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ABSTRACT

During training and rehabilitation with haptic devices, it is often
necessary to simultaneously present force cues arising from dif-
ferent haptic models (such as guidance cues and environmental
forces). Multiple force cues are typically summed to produce a sin-
gle output force, which conveys only relative information about the
original force cues and may not be useful to trainees. Two force co-
presentation paradigms are proposed as potential solutions to this
problem: temporal separation of force cues, where one type of force
is overlaid with the other in staggered pulses, and spatial separation,
where the forces are presented via multiple haptic devices. A gen-
eralized model for separating task and guidance forces in a virtual
environment is also proposed. In a pilot study where sixteen par-
ticipants were trained in a dynamic target-hitting task using these
co-presentation paradigms, simple summation was in fact most ef-
fective at eliciting skill transfer in most respects. Spatial separation
imposed the lowest overall workload on participants, however, and
might thus be more appropriate than summation in tasks with other
significant physical or mental demands. Temporal separation was
relatively inferior at eliciting skill transfer, but it is hypothesized
that this paradigm would have performed considerably better in a
non-rhythmic task, and the need for further research is indicated.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O

1 INTRODUCTION

One of the many benefits of training in haptic-enabled virtual en-
vironments is that movements can be monitored and shaped in real
time via the use of perceptual overlays. For instance, Rosenberg
proposed the use of virtual fixtures that passively prevent partici-
pants from entering forbidden regions of a work environment and
could be used to constrain a novice learner’s motions to an optimal
trajectory [1]. Gillespie et al. proposed the use of a virtual teacher,
a more active form of guidance that instructs novices to perform dy-
namic tasks by giving them shared control of a task with a virtual
expert [2]. O’Malley et al. showed that such shared-control systems
were as effective as virtual fixtures at facilitating skill transfer [3].
Any time that such perceptual overlays are used, there are two prin-
cipal types of forces that a novice will experience. “Task” forces
arise from interactions with the virtual environment, and might con-
sist of reaction forces generated by collisions with virtual objects
or dynamic forces arising from the manipulation of massive ob-
jects. “Guidance” forces are generated by the perceptual overlay,
and might be used to constrain a novice to some optimal trajectory
or prevent him or her from entering dangerous or forbidden regions
of the environment. This presents a problem: how is it possible to
display both of these types of forces to a user simultaneously?
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Figure 1: A participant performing an evaluation trial in a pilot study.
Note that screen objects have been enlarged 10x for illustrative pur-
poses.

The model of a virtual teacher proposed by Gillespie et al. repli-
cates real-world teaching methods in order to facilitate skill transfer
and reconcile this problem. He presents the example of a tennis ex-
pert teaching a novice how to swing a racket using hands-on demon-
stration. There are three ways that this demonstration could occur.
In an “indirect contact” paradigm, the expert and the novice grasp
the racket in different locations and perform the swing together. In
a “double contact” paradigm, the novice grasps the racket while the
expert grasps the novice’s hand and guides the novice through the
swing. In a “single contact” paradigm, the expert grasps the racket
and the novice grasps the expert’s hand. In the indirect and single
contact paradigms, the task forces (those generated by the dynamics
of the tennis racket) are simply summed with the guidance forces
(those generated by the expert exerting control over the racket). In
the double contact paradigm, the forces are separated spatially, with
task forces being applied to the novice’s palm and guidance forces
to the back of his or her hand. Gillespie et al. hypothesized that this
double contact paradigm would be the most effective at eliciting
skill transfer, because it passes the greatest amount of haptic infor-
mation to the novice and allows the novice to easily discriminate
between guidance and task forces [2]. However, they were not able
to conclusively determine whether this paradigm was indeed better
than the others.

While replicating a real-world teacher is an elegant and intuitive
approach to creating a virtual teacher, the utility of the double con-
tact paradigm is limited to cases where the physical constraints of
the task being taught allow for this specific type of spatial separa-
tion of forces. Presenting forces in this manner effectively requires
haptic devices with up to twice as many degrees of actuation and
significantly higher complexity. In some cases, presenting forces
in this manner may simply not be possible given the physical con-
straints of the task. Providing guidance and task feedback via sepa-
rate but identical haptic devices might be a more feasible solution.



This method of spatial separation is tested in this study.
The indirect and single contact paradigms are much simpler and

less costly to implement from a physical standpoint, but lack the
separation of forces provided by the double contact paradigm. The
logical solution to this problem is try to separate the force cues tem-
porally rather than spatially. Endo et al. proposed a method of tem-
poral separation where a task force is periodically supplemented by
a guidance force, and used this method to train participants to grip
a virtual object using proper grasping forces and fingertip place-
ments [4].

In a pilot study, these three co-presentation paradigms (summa-
tion, temporal separation, and spatial separation of forces) were im-
plemented in a training environment and tested against each other
as well as against a control condition as described in the following
sections.

2 METHODS

2.1 Task description

The target-hitting task used in this experiment was based largely on
a task originally used by O’Malley and Gupta [3, 5]. Participants
controlled the position of an on-screen pointer using a 2-DOF hap-
tic joystick (Immersion, Inc.’s IE2000), as shown in Figure 1. This
was connected to a 5kg mass by a spring with 100N/m stiffness,
3Ns/m damping, and the equation of motion F = mẍ+bẋ+ cx, as
shown in Figure 2. Thus, participants could control the position of
the mass only indirectly. Two targets were positioned equidistant
from the center of the screen and at a 45◦ angle to the horizon-
tal. At any given time, one target was inactive (blue) and the other
active (orange). The active target could only be “hit” by the swing-
ing mass, at which point the opposite target would become active.
Each task trial was 20 seconds long, and the general goal was to hit
as many targets as possible in this time-frame. Thus, by moving the
pointer at the resonant frequency of the system (0.71Hz) along a
straight line connecting the targets participants could achieve the
highest hit-count possible (approximately 28 hits). The physics
and haptics were rendered in C++ and updated at the servo rate
of 1000Hz, the visual display was rendered by OpenGL at a rate of
60Hz, and experimental data was recorded at 100Hz.

During training, participants shared control of this system with
a virtual expert, represented on-screen by an orange pointer that
tracked the optimal trajectory (a straight-line path between the tar-
gets at a frequency of 0.71 Hz). The participant and expert shared
control of the system via a massless proxy. This proxy was posi-
tioned exactly half-way between the novice and expert at all times,
and was in turn connected to the mass. Force information was trans-
mitted unilaterally from the expert to the proxy - thus, novices’
movements had no effect on the expert’s trajectory. This setup al-
lowed for the discrimination of guidance forces, which arose from
the link between the participant and the proxy, and task forces,
which arose from the link between the proxy and the mass.

2.2 Guidance methods

During training, each group of participants received haptic feed-
back in one of the following manners:

1. No guidance - Only task forces were displayed. Thus, partic-
ipants could track the expert visually on-screen but received
no haptic indication of his position. This served as the control
condition.

2. Summation - Task forces and guidance forces were combined
by simple summation and presented via a single joystick. The
two types of forces were scaled so as to each have a peak
magnitude of about half of the maximum force output level of
the joystick.
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Figure 2: Diagram illustrating the task layout and dynamic models
for evaluation and training trials. Participants control a pointer that is
linked to a mass-spring-damper system and try to guide the mass to
alternating targets. In evaluation trials, a simple spring and damper
link the mass and the novice. In training trials, a series of “direc-
tional” spring and damper systems link the novice, expert, proxy, and
mass, where arrows indicate the directions of force transfer. The ex-
pert follows the optimal trajectory irrespective of what is happening
elsewhere in the system. The proxy’s position is influenced equally
by the expert and the novice. The novice receives guidance force
FG proportional to displacement from the proxy and task forces FT
proportional to the separation between the proxy and mass.

3. Temporal separation - Task forces were displayed at all
times, and guidance forces were overlaid in 100ms sinusoidal
pulses at a frequency of 2Hz (the optimal frequency and ratio
as experimentally derived by Endo et al.). Participants de-
scribed these guidance forces as “pulsating” and interpreted
them as nudges or resistance that indicated the direction that
they should be moving. The pulses were not frequent enough
or large enough in magnitude to exert significant control over
the task; thus, this mode prevented participants from becom-
ing reliant on guidance forces, a problem described by Li et
al. [6].

4. Spatial separation - Participants in this group used two joy-
sticks during the experiment. Participants controlled the sys-
tem using the primary joystick, onto which only task forces
were displayed. Guidance forces were displayed on the sec-
ondary joystick so that its trajectory matched that of the ex-
pert’s, also visible on-screen. Participants were instructed to
lightly grasp this joystick with their non-dominant hand and to
replicate the movements displayed there on the primary joy-
stick. This allowed participants to intuitively mimic the ex-
pert’s trajectory while still experiencing undistorted task dy-
namics. This paradigm also shares with temporal separation
the advantage of forcing the participant to take control of the
task and not rely on the expert to do any “heavy lifting”.

2.3 Procedure

Participants performed the task over the course of 10 sessions on
consecutive days, with each session consisting of 30 trials and thus
taking 10-15 minutes. The experiment was broken up in this man-
ner in order to combat fatigue and accelerate learning. This con-
figuration of sessions was determined to elicit the fastest training
in a pre-pilot study as compared to fewer sessions of greater length
or more sessions of shorter length. Each session consisted of five
evaluation trials (“pre-evaluation” trials), then twenty training tri-
als, and finally five more evaluation trials (“post-evaluation” trials).



In evaluation trials, participants had sole control over the sys-
tem via a single joystick and were instructed to hit as many targets
as possible in the limited time-frame. The expert was not present
or visible in any way, and thus the only haptic feedback was from
the task dynamics. During training trials, the virtual expert and
each participant shared control of the system under one of the ex-
perimental conditions, and participants were instructed to track the
expert as closely as possible. In order to encourage participants to
perform to the best of their ability and follow these instructions,
gift cards were awarded to the participants that best achieved each
of these goals. Participants were allowed a one-minute familiariza-
tion trial before the first session. During this trial, targets were an
order of magnitude larger than in normal trials and were randomly
located on the screen. This allowed participants to become familiar
with the task without developing any significant task-specific skills.

At the end of each session participants also reported their per-
ceived workload during the task by completing the NASA TLX
questionnaire [7]. This questionnaire allows participants to rate
their perceived workload on six different sub-scales: mental de-
mand, physical demand, temporal demand, performance, effort, and
frustration. It then lets them weight the contributions of each type
of workload to the overall workload, and uses this information to
compute a weighted average of the overall workload.

2.4 Data collection and analysis
For each trial, participants’ performances were defined as their
achieved hit count and average trajectory error. Trajectory error
was defined as the mean absolute deviation from the straight-line
path connecting each target. Thus, lower values of trajectory error
indicate closer adherence to the optimal trajectory. Other perfor-
mance metrics such as excitation frequency and work performed
were considered but did not produce reliable results.

In order to analyze the data and compare performance between
groups, each group’s performance during evaluation trials was fit to
the exponential learning model described below and given by Equa-
tion 1. Using this model rather than comparing group performance
averages directly was necessary to overcome the inter-session vari-
ability of the data. This model also allowed for the prediction of
future performance beyond participants’ final sessions. This pre-
diction capability was necessary because many participants did not
reach their maximum performance potential, as evidenced by the
positive slope in many of their learning curves at session ten and
the fact that no participants approached the maximum theoretical
hit count. Curves were fit both to post-evaluation trials in each ses-
sion and to all evaluation trials in each session. Curves fit to pre-
evaluation trials in each session did not produce reliable results.
This is likely due to participants using these trials to reacquaint
themselves with the task each day.

The coefficients of this exponential model each have a particular
significance. The net amount of skill transfer is given by a. This
can be thought of as the difference between a group’s final potential
performance level and their performance level before starting train-
ing. Thus, higher values of a indicate more skill transfer. The rate
of learning is given by the time constant b. Lower values of b indi-
cate that a group reached their maximum performance potential in
a shorter period of time. This hypothetical maximum performance
potential, which is the performance level that a participant would
have reached given a large enough number of trials, is given by c.

y(t) =−ae−
t
b + c (1)

2.5 Participants
A total of 17 participants enrolled in this study. One participant
dropped out after his first session due to time constraints, and thus
his data is not included. This left 16 participants evenly divided
between the four experimental groups. All participants were males

between the ages of 18 and 39 with no significant visual or motor
impairments and no or little prior experience with virtual dynamic
target-hitting tasks. Two participants were left-handed, and all par-
ticipants controlled the task with their dominant or preferred hand.
All participants provided their informed consent as approved by the
Rice University Institutional Review Board.

3 RESULTS

Confidence intervals were constructed for each of these curve-fit
parameters for each group, as shown in Figures 3 and 4. The differ-
ence in parameter values in each potential pair of groups was tested
for statistical significance using two-tailed t-tests at α = .05. Sta-
tistically significant differences between groups were found when
considering hit count and trajectory error as performance measures,
as well as when comparing perceived workload.

3.1 Hit count
Considering post-evaluation trials alone, the temporal separation
group showed reliably less skill transfer in terms of a than either
the summation or spatial separation groups (p = .006 and p = .013,
respectively). Results suggest that the summation group had a
higher performance potential c than the spatial separation group
(p = .065).

Considering all evaluation trials, the temporal separation group
showed reliably less skill transfer in terms of a than the summa-
tion group (p = .049). The summation group also had a reliably
higher performance potential c than the control or temporal sepa-
ration groups (p = .032 and p = .045). Results suggest that the
summation group learned faster (had a lower b) than the spatial
separation group (p = .077).

3.2 Trajectory error
In post-evaluation trials, the temporal separation group showed re-
liably less skill transfer in terms of a than either the control or spa-
tial separation groups (p = .001 and p < .001), and results suggest
that temporal separation also produced less skill transfer than sum-
mation (p = .06). The summation group learned the task reliably
faster than the spatial separation group (p = .024), and results sug-
gest the summation group also learned faster than the control group
(p = .08).

Considering all evaluation trials, all groups reduced their tra-
jectory error faster than the spatial separation group (p = .014,
p = .002, and p = .002). The summation group also had lower
final trajectory error than the temporal separation group (p = .022).

3.3 Perceived workload
Groups trained using spatial separation reported a reliably lower
overall workload than all other groups (p = .004 against con-
trol, p < .001 against summation, and p = .026 against temporal
separation). They also reported reliably lower physical workload
(p < .001 in all cases!) The control group reported reliably lower
temporal demand than all other groups (p = .021, p = .023, and
p = .041). The summation group reported reliably less frustration
than any other group (p < .001, p = .003, and p = .047).

4 DISCUSSION

In terms of hit count, results indicate that temporal separation elicits
relatively little skill transfer and summation elicits a relatively high
performance potential. These results are internally consistent when
considering post-evaluation trials and all evaluation trials together.
In terms of trajectory error, temporal separation elicited relatively
little skill transfer, and spatial separation elicited relatively slow
skill transfer, especially compared to summation.

The workload measures also produced some very compelling re-
sults. Spatial separation reduced the overall and physical work-
load experienced by participants during the task. This indicates that
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Figure 3: Hit count improvement amount, improvement rate, and final
value by co-presentation paradigm in post-evaluation trials. Lines
indicate 95% confidence intervals.

there might be a significant reason to prefer this paradigm in situa-
tions that demand physical and mental resources for other tasks, or
in prolonged tasks that might lead to physical fatigue.

The fact that temporal separation seems inferior to other
paradigms in almost all respects is most likely due to the rhythmic
nature of the task. While there is an optimal excitation frequency
and a clearly defined optimal path that minimizes trajectory error,
the initial conditions of the task will produce optimal trajectories
that are out of phase with each other in time. In other words, while
it is true that following the expert precisely would elicit the highest
hit count in the task, following the expert is not a necessary con-
dition for achieving the highest hit count. It is entirely possible to
follow the expert at a phase lag and still achieve the maximum hit
count. In fact, in the summation condition, guidance forces and
task forces are actually equal and opposite when the novice is out
of phase with the expert by a certain amount. This might explain
why the summation group reported the least amount of frustration
during the task - they could actually complete training by being
considerably more passive than other groups. By contrast, the tem-
poral separation group reported that they found the assistance from
the virtual expert to be pervasive and annoying even during later
sessions, confirming that participants were likely performing the
task out of phase with the expert. It follows that results might be
very different in a non-rhythmic task. This indicates a significant
need for further investigation into the relative merits of each of these
co-presentation paradigms.

5 CONCLUSIONS

We have shown that for a rhythmic task, a simple summation
paradigm is generally superior at co-presenting guidance and task
forces, while temporal separation is generally inferior. However,
we have also shown that the spatial separation paradigm might be
preferred for tasks with high mental or physical demands. These are
significant findings, as there are currently no published results di-
rectly comparing all three co-presentation paradigms for task train-
ing in a virtual environment. A generalized method of separating
task forces from guidance forces in a shared-control system using
a massless proxy was also proposed. Finally, we hypothesized that
temporal separation would fare much better in a non-rhythmic task
and established a need for further investigation.
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Figure 4: Trajectory error improvement amount, improvement rate,
and final value by co-presentation paradigm in post-evaluation trials.
Lines indicate 95% confidence intervals.
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