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Abstract

This paper introduces and validates quantitative performance measures for a rhyth-
mic target-hitting task. These performance measures are derived from a detailed
analysis of human performance during a month-long training experiment where par-
ticipants learned to operate a 2-DOF haptic interface in a virtual environment to
execute a manual control task. The motivation for the analysis presented in this
paper is to determine measures of participant performance that capture the key
skills of the task. This analysis of performance indicates that two quantitative mea-
sures—trajectory error and input frequency—capture the key skills of the target-
hitting task, as the results show a strong correlation between the performance mea-
sures and the task objective of maximizing target hits. The performance trends
were further explored by grouping the participants based on expertise and examin-
ing trends during training in terms of these measures. In future work, these mea-
sures will be used as inputs to a haptic guidance scheme that adjusts its control
gains based on a real-time assessment of human performance of the task. Such
guidance schemes will be incorporated into virtual training environments for hu-
mans to develop manual skills for domains such as surgery, physical therapy, and
sports.

1 Introduction

Virtual environment (VE) technology can provide reliable data acquisi-
tion, analysis, feedback, and evaluation for training of humans in motor skill
tasks, while simultaneously providing a low-cost and low-risk training plat-
form. The aim of any VE used for training is to reduce risk, improve and accel-
erate learning over traditional training schemes, and transfer what is learned in
the simulation environment to the equivalent or targeted real world task.
These virtual training environments (VTEs) are often designed either to pro-
vide a virtual practice (i.e., unaugmented) medium that matches the equivalent
physical medium as closely as possible, or to behave as a virtual assistant to im-
prove training effectiveness by providing augmented feedback or guidance
during training.

While numerous practice-only (unaugmented) VTEs have been developed
and analyzed, there exist only a limited number of published studies aimed at
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determining the efficacy of assistance-based VTEs. What
results do exist are inconclusive or contradictory, high-
lighting the need to carefully design and implement the
VTE assistance schemes. We noted in our own prior
augmented VTE experiments that, despite several refor-
mulations of the delivery of error reducing shared con-
trol, the performance of groups experiencing our haptic
guidance in addition to the visual and haptic feedback
of the task dynamics never exceeded that of groups that
merely practiced the task with visual and haptic feedback
in the absence of guidance (Li, Patoglu, & O’Malley,
2009). We hypothesize that there may be other skills
required for our target-hitting task that are not ad-
dressed by the error-reducing haptic guidance algo-
rithm. Therefore, in this paper, we analyze performance
data obtained from a nonguidance (practice alone) VTE
target-hitting task to uncover several skills that are re-
quired for successful task completion. We propose
expertise-based performance measures for these task
skills and analyze the correlations between three mea-
sures (trajectory error, input frequency, and smoothness
ratio) and the stated task objective of hitting as many
targets as possible in the allotted time.

Previous studies have shown that the addition of hap-
tic feedback to VEs can provide benefits over visual and
auditory displays for performance enhancement, reduc-
ing learning times, increasing dexterity, and increasing
the sensation of realism and presence (O’Malley &
Gupta, 2003; Sallnäs, Rassmus-Gröhn, & Sjöström,
2000; Griffiths & Gillespie, 2004; Jay, Stevens, Hub-
bold, & Glencross, 2008; and Emken & Reinkens-
meyer, 2005). To exploit the capabilities of virtual envi-
ronments with haptic feedback, various virtual training
schemes have been proposed. One scheme is to first
present the performance of an expert (human or ro-
botic) to a trainee via visual and haptic feedback, then
allow the trainee to practice the task unassisted (Henmi
& Yoshikawa, 1998). A second approach requires the
trainee to perform the task with enforced restrictions or
reductions of the degrees of freedom of the task as pro-
posed by Bernstein (1967) and more recently imple-
mented as virtual fixtures (Rosenberg, 1993; and Ab-
bott & Okamura, 2006). A third approach, termed
shared control in the literature, serves to modify the dy-

namics of the system by imposing a control effort that
elicits the desired behavior of the participant (O’Malley,
Gupta, Gen, & Li, 2006; Griffiths & Gillespie, 2004;
Emken & Reinkensmeyer). A comparative study of
these last two approaches performed by Srimathveer-
avalli, Gourishankar, and Kesavadas (2007) showed
slightly better performance from the shared control ap-
proach over the virtual fixture approach.

While these virtual training schemes have demon-
strated effectiveness in enabling improved task perfor-
mance, they have not yet conclusively demonstrated
effectiveness in accelerating developmental progression
(learning) or in increasing overall task performance after
a period of training. Sutherland et al. (2006), for exam-
ple, reviewed 30 studies utilizing simulation (or VTEs
in some form) for surgical training. In all 30 studies,
VTEs did not outperform traditional training schemes,
and in fact VTEs only outperformed control groups
who received no training at all. Similarly, for a simple
pick and place assembly task with a cognitive compo-
nent, Adams, Klowden, and Hannaford (2001) found
no significant learning benefit from training in a virtual
environment. Furthermore, in our manual target hitting
task, Li et al. (2009) showed how a haptic guidance
VTE designed in an ad hoc fashion resulted in negative
efficacy when compared with the unassisted practice of
the control group. In contrast, Morris, Tan, Barbagli,
Chang, and Salisbury (2007) found more accurate recall
of force profiles as a result of visual and haptic training
than from visual or haptic training alone, but noted that
the haptic feedback was novel for all participants. In
another experiment, Feygin, Keehner, and Tendick
(2002) compared visual and haptic feedback in the per-
formance of a 3D path following training task. They
found that while visual training was significantly better
for teaching the trajectory shape, dynamic aspects were
more effectively learned from haptic guidance. Feygin et
al. qualified their findings by stating that the experiment
was too short to arrive at conclusions about overall
training outcomes. Liu, Cramer, and Reinkensmeyer
(2006) demonstrated improved reproducibility of a
novel 3D path with haptic and visual guidance, but
gains were not retained a few trials after guidance was
removed. These findings were supported in later explo-
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rations of the effect of haptic guidance on training of a
steering task (Crespo & Reinkensmeyer, 2008). A com-
mon conclusion of Feygin’s and Morris’s work as well as
our own prior work is that the best types of guidance
are those that are tailored to present specific or key skills
related to the task. Furthermore, according to Todorov,
Shadmehr, and Bizzi (1997) and Adams et al. (2001),
the value of virtual training environments (VTEs) will
be realized when they are used for relatively complex
tasks rather than for simple tasks.

A common approach to transfer to the trainee an un-
derstanding of the key skills of tasks in VTEs has been
to “record” expert performance and then “play” this
performance back to the trainee via the haptic channel.
One classic example is the “virtual teacher” experiment
that tested the ability of a command input preshaping
technique to communicate the time-optimal strategy for
a manual task (Gillespie, O’Modhrain, Tang, Pham, &
Zaretzky, 1998). The results of the virtual teacher were
inconclusive, yet Gillespie et al. argued that the result
would have supported the approach if a primary skill of
the task had been demonstrated. Another example is the
haptic and visual playback of expert vertebral palpation
by Williams, Srivastava, Conatser, and Howell (2004)
where the trainee passively experiences the prerecorded
positions of a tactile examination. In another case, Ris-
sanen et al. (2007) proposed to use the skills of an ex-
pert explicitly in a VTE for the purpose of training force
exertion profiles. All of these examples provided to the
novice some form of assistance or guidance based on
expert performance, yet the expertise was not explicitly
defined. Furthermore, in the previous examples, the
researchers did not identify the primary components or
skills of the expert’s performance for representation in
their VTE, thereby assuming that regardless of the real-
ism of VTE, it would communicate the key skills to the
trainee. The identification of key skills required for the
task has been noted by Todorov et al. (1997) as an im-
portant first step in developing successful guidance
schemes.

In an effort to determine the key skills necessary for
success, some researchers have chosen to observe com-
plex tasks in which there are clear and significant differ-
ences between high performing experts and inexperi-

enced novices (Williams & Ericsson, 2005; Abernethy,
Thomas, & Thomas, 1993). There has been a prefer-
ence to study training domains that are closely related
to equivalent real world tasks such as surgery, sports,
music, and aviation. In practice, expertise is understood
to mean exceptional levels of performance in the task of
interest. In the surgical domain, Rosen, Hannaford,
Richards, and Sinanan (2001) analyzed expert and nov-
ice surgeon performance during a typical laparoscopic
procedure, finding significant differences between the
groups in 14 interaction types. In a survey of surgical
simulation for training, Gallagher et al. (2005) insisted
on the need to clearly define and categorize expert per-
formance for the purpose of establishing proficiency
criteria to evaluate surgery trainees objectively regardless
of the simulation used. Thus, the criteria for objectively
categorizing expertise may be as important as the degree
of realism of the VTE. In fact, Tzafestas, Birbas,
Koumpouros, and Christopoulos (2008) state that any
haptic surgical simulator must be assessed in two ways:
not only as a training tool but also as a skill assessment
tool. O’Toole et al. (1999) provided evidence that the
performance of two groups, experts with more than
1,000 procedures performed, and novices with no expe-
rience, could be differentiated using simulator metrics.
Other fields require similar objective measures of motor
skill performance such as flight training, sports, and
even rehabilitation (Lintern, Roscoe, Koonce, & Segal,
1990; Abernethy, Farrow, & Berry, 2003; Celik et al.,
2008).

Recognizing the need to base haptic guidance on key
skills required for the task at hand, we analyze the per-
formance of 17 participants in a month-long training
protocol for a rhythmic target-hitting task. The data
were collected as part of a prior study reported by Li et
al. (2009) where we compared two haptic guidance
schemes to nonguidance (practice alone) in order to
determine the efficacy of an error-reducing shared con-
troller (ERSC). The fixed-gain ERSC scheme showed
negative efficacy compared to nonguidance while the
strategy (or minimum guidance dosage) ERSC scheme
showed no significant difference compared to nonguid-
ance. These results call into question the validity of er-
ror-reduction as the sole basis of our haptic guidance
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paradigm for the target-hitting task. Our previous find-
ings motivate our current analysis to identify the key
skills of the target-hitting task in order to design a more
effective guidance scheme. In this paper, we identify
two key skills required to successfully execute the target-
hitting task and define performance measures for the
skills. Then we explore the correlations between the
measures and the task objective of maximizing target
hits. We then investigate whether experts (defined in
terms of hit count) are statistically significantly better at
the task over time when compared to novice and inter-
mediate performers using the new performance mea-
sures. We propose that the identification of the key skills
and the employment of related performance measures in
progressive guidance control schemes will accelerate and
improve training outcomes in VTEs.

This paper is organized as follows. The first part of
Section 2 revisits the methods used in the prior experi-
ment including the apparatus, task details, and experi-
mental procedure. The latter part of Section 2 defines
which nonguidance (practice alone) data from the prior
experiment is to be included in our study. Section 2 also
describes the data analysis and statistical analysis that we
conducted. The results are presented in Section 3. Sec-
tion 4 gives a discussion of the findings and contribu-
tions of this paper. Section 5 draws the conclusions of
this analysis.

2 Methods

In our prior work, we compared the performance
of haptic guidance in the form of an error-reducing
shared control (ERSC) scheme to nonguidance (prac-
tice alone; Li et al., 2009). In contrast, here we reana-
lyze the nonguidance data from the same experiment in
order to more fully understand how participants are
achieving their level of performance. Performance and
motion data were extracted and analyzed firstly to gain
insight into the strategies adopted by participants who
were adept at the task; and secondly to identify and
measure key skills required for task success. The follow-
ing sections review the relevant details of the experi-

ment previously reported, the data from which we rean-
alyze in this work.

2.1 Apparatus and Task Details

A haptic interface and computer monitor were
used to present a virtual target-hitting task to the partic-
ipants. The experimental setup shown in Figure 1(a)
included a force feedback joystick (Immersion IE2000)
and a 19 in LCD display with a 60 Hz graphics software
loop rate for visual feedback. The haptic control loop

Figure 1. (a) Experimental setup includes a force feedback joystick

and the graphical interface. (b) Schematic shows the target hitting

task and its coordinate frame as well as the modeled 4-DOF second

order dynamic system.
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ran at 1 kHz on a 2 GHz Pentium computer while posi-
tion and velocity data were captured and stored at 20
Hz. During the task, the typical wrist torque exerted by
the joystick motors was less than 1 Nm.

The dynamic second order manual task was modeled
as two point masses, m1 and m2, connected by a spring
and damper in parallel as shown in the inset of Figure
1(b). This two-mass system had four degrees of freedom
(DOF), namely the planar motion of each of the point
masses. It was, therefore, underactuated since the only
control inputs were the planar motion of m1. The task,
illustrated in Figure 1(b), was to manipulate the motion
of the point mass (m1) via the 2-DOF haptic joystick,
and thus indirectly, through the system dynamics, to
control the movements of the mass (m2) in order to hit
as many of the diagonally placed targets as possible dur-
ing each 20 s trial. Once a target was hit, the current
target became inactive and the opposite target became
active and so forth (see Figure 1[b]).

In order to increase task complexity, three system
parameter sets were presented to all participants
throughout all trials. Each parameter set includes a spe-
cific mass of m2, spring stiffness, and damping to pro-
vide unique resonant frequencies (fr), namely 1.00 Hz,
0.709 Hz, and 0.490 Hz. There was no information
about fr provided to the participants, hence they had to
identify the changes based on the behavior of the virtual
system (displayed via both the visual and haptic chan-
nels). There exists an upper bound to the target hit
count score (nhit) due both to the time limit for each
trial (20 s) and to the dynamics of the two-mass system.
As the excitation frequency exceeds the natural fre-
quency determined by the mass and stiffness of the vir-
tual system, the amplitude of m2 is attenuated relative to
the motion of the joystick m1, thereby requiring larger
displacements by the participant. The maximum perfor-
mance observed in the experiment was approximately
35 target hits per trial. Participant data analyzed in this
paper are well-distributed across the range of achievable
scores.

The two mass system is well suited for an experimen-
tal study of human performance enhancement and train-
ing with haptic assistance because haptic feedback, gen-
erated by the dynamic interactions of the two masses, is

necessary for the human to accurately control the mo-
tion of the system (O’Malley et al., 2006). Additionally,
the control of this system is sufficiently complex to re-
quire training (Todorov et al., 1997). In contrast, tasks
chosen by Yokokohji, Hollis, Kanade, Henmi, and Yo-
shikawa (1996) and Adams et al. (2001) as the basis for
testing virtual environment training were found to be
too simple to draw conclusions regarding the efficacy of
the virtual training environment.

2.2 Experimental Procedure

A training experiment was designed and con-
ducted utilizing the target-hitting task to acquire move-
ment and performance data for subsequent analysis. The
experiment was composed of 11 sessions, including an
initial evaluation session, nine training sessions, and one
retention session as illustrated in Figure 2. The training
sessions were spaced 48–120 hr apart and the retention

1 2 3 4 5 6 7 8 9 10 11 12 1413
N

1 2 3 4 5 6 7 8 9 10 11 12 1413
S

trials

14 trials 14 trials 14 trials

Pre-guidance
     Baseline

Guidance
 Subsession

Evaluation

Retention

Post-guidance
       Baseline

28 trials

Guidance Subsession

Session #1

Session #11

Sessions #2 - 10

14 trials

28 trials 14 trials

Analyses in this paper are based on 
data from last 14 trials of each Session

Figure 2. Schematic representation of the experiment procedure

shows one evaluation session, nine training sessions, and one retention

session. Each training session contains three subsessions of 14 trials

each: pre-guidance baseline, guidance, and post-guidance baseline.

The N group received no guidance throughout all subsessions. In Li’s

experiment (Li et al., 2009), the S group received guidance for only 4

of the 14 trials of the guidance session. This study does not include

any data from the guidance subsession; rather, it includes only the

nonguidance data from both the N and S groups in the 14 post-

guidance baseline trials. Figure adapted from Li et al.
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session was one month after the last training session.
Within each training session, there were three subses-
sions of 14 trials per session. The participants were al-
lowed breaks of up to 5 min between subsessions to
avoid fatigue. They were given the specific objective of
hitting as many targets as possible in each 20 s trial, but
no additional instructions were provided. A target hit
was registered whenever the center position of m2 was
detected to be within 4 mm of the target center.

2.3 Participants

In this study, participants’ data from the prior
study (Li et al., 2009) were analyzed to determine key
skills for the target-hitting task. In the experiment re-
ported in Li et al. (2009), we examined the effect of
different doses of haptic guidance provided to three
groups of participants: No Guidance (N group)—no
guidance throughout the entire experiment; Assisted (A
group)—error-reducing haptic guidance during all trials
of the guidance subsession of all of the training sessions;
and Strategy (S group)—error-reducing haptic guidance
provided during a fraction of the trials of the guidance
subsessions of all of the training sessions.

Because in this work we seek to analyze nonguidance
(practice alone) data that are unaffected by guidance, we
include data from the eight participants who did not
receive any form of haptic guidance but rather only
practiced the task (N group). We also include in this
study the data of the nine participants in the strategy
group (S group) for whom the data failed to show sig-
nificant differences from the nonguidance group (N
group), suggesting that the guidance scheme had no
effect on performance. For the strategy group (S
group), the guidance was active for only four of the 42
daily trials. Moreover, this analysis includes data from
only the last 14 trials of each session (which were with-
out guidance for all 17 participants) as shown in Figure
2. The other guidance group in the Li et al. (2009)
study (A group) received haptic guidance during all 14
trials of the guidance subsession and did exhibit signifi-
cant differences from the nonguidance group (N group)
even during the postguidance subsession. Therefore, the
participants from this assistance group (A group) were

not included in the analysis reported here to avoid con-
founding the results with the effects of guidance. Thus,
for this analysis, the data from all 17 participants was
without guidance. The 17 participants are subsequently
subdivided into three expertise groups based on their
performance in the first and last sessions: four experts,
nine intermediates, and four novices for a total of 17
participants. The participants were all undergraduate
students (ages 18 to 24 years old, five female, 12 male,
two left-handed), with no previous experience with hap-
tic devices. A university IRB approved form was used to
obtain informed written consent from all participants.

2.4 Data Analysis

Our objective is to determine a set of performance
measures that strongly correlate with the objective of
the task. We used hit count as the objective measure of
performance for the task throughout our previous
study, since participants were instructed to maximize
target hits in each 20 s trial. In order to compare perfor-
mance regardless of the virtual system parameters, the
total hit count per trial (count/Hz) is normalized by
the following equation:

nhit �
1
fr

� �hit count� (1)

Visual inspection of the participants’ data, presented
in several ways, leads to the definition of three perfor-
mance measures that capture the key skills for the tar-
get-hitting task: trajectory error, input frequency, and
smoothness ratio.

2.4.1 Trajectory Error. An initial inspection of
the data in the form of recorded participant movement
traces reveals some qualitative aspects for differentiation
of various behaviors demonstrated by the participants.
Figure 3 shows representative position traces from train-
ing in the task. Some participants, such as Participant A,
begin with erratic and slow motion, and continue to be
erratic throughout training. Others, such as Participant
B, begin erratically but, during training, learn to excite
the system along the target axis. Still others, such as
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Participant C, excite the system along the target axis
from the very beginning of training. These data empha-
size the need to follow the target axis to achieve a high
number of hits, and were the motivation for the error
reducing shared control (ERSC) algorithm. We previ-
ously reported that the ERSC algorithm uses a time-
independent error measure (Li et al., 2009) instead of a
time-dependent error measure as used in similar work
by Gillespie et al. (1998) and Patton and Mussa-Ivaldi
(2004).

Based on an inspection of Figure 3 and the recogni-
tion of the need to minimize deviations from the target
axis, we propose trajectory error as a performance mea-
sure for this task. We define trajectory error as the abso-
lute magnitude of the deviation from the target axis
(i.e., along the y axis, as shown in Figure 1[b]) of the
joystick position (m1) at each sampled instant summed
for the entire trial (n � 400 samples). Trajectory error is
expressed in units of millimeters. The target axis, shown
in Figure 1(b), is the diagonal line passing through both
targets and along the oriented x axis. Mathematically,

etraj � �
i�1

n

abs�yi� (2)

We choose to use the error of the joystick (m1) rather
than the manipulated mass (m2) because we are analyz-
ing the performance of the participant. Our prior analy-
sis reported by Li, Patoglu, and O’Malley (2006) also
used a trajectory error measure, but it was defined as the
RMS deviation of the trajectory of the mass (m2) from
the target axis. Other researchers have also used error
measures, including Celik et al. (2008) and Colombo et
al. (2005) who correlated robotic based error measures
of performance to the clinical stroke measures that ther-
apists have used.

2.4.2 Input Frequency. Because prior analysis
showed negative efficacy of the fixed-gain ERSC, we
question the validity of error reduction as the sole basis
for a successful guidance scheme (Li et al., 2009). Anal-
ysis of individual participant data for the target hitting
task reveals the need for additional measures of perfor-
mance that are time or state space dependent. There-
fore, we examine representative time-series plots of the
participants. Figure 4 shows traces of position versus
time for trial 10 of session 4 (approximately midway
through the training protocol) for three different partic-
ipants. The trajectory error (etraj) as previously discussed
is represented by the area from the zero reference to the
thin black line. The solid thick line is the position of the
mass m1 (system input) while the dashed line represents
the position of m2 (system output). Both are along the
x axis (as shown in Figure 1[b]). Figure 4(a) illustrates
the typical low performance of a participant who has yet
to learn the task with high etraj (22.9 mm) resulting in a
low nhit score (6 hits). The performance of another par-
ticipant in Figure 4(b) shows the ability to maintain low
etraj (14.7 mm). However, the participant achieves only
a moderate nhit score (16 hits) due to the apparent in-
ability to leverage the dynamics of the controlled system
and excite the system near its resonant frequency. In
contrast, the participant in Figure 4(c) shows good per-
formance by being able to maintain low etraj (5.55 mm)
as well as to provide a consistent input excitation fre-
quency of 95% of the resonant frequency, resulting in a
high nhit score (33 hits).

Based on the observation of the importance of input
excitation frequency, we propose input frequency (finput)

Session 1 Session 11

Participant A:
large error

throughout training

Participant B:
changes from large

to small error 
during training

Participant C:
small error 

throughout training

Figure 3. Sample traces for three typical participants shows varying

improvements and performance differences.
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as a measure of performance in a trial. In order to com-
pute finput, we take the Fast Fourier Transform (FFT) of
the x axis position data of the joystick, m1. The FFT
power spectrum is a convenient way to determine the
amplitude and frequency of the motion that is being
applied to a system and was used by Huang, Gillespie,
and Kuo (2007) in a similar task to quantify perfor-
mance. Figure 5 shows the frequency spectra of the
same three data sets (trial 10 of session 4) shown in Fig-
ure 4. Figure 5(a) shows a participant who is inconsis-
tently exciting the system and whose data shows wide

spectral variability. In contrast, Figure 5(b) shows the
data of a participant who is exciting the system in a fairly
consistent manner. Finally, Figure 5(c) shows a small
but very clear spike indicating that this participant is
exciting the system at only one frequency which is 95%
of the resonant frequency of the virtual two-mass sys-
tem. The challenge for the first participant is to increase
the input frequency to the system resonant frequency.
The participant must identify the resonant frequency
and then provide consistent input motion commands
near that frequency to the joystick m1 in order to
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achieve a significant increase in nhit score. For clarifica-
tion, even though the FFT plot is called a “power spec-
trum,” in this particular case it has units of mm2. Addi-
tionally, because Li’s experiment used three separate
parameter sets (Li et al., 2009), our definition includes a
normalizing coefficient. The equation for the second
performance measure finput is given in units of Hz/Hz
(dimensionless) as follows:

f input �
1
fr

� f �arg�max�FFT��� (3)

Therefore, exciting the system at the resonant frequency
will give a value of finput � 1(Hz/Hz) regardless of the
system parameter set.

2.4.3 Smoothness Ratio. After observing traces
and time series plots of participants, we plotted velocity
profiles to explore relationships between movement
smoothness and expertise. Flash and Hogan (1985)
showed that the tangential speed profile of the hand
during point-to-point reaching movements of healthy
participants can be well represented by an optimally
smooth speed profile that minimizes the jerk, the time
derivative of acceleration.

Later, the optimally smooth speed profile for a rhyth-
mic movement was given by Hogan and Sternad (2007)
as

vmj-rhythmic�t� � A�5
t

d2 � 10
t3

d4 � 5
t4

d5� (4)

where A is the amplitude of the movement, d is the du-
ration of the half-cycle movement, and t is time. The
full-cycle smooth speed profile can be accurately ap-
proximated by a sinusoid with appropriate amplitude
and frequency, and we have used this simplified version
in this study. For our target-hitting task, the smooth-
ness of the movement can be calculated for m2 on the x
axis (shown in Figure 1[a]), regardless of whether the
speed profile of m1 is smooth or not.

Dingwell, Mah, and Mussa-Ivaldi (2004) argued that
the smoothness of movement property was carried over
to the endpoint (or the object) while manipulating a
flexible object, by using a “minimum object crackle”

(crackle being the third time derivative of acceleration)
cost function. In contrast, Svinin, Goncharenko, Zhi-
Wei, and Hosoe (2006) argued that the smoothness of
the hand was still the important factor, even when mov-
ing flexible objects. Svinin et al. used a “minimum hand
jerk” cost function and carried the dynamic constraints
imposed by the object onto the hand. They demon-
strated that the profiles generated by using this cost
function would hold for multi-mass objects, whereas
speed profiles calculated by Dingwell’s model would not
be valid. In our task, we observed that object movement
smoothness was more important than the hand move-
ment smoothness in order to achieve high performance.
For example, a participant could utilize a ballistic strat-
egy that slings the second mass. This could generate a
high hit count without requiring smooth movements of
the hand. For this reason, we measured the smoothness
of movement of the object as in Dingwell et al. Our
work differs from both Svinin et al. and Dingwell et al.
in that our task does not require either the participant
hand or the object to stop at the target but rather pass
through the target. In other words, there is no outer
condition on the amplitude of the input or output.
Therefore, our task does not have a unique optimal so-
lution, and direct implications cannot be derived from
the work by Dingwell et al. or Svinin et al.

We define a smoothness ratio measure (rsmooth) using
the recorded state-space (position vs. velocity) trajectory
of m2 and an optimally smooth trajectory as shown in
Figure 6. A rhythmic movement in this state-space ap-
pears as an ellipse. There are many ways to compare two
ellipses, for example, the area between the two ellipses
can be considered as an error. The nature of the task at
hand, however, makes it possible to overshoot the tar-
gets, thereby causing a wider (greater amplitude) and
taller (higher velocity) ellipse than the optimally smooth
ellipse, while still being successful at the target hitting
task. Hence, we opt for a shape-wise comparison. The
smoothness ratio is defined as

rsmooth �
aactual/bactual

anominal/bnominal
(5)

where aactual and bactual represent the major and minor
axes of the average ellipse calculated from the recorded
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data by considering the points of intersection with the
axes (points of zero velocity and zero position). An initial
portion (1.75 s) of each 20 s trial is trimmed from the data
before calculating aactual and bactual. Then anominal and
bnominal are calculated from the optimally smooth rhythmic
movement that has a duration equal to the inverse of the
resonance frequency of the system (fr). When the sinusoid
approximation for the speed profile is used, the movement
amplitude does not need to be specifically defined, as it
gets canceled when calculating the ratio anominal/bnominal.
After the simplifications, this ratio becomes

anominal

bnominal
�

1
2�fr

. (6)

With this definition of rsmooth, the measure ap-
proaches unity as the state trajectory of m2 ap-
proaches an undistorted but scaled version of the op-
timally smooth ellipse. As it can be easily deduced
from Equations 5 and 6, rsmooth effectively becomes a
measure of the actual average movement period nor-
malized by the period of the movement at the reso-
nant frequency of the system. Therefore, it is ex-
pected that rsmooth will be highly correlated with
finput. Figure 6 shows the state trajectories for the
same trials (trial 10 of session 4) that were shown in
Figure 4 and in Figure 5. The smoothness ratio, as
previously discussed, is represented by the shape of

the state trajectory. Figure 6(a) illustrates the typical
low performance of a participant who has yet to learn
the task with a distorted state trajectory demonstrated
by a high rsmooth (3.480) and that has a low nhit score
(6 hits). The moderate performance of another par-
ticipant in Figure 6(b) demonstrates the participant’s
ability to maintain a fairly low rsmooth (1.606). The
low excitation velocity, however, produces only a
moderate nhit score (16 hits). In contrast, the partici-
pant in Figure 6(c) demonstrates an undistorted state
trajectory, thereby maintaining a low rsmooth (1.197)
score that results in a high nhit score (33 hits).

2.5 Expertise Analysis

We seek to identify and measure the key skills of
the manual target hitting task in order to improve the
design of guidance schemes that can be conveyed in a
virtual training environment (VTE). In order to iden-
tify the key skills, we investigate the differences be-
tween expert, intermediate, and novice performers in
a quantitative and systematic way. In lieu of a stan-
dardized method to determine a participant’s level of
expertise, and recognizing the broad range of defini-
tions for expertise in the literature (see the seminal
work by Fitts, 1964 and more recent work by Dreyfus
& Dreyfus, 1986), we use a statistical measure after
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Average state trajectory
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Figure 6. Actual, average, and optimally smooth state trajectories for the same three participants that were shown in Figure 4 and in Figure

5. All samples are again from Trial 10 of Session 4. (a) The state trajectory of a low performer that is inconsistent and nonsmooth. (b) The

state trajectory of a moderate performer that is fairly consistent yet demonstrates a velocity that is lower than the optimal. (c) The state

trajectory of a high performer that is consistent and demonstrates a velocity and displacement that is higher than the optimal velocity.
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the initial evaluation session to differentiate experts
from intermediates and novices in the virtual practice
VTE.

In order to determine the expertise of the partici-
pants, we analyze the number of target hits for each of
the 17 participants in the initial evaluation session as
shown in Figure 7. Any participant whose performance
was greater than one standard error above the mean of
all participants is deemed to be an expert (participant
IDs: N6, N7, N8, and S8 as designated by Li et al.,
2009). The remaining participants are considered nov-
ices or intermediates; those who performed worse than
one standard error above the mean.

In a similar way to how we define the expert group,
any participant with an nhit score less than one standard
error below the mean of all participants during the last
training session is considered a novice (participant IDs:
N1, S1, S4, and S9). Furthermore, those who perform
worse than one standard error above the mean in the
first session (to differentiate them from the experts) and
better than one standard deviation below the mean in
the last session (to differentiate them from the novices)
are called intermediate performers. Figure 8 shows the
distribution of performance for each participant, classi-
fied by their group assignment, at the end of the train-
ing protocol. Interestingly, the experts identified in Ses-

sion 1 are not necessarily achieving the highest nhit

scores in Session 11 but are intermixed with the inter-
mediate performers. The distribution of the 17 partici-
pants is four experts, nine intermediates, and four nov-
ices. These three groups (expert, intermediate, and novice)
are used as the basis for comparison to validate our selec-
tion of new performance measures for the target-hitting
task. Our group definitions are consistent with expertise
groups defined in the literature as follows.

● Expert One who is able to perform the task well
at the beginning of the training—also called mas-
ters, teachers, or autonomous performers in the
literature (Williams & Ericsson, 2005; Abernethy,
Neal, & Koning, 1994; Henmi & Yoshikawa, 1998;
Gallagher et al., 2005; Nistor, Allen, Dutson, Fa-
loutsos, & Carman, 2007; and Fitts & Posner,
1967).

● Novice One who performs the task in a superficial
way, doing poorly at the outset and only marginally
improving throughout training—also called begin-
ners, students, or cognitive learners in the literature
(Williams & Ericsson, 2005; Abernethy et al.,
1994; Henmi & Yoshikawa, 1998; Gallagher et al.,
2005; Nistor et al., 2007; and Fitts & Posner,
1967).

Figure 7. Performance in the initial evaluation session (prior to training)

of all participants shows designation of experts one standard error above

the mean. Novices and intermediates are both below one standard error

above the mean. Hit count is normalized by the natural frequency of the

system which varies as presented in this section.

Figure 8. Performance of all participants in the retention session

shows the designation of novices who performed worse than one

standard error below the mean. The intermediates, who performed

worse than one standard error above the mean in the evaluation

session, had performances that were intermixed with the experts in

the retention session.
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● Intermediate One who begins poorly but im-
proves rapidly early in training until he or she is as
good as, or better than, the expert—also called
competent, proficient, or associative learners in the
literature (Williams & Ericsson, 2005; Abernethy et
al., 1994; Gallagher et al., 2005; and Fitts & Pos-
ner, 1967).

3 Results

For all participants, values for each session for
both the objective measure of nhit and the performance
measures of etraj, finput, and rsmooth were determined by
averaging the scores of the last 14 trials of each session.
Thus, we have a total of 187 observations (17 partici-
pants and 11 sessions) for each measure. To compare
participant performance by level of expertise, a perfor-
mance group average score for each measure was deter-
mined from the participants’ session scores to give one
value per session per group. The data were fit with lin-
ear and exponential curves using MATLAB, and the
best fit curves were determined from the R2 values.
Analysis of variance (ANOVA) was used to determine
significance among groups.

3.1 Correlation of Performance
Measures

We first examined correlations between the task
objective, nhit, and the three performance measures in-
troduced in the preceding section, namely, etraj, finput,
and rsmooth. Figure 9 shows the relationships between
the four measures in four panels. A straight line is re-
gressed through the data points of each panel and the
equation as well as the correlation coefficient of each fit
are shown in each panel. First, there exists a strong cor-
relation between nhit and etraj, r(185) � �0.715, p �

.01, as well as between nhit and finput, r(185) � �0.754,
p � .01. Second, the correlation between finput and etraj is
significant (p � .01); however, the lower correlation coeffi-
cient, r(185) � �0.336, indicates that the two secondary
measures are only loosely correlated by a straight line func-
tion. A two-factor multiple regression (finput and etraj as

independent variables and nhit as the dependent variable)
indicates strong correlations, r(184) � 0.90, between the
independent and dependent variables. Both predictors are
significant (p � .01), but while finput is directly correlated
to nhit, etraj is inversely correlated to nhit. These correlations
suggest that both finput and etraj are important factors in
predicting the normalized hit count, and thus are indica-
tors of success in the completion of the primary task. Third
and finally, the correlation between finput and 1/rsmooth is
very strong, r(185) � �0.96, p � .01, suggesting as ex-
pected that these two measures can be used interchange-
ably. Values for rsmooth, therefore, are not reported in the
remainder of the results. An analysis of the correlations
between these measures confirms that, in order to achieve
a maximum number of target hits in our task, participants
must excite the virtual system close to its resonant fre-
quency (i.e., natural frequency) and, by extension, gener-
ate a smooth movement of mass m2 while keeping the
masses along the straight line joining the two targets.

3.2 Expertise Analysis

We analyzed the performance of all 17 participants
in terms of each performance measure to verify expected
trends during the training experiment.

Figure 10 shows the nhit scores as a function of ses-
sion for the three participant groups (experts, interme-
diates, and novices). Each data point is the nhit average
for a group at the corresponding session, with error bars
indicating standard error of the mean. Straight line and
exponential functions were fit to the data in order to
visualize learning effects as a function of sessions. A
summary of the curve fitting results, including estimated
parameters and correlation coefficients from goodness
of fit for each of the three groups of participants, are
shown in Table 1.

The experts initially had the highest nhit scores and
improved slowly until reaching a saturation level of ap-
proximately 37 hits (parameter c of the exponential
function, see Table 1). Intermediates began with signifi-
cantly lower nhit scores than the experts (parameter c �

a, p � .05, confidence intervals [18.9, 25.0] for experts
and [4.8, 11.4] for intermediates) and reached satura-
tion at a faster (but nonsignificant) rate compared to the
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experts (parameter b, confidence intervals [0.03, 0.33]
for experts and [0.28, 0.45] for intermediates). The
95% confidence bound for the saturation level of the
intermediates coincides with that of the experts (param-
eter c, p � .05, confidence intervals [31.9, 41.3] for
experts and [32.0, 34.3] for intermediates) indicating
that both groups reached the same performance level
toward the end of the experiment. Additionally, the in-
termediates reached 90% of the saturation level slightly
after the sixth session. The novices started with the low-
est nhit scores and improved linearly with significant
slope (parameter a, p � .05), hence failing to reach sat-
uration during the experiment.

The average etraj and finput are shown in Figure 11 and
Figure 12, respectively (results are averaged over the 11
sessions of the protocol). The error bars show the stan-
dard error of the group mean. Figure 11 shows decreas-
ing trends of the mean etraj while Figure 12 shows in-
creasing trends of the mean finput as training progressed.
Analysis of both the etraj and finput measures of perfor-
mance by group showed similar trends to the perfor-
mance by group in terms of nhit. In other words, nov-
ices had the worst performance, experts showed the best
performance, and the intermediates started out some-
where in the middle, yet achieved performance compa-
rable to the experts at some point during training.

Figure 9. Correlation plots between performance measures. (a, b) The strong correlations between both etraj and finput with respect to the

objective measure of nhit. (c) The loose correlation between etraj and finput, suggesting the measures are independent. (d) The correlation

between rsmooth and finput is very strong.
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Straight line and exponential curves were fit to the data,
with the details included in Table 1.

For etraj, data for the expert and intermediate partici-
pants exhibited exponentially increasing trends, while
the trends for novices were better characterized by a
straight line function. For finput, data for the experts and
novices showed linearly increasing trends, while inter-
mediates demonstrated exponential behavior.

Each performance measure was further analyzed using
a two-way ANOVA in order to highlight significant ef-
fects of the between-subject factors: group and session.
For all three performance measures, the main effects of
group and session were significant. For nhit, the effects
of group and session were significant, group: F(2,
154) � 180, p � .001; session: F(10, 154) � 41.4, p �

.001. For etraj, the effects of both group and session
were also significant, group: F(2,154) � 23.5, p �

.0001; session: F(10, 154) � 3.49, p � .0001. Finally,
for finput, the effects of both group and session were also
significant, group: F(2, 154) � 51.3, p � .001; session:
F(10, 154) � 7.97, p � .001. The interaction effect of
group and session was significant for nhit, F(20,154) �

2.03, p � .0086, but was not significant for either etraj,
F(20,154) � 1.36, p � .152, or finput, F(20,154) �

1.30, p � .190. The analysis indicates that the perfor-
mance measures were significantly different between
groups of varying expertise and that performance im-
proved along sessions.

4 Discussion

The performance analysis described in this paper is
motivated by a need to design haptic guidance control-
lers that convey key skills for a manual task in a virtual
training environment (VTE) protocol. Previous at-
tempts by our group to implement intuitively-designed
haptic guidance, such as the error-reducing shared con-
trol (ERSC) used by Li et al. (2009) and O’Malley et al.
(2006), have shown negative efficacy compared to non-
guidance (practice alone). We hypothesize that the
ERSC paradigm was ineffective because it failed to con-
vey all of the key skills required to successfully execute
the dynamic target-hitting task.

Participants’ motion trajectories during their unas-
sisted execution of the virtual target-hitting task were
analyzed in order to identify skills that are required for
successful task completion. Knowledge of key skills can
be used in the design of guidance paradigms intended
to improve the efficacy of training in virtual environ-
ments. The first key skill for our target-hitting task is
the minimization of the trajectory error. The second
skill is related to the excitation frequency of the system
input. We focused our analysis of performance on the
measured motion of m1 in our underactuated dynamic
system, which corresponds to the motion of the human
via the joystick, since we were interested in directly as-
sessing the participants’ movements and performance of
the task. Our trajectory error measure was based on the
motion of m1 relative to the target axis. Previously, we
analyzed the error of the output of the second order
dynamic system (Li et al., 2009). Such an analysis of
performance based on the trajectory is important for
tracking tasks such as those studied by Feygin et al.
(2002). Because of the dynamics of the system in our
target-hitting task, the motion of the output (m2) is
dynamically coupled to the motion of the input (m1),
and therefore similar decreasing trends are noted in the
trajectory error measure over the course of training. For
the input frequency measure described in this work,
again we base our calculations on the motion of m1,
which directly corresponds to the motion of the input
joystick and human participant. Others have focused on
input frequency as we have (e.g., Israr, Kapson, Patoglu,

Figure 10. Average nhit as a function of session for the three

groups of participants. Error bars indicate standard error of the mean.
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& O’Malley, 2009; and Huang, Gillespie, & Kuo,
2007). Conversely, some groups have approached the
measure of rhythmic task performance by analyzing the
smoothness of the system output. We have shown that
when the optimally smooth state space trajectory is de-
fined based on the resonant frequency of the system, a
shape-wise comparison between the actual trajectory
and the optimal trajectory results in a comparison of

average movement frequency with resonant frequency.
Hence, for rhythmic tasks, movement smoothness and
frequency measures are inherently closely related. In
fact, we have shown that they are highly correlated.

Performance measures that capture key skills for the
target-hitting task were introduced, namely etraj, finput,
and rsmooth. These measures were shown to correlate
well with the objective measure of nhit. In addition to

Table 1. Summary of the Curve Fitting Procedures for the Performance Measure Data of Each Group

Participant group Measure

Goodness of fit

DOF Function type Function expression R2 Parameters

Expert nhit 8 Exponential �ae-bx � c 0.95 a � 14.6, b � 0.18, c � 36.6
etraj 8 Exponential ae-bx � c 0.65 a � 3.60, b � 0.28, c � 8.18
finput 9 Straight line ax � b 0.68 a � 0.006, b � 0.93

Intermediate nhit 8 Exponential �ae-bx � c 0.99 a � 25, b � 0.37, c � 33.15
etraj 8 Exponential ae-bx � c 0.94 a � 16.4, b � 0.74, c � 10.6
finput 8 Exponential �ae-bx � c 0.99 a � 0.53, b � 0.42, c � 1.03

Novice nhit 9 Straight line ax � b 0.98 a � 1.81, b � 7.84
etraj 9 Straight line ax � b 0.88 a � �1.96, b � 30.0
finput 9 Straight line ax � b 0.96 a � 0.04, b � 0.47

Figure 11. Average etraj as a function of 11 sessions for three

groups of participants. Error bars indicate the standard error of the

mean. Expert and intermediate data are best fit by exponential

functions while novice data are best fit with a straight line function.

Figure 12. Average finput as a function of sessions for three groups

of participants (error bars indicate standard error of the mean).

Intermediate data are best fit with an exponential function; experts

and novices are best fit by straight line functions.
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finput, we conclude that the rsmooth measure, which de-
scribes the smoothness of a movement, is a measure of
the consistency and correctness of the input or the out-
put frequency for a rhythmic task using an underactu-
ated linear system. Thus, either measure (finput or
rsmooth) could be used successfully to determine perfor-
mance of the frequency skill related to this task. Either
measure might have certain benefits depending on ac-
cess to the input and output state variables, computa-
tion in real time or off-line, and types of disturbances in
the system. After verifying that the results reported in
terms of finput and 1/rsmooth were very strongly corre-
lated and almost identical, we chose to report our re-
sults only in terms of input frequency. Like finput, etraj is
desirable because it also is not task-specific like the ob-
jective measure of nhit. Additionally, while both finput

and etraj correlate strongly with nhit, they are poorly cor-
related with each other, suggesting their independence.

Finally, to investigate the learning effects of our
target-hitting task, we studied performance (measured
in terms of hit count, trajectory error, and input fre-
quency) versus training session for our 17 participants.
We categorized participants into three groups: expert,
intermediate, and novice based on their performance in
the objective task performance measure nhit at the be-
ginning and end of training. We investigated whether
experts (defined in terms of hit count) are significantly
better at the task over time when compared to interme-
diate and novice participants, even when using the new
performance measures. Our analysis found statistically
significant differences in performance between all three
expertise-based groups.

We have identified the key skills necessary to achieve
high numbers of target hits for the virtual target-hitting
task, and we have defined two independent performance
measures (trajectory error and input frequency) that
correlate strongly with target hit count. Our intent in
this work was to determine a set of performance mea-
sures that could be used to tune a haptic guidance
scheme. Such performance measures should be neces-
sary (independent from each other) and sufficient (com-
plete as a set) to capture the required skills. For this
task, we determined that two performance measures
were necessary to capture the skills necessary to achieve

high numbers of target hits in each trial. The correla-
tions of both measures to the number of target hits sug-
gest that trajectory error and input frequency measures
could be successfully employed as gains for a progres-
sively decreasing guidance controller that demonstrates
the key skills to the trainee, providing more assistance to
participants whose performance is poor, and less assis-
tance to participants whose performance is good. Be-
cause guidance schemes based on minimizing error and
tuning the excitation frequency would be based on the
analysis of key skills required for the target-hitting task,
it is expected that such schemes would outperform prior
approaches such as fixed-gain ERSC or virtual fixtures
(Li et al., 2009).

5 Conclusion

We propose that, employed in VTEs, haptic guid-
ance paradigms must be based on measurements of the
key skills that are critical to successful task completion.
The performance of participants completing a virtual
target-hitting task was analyzed to determine the key
skills necessary for success, measured by the number of
target hits during a trial. Two key skills of the virtual
target-hitting task, namely minimization of trajectory
error and excitation of the virtual dynamic system near
resonance, were determined. We defined a performance
measure for each skill and found a strong correlation
with the objective hit count measure when comparing
data from 17 participants of varying skill levels. The
measures etraj and finput have high correlation to the ob-
jective measure of nhit, yet have low correlation to each
other, suggesting independence. A third measure,
smoothness ratio (rsmooth), was evaluated, discussed,
and shown to be equivalent to input frequency.

After defining the three performance measures, the
participants were grouped based on their hit count
scores into three performance-based groups (experts,
intermediates, and novices). Learning effects in terms of
each of the performance measures across the training
sessions showed that improvements in trajectory error
and input frequency indeed correspond to improved
target hit count scores when examined by performance
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group. Future guidance schemes, aimed at enhancing
the effectiveness of VTEs, should incorporate mecha-
nisms for measuring and emphasizing these skills to the
participants.
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