning strategy alone is not necessarily the main mecha-



nism of motor skill acquisition for this manual control task. How-
ever, demonstration of strategy might have a beneficial effect on
task learning. The subjectN1 in no assistance (N) group was never
exposed to the preferred strategy and never adopted it. This subject
(N1) gained no improvement in performance throughout training
although improvements with alternative strategies are possible.

Furthermore, the performance of shared control (A) group is bet-
ter than strategy (S) group. The only difference in assistance for
these two groups lies in the percentage of exposure to shared con-
trol during the training portion. Therefore, the dose of shared con-
trol is an important factor for training. The trends in the learning
curves indicate that improvement in both shared control (A) and
strategy (S) groups are similar at the early stages of training. How-
ever, at a certain point in training, the learning curves start to di-
verge from each other reaching different performance levels at the
end of training. These results suggest that there exists an optimal
dose to deliver shared control. In our further studies, we will pursue
an adaptive shared controller based on subject performance.

The results also demonstrate that strategy (S) group is signifi-
cantly different from no assistance (N) group (p = 0.0241), with
the no assistance (N) group outperforming the strategy (S) group.
This is quite interesting, since the only difference between these
two groups is that strategy group had exposure of shared control
with only 4 trials over 42 trials per session. Yet the small differ-
ence in exposure of shared control results in significantly different
performance. In contrast to the strategy (S) group, the shared con-
trol (A) group exhibits no significant difference with no assistance
(N) group in terms of hit count. The interaction with secondary
dynamics while trying to learn primary dynamics might result in
interference or consolidation [21, 22]. The amount of exposure to
secondary dynamics is an important factor for these interactions.
Therefore, one possible explanation for poor performance of strat-
egy (S) group might be due to the fact that active assist in the first
four trials of the training session introduced interference, thereby
undermining the performance in the baseline tests. The interfer-
ence effect seems to be non-existent in shared control (A) group.

The performance of shared control (A) group is not significantly
different from the no assistance (N) group, which might be at-
tributed to the simplicity of the manual control task. Facilitating
learning by reducing task complexity is valuable only for complex
tasks [18]. A more complex task is required to emphasize the ben-
efits of shared control with error reduction, which will be pursued
by the authors in the future.

7 CONCLUSION

An experiment was presented to investigate the underlying learn-
ing mechanism by which shared control with error reduction im-
proves training effectiveness for dynamic manual control tasks in
virtual environments. Three training protocols were utilized to test
the hypothesis that learning mechanism of shared control with error
reduction is through demonstration of the preferred strategy in the
early phases of training. The three protocols included practice in the
haptic virtual environment (no assistance), training with haptic as-
sistance (shared control) throughout all sessions, and training with
haptic assistance for the first quarter of each training session as a
means of demonstrating a preferred strategy while still allowing for
unassisted practice of the task. The experimental results indicate
that learning strategy alone is not the main mechanism of motor
skill acquisition for this task, and all the benefits of shared control
in training cannot be incorporated into strategy demonstration.
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