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Abstract

Implementation and Analysis of Shared-Control

Guidance Paradigms for Improved

Robot-Mediated Training

by

Dane Powell

Many dynamic tasks have a clearly defined optimal trajectory or strategy for com-

pletion. Human operators may discover this strategy naturally through practice, but

actively teaching it to them can increase their rate of performance improvement.

Haptic devices, which provide force feedback to an operator, can physically guide

participants through the optimal completion of a task, but this alone does not ensure

that they will learn the optimal control strategy. In fact, participants may become

dependent on this guidance to complete the task. This research focuses on devel-

oping and testing ways in which guidance can be modulated such that it conveys

the proper task completion strategy without physically dominating the operator and

thus encouraging dependency. These guidance schemes may also be applied to the

real-time execution of tasks in order to convey computer-generated task completion

strategies to a user without allowing the computer to physically dominate control of

the task.
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Chapter 1

Introduction

The purpose of this work is to implement and experimentally analyze a number of

shared-control haptic guidance paradigms intended to improve robot-mediated train-

ing for dynamic tasks.

There are many examples of dynamic tasks in our everyday lives. Shooting a basket-

ball, driving a car, or simply taking a sip of water are all characteristically dynamic

tasks that require sensory feedback (especially haptic feedback), on-line movement

planning, and adaptation to changing task conditions. Most importantly, these are

all tasks that have one or more optimal solutions that either maximize a “positive”

metric, such as likelihood of making a basket, or minimize a “negative” metric, such

as the amount of effort required. These optimal solutions are learned through a

combination of practice and training, either by direct intervention from a coach or

through focused observation of other people performing the task. Similarly, there are

many less common but more consequential dynamic tasks requiring extensive train-

ing, such as performing a laparoscopic surgery, flying an airplane, or teleoperating a

remotely-operated vehicle.

Training for these tasks can be either human-mediated (Figure 1.1) or robot-mediated

(Figure 1.2). An expert surgeon gripping a novice’s hand in order to physically help

that novice complete a surgery would be an example of human-mediated training.

Conversely, a novice training to complete the surgery in a virtual environment with

the assistance of either a live or virtual expert surgeon would be an example of
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robot-mediated training. Robot-mediated training has many potential advantages

over human-mediated training, as will be discussed in Section 3.3. Moreover, if the

expert and novice share control over the virtual scalpel according to some algorithm

(perhaps based on the amount of control allotted to the novice by the expert), this

is an example of a shared-control system. Shared-control systems offer potential

advantages over other types of robot-mediated training methodologies because they

allow the inclusion of either a real or virtual expert in the training program, as will

be discussed in Section 3.4.

Figure 1.1: Gillespie et al. [1]’s Virtual Teacher paradigms. From left to right:

indirect-contact, double-contact, and single-contact paradigms.

While the question of how to apportion control of the system between expert and

novice has been studied to some extent in the literature, the question of how to

provide feedback, especially to the novice, has been studied comparatively little. Of

particular interest and challenge is the question of how to provide haptic feedback to

the novice. While haptic feedback can greatly enhance a novice’s sense of presence

and cooperation [3, 4] and potentially enhance training if used properly, it can also

be distracting and introduce problems of its own. Such feedback, if coming directly

from an expert, is generally referred to as haptic “guidance,” as it is generally used to

guide a novice through the successful completion of a task and thus enhance training

2



Figure 1.2: Patient undergoing robot-mediated rehabilitation using the Lokomat

system (Jezernik et al. [2])

outcomes.
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Chapter 2

Motivation and Novel Contributions

2.1 Guidance Paradigm Taxonomy

Most guidance schemes used for robot-mediated training have been developed in an

ad-hoc fashion, that is, to work with a specific device or fill a specific need. This makes

it difficult to compare the multitude of guidance schemes present in the literature

because the type of guidance provided is confounded with the hardware that it is

implemented on. For example, Gillespie et al. [1] developed the haptic device shown in

Figure 2.1 specifically to test the “double-contact virtual teacher” guidance paradigm

illustrated in Figure 1.1. This device is highly task-specific, requiring the novice to

grip the handle (analogous to the racket) and providing guidance via the band/cable

coupling (analogous to the coach). It would be difficult or impossible to test that

paradigm on any commercially available haptic device because of the specific way in

which it was described and the custom hardware on which it was implemented. Thus,

it would be equally difficult to compare the effectiveness of that paradigm to other

paradigms in the literature, especially if they also share a dependence on specific or

proprietary hardware.

I propose that the “double-contact virtual teacher” paradigm, along with others like

it in the literature, can be distilled into a set of essential and representative char-

acteristics, and that these characteristics can be used to develop a taxonomy for

classifying guidance paradigms. By abstracting the principles of existing guidance
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Figure 2.1: Haptic device developed by Gillespie et al. [1] to test double-contact

paradigm. This device simulates an expert teaching a novice to perform a one-

dimensional dynamic task. The novice grips the handle and uses it to control the

task, and is attached to the top cable via a special glove. This top cable simulates

the expert and provides guidance.

paradigms from their specific implementations, we can develop a set of representative

paradigms from the taxonomy and then compare the effectiveness of each of those

paradigms while holding constant the specifics of the implementation (such as the

choice of haptic device and dynamic task).

This taxonomy is discussed in detail in Chapter 4.

5



2.2 Dynamic Task Platform

While there are a number of haptic simulation development toolkits available today

(such as CHAI and H3D), none are geared specifically to the task of robustly collecting

large amounts of data from human subject testing. Virtual environments (similar to

the guidance paradigms they are intended to test) have generally been developed in an

ad-hoc fashion and tailored for a specific implementation (i.e. a certain combination

of hardware, guidance, etc...). This leads to an unnecessary repetition of labor and

a loss of potential accumulated experience from one experimenter to the next. If

researchers had an existing tried-and-tested development platform on which to base

new experimenters, this could improve their efficiency and quality of results at the

same time.

To that end, I have developed the Dynamic Task Platform, an object-oriented, modu-

lar, and extensible experimental platform writen in C++ with the goal of facilitating

the further study of human performance in dynamic tasks. This platform is discussed

in detail in Chapter 5.

2.3 Shared-Control Proxy Model

In many virtual environments, haptic feedback is rendered using a simple proxy model,

where a massless proxy in the virtual environment is connected to the representation

of the haptic device (user) by a spring and damper, as shown in Figure 2.2. The

proxy must obey all of the physical constraints of the virtual environment (i.e. walls,

friction, etc...), while the user is bound by no constraint other than the virtual spring

and damper link to the proxy. Thus, the forces on the user calculated by that spring

and damper link can simply be amplified to generate a force output for the haptic

6



Virtual proxy (visible to user)

Actual user position (not visible to user)

Free space

Virtual object
Force calculated based on displacement

Virtual wall

Figure 2.2: Proxy colliding with a virtual wall. This illustrates how forces are

calculated when a user controlling a haptic device collides with a wall in a virtual

environment. In free space, the user and proxy are coincident. When the user collides

with the virtual wall, the user penetrates it while the proxy remains outside. A force

is applied to the user based on the displacement between the proxy and the user.

device.

If a perceptual overlay or virtual expert is added to the environment, one can imagine

that there are two qualitatively different types of forces in the system: “guidance”

forces, which arise from interactions with the perceptual overlay or virtual expert,

and “task” forces, which arise from interactions with the virtual environment. A

distinction should be made between these types of feedback because they should con-

tribute to a user’s learning in fundamentally different ways: “guidance” forces should

be used to shape the user’s actions, whereas “task” forces should be incorporated

into the user’s internal model of the environment. The problem with the traditional

proxy model is that it cannot discriminate between guidance and task forces in shared-

control systems, and thus the forces are confounded when displayed to the user. This

could lead to impaired training and understanding by the user.
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In Chapter 6, I propose a shared-control proxy model to allow for the discrimination

of task and guidance forces.

2.4 Evaluation of Four Guidance Paradigms

Four prototypical guidance paradigms (one of each major type from the proposed

taxonomy) are developed and implemented on the Dynamic Task Platform using

commercially-available hardware. One of these paradigms is more “traditional” in the

sense that it accounts for most of the guidance currently provided in robot-mediated

training, while three of the paradigms are relatively novel or at least “non-traditional.”

These paradigms are used to train subjects to perform a number of dynamic tasks in

a controlled experiment, and the effectiveness of each of these paradigms is evaluated.

Demonstrating that the “traditional” paradigm is generally superior would be impor-

tant as it would reinforce the construct validity of its plethora of implementations in

the literature. Conversely, demonstrating that the “non-traditional” paradigms are

superior would be a boon for robot-mediated training, as it would stand to improve

training outcomes throughout the field. The cumulative effect of even a modest in-

crease in effectiveness could be significant, because of the broad applicibility of the

paradigms (as discussed in Section 2.1). Finally, these experiments will help to char-

acterize other aspects of the paradigms (such as workload imposed on users), and

thus their suitability for use in different types of environments.

These experiments and their results are presented in Chapter 7.
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Chapter 3

Background

3.1 Haptic Interfaces

Hap•tic adj. relating to or based on the sense of touch. [Greek haptesthai,

to touch.]

A haptic interface is a special type of human-machine interface that allows the ma-

chine to provide controlled feedback to the human via his or her sense of touch. While

“haptic interfaces” may not yet be part of the common parlance, they are increasingly

common parts of our everyday lives. Mobile phones that vibrate in response to touch,

“Rumble Paks” and other video game controllers that vibrate in response to cues in

the game’s virtual environment, and force feedback joysticks are all examples of hap-

tic interfaces in consumer electronics that have been available for a decade or more.

Industrial and commercial examples include the “stick-shaker” mechanism used to

alert pilots to a stall condition on most modern aircraft and laparoscopic surgical

simulators that provide a surgeon with realistic force-feedback from a virtual surgical

environment. Haptic interfaces can also be used for research in order to discover

how humans interact with each other [5] and learn new motor skills via the sense of

touch. Finally, haptic interfaces can be used to enhance the quality of training and

rehabilitation, as will be discussed in Section 3.3.

What we commonly refer to as our sense of touch actually consists of at least two
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distinct senses: tactile perception (the sense of vibration, temperature, and texture)

and kinesthetic or proprioceptive perception (the sense of force and position). Haptic

devices are usually designed to provide either primarily tactile feedback (such as the

vibration feature of a mobile phone) or primarily kinesthetic feedback (such as the

force-feedback capabilities of a joystick in a flight simulator). Because our kinesthetic

and proprioceptive senses are most important in learning to perform dynamic tasks

and construct internal models of dynamic systems, the remainder of this work will

focus primarily on haptic interfaces that provide force feedback.

3.2 Haptic Rendering

Haptic rendering refers to the process of calculating stable and realistic force feedback

based on a user’s interactions with a virtual environment in order to either increase

the user’s sense of presence or provide supplementary feedback such as guidance cues

via what are known as “perceptual overlays” [6]. This process is made decidedly non-

trivial by a number of technological limitations and consequences of natural laws. The

details of these difficulties are not relevant to this work, and the reader is referred

to the works of Adams and Hannaford [7] and Gillespie and Cutkosky [8] for a more

thorough discussion of the challenges associated with haptic rendering. Suffice it to

say that rendering a perfectly stiff virtual wall (the “gold standard” for a haptic

device) is simply not possible with most available haptic devices. Because of these

limitations, direct calculation of forces based on the user’s position (the “penalty-

based” approach) can lead to often explosive instability and rendering artifacts, such

as “clipping” through very thin objects. Thus, a more general way of rendering

interaction forces is required.
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A commonly used rendering method developed by Ruspini and Khatib [9] allows

a user to interact with a virtual environment by means of a “virtual proxy”, as

shown in Figure 2.2. This massless proxy visually represents the user in the virtual

environment and is bound by all of the physical constraints of that environment, but

does not necessarily represent the user’s actual position. Instead, a virtual spring

and damper system connect the virtual proxy to the user, and the forces generated

by this system are amplified and displayed (haptically) to the user. The example

of a user colliding with a wall in a virtual environment is illustrated in Figure 2.2.

When the user is moving through free space, the proxy and user share essentially the

same position. As the user collides with and begins to penetrate the wall, the proxy

remains outside the wall, causing a displacement in the virtual spring and damper

coupling. The force generated by this displacement is then output to the user via the

haptic device, completing the rendering process.

This traditional “proxy model” is advantageous for several reasons. First, this model

can be used to render a virtual environment full of arbitrary objects without special

attention needing to be paid to how each individual object will be rendered. For

instance, if a user penetrates a thin object far enough to pass through it completely,

the proxy will obey the physical constraints of the environment and not penetrate the

object, while the resistive force provided to the user will continue to grow or saturate.

This is certainly more realistic than a penalty-based approach, which will allow the

user to clip through the object completely if enough force is applied. Secondly, this

model can effectively render higher virtual stiffnesses due to the way in which the

central nervous system (CNS) integrates multi-modal sensory information. Visual

feedback will tend to “dominate” proprioceptive feedback when the CNS updates

its internal model [10], and thus users are more likely to rate a surface as being

stiffer if they do not see themselves (their proxy) penetrate the surface. Similarly,
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auditory and tactile cues can be used to enhance the apparent stiffness of a surface

without increasing the force-feedback gains. For instance, Kuchenbecker et al. [11]

found that simply displaying high-frequency transient vibratory cues in conjunction

with collisions with virtual surfaces greatly enhanced the perceived realism of the

collisions.

The reader is referred to the work of Salisbury et al. [12] for a more detailed overview

of haptic rendering.

3.3 Robot-Mediated Training

The sense of touch is an integral part of the learning process for visuo-motor dynamic

tasks (tasks requiring “hand-eye coordination”), and thus it makes sense that haptic

interfaces are increasingly being used for training and rehabilitation, as mentioned in

Section 3.1. The defining characteristic of robot-mediated training is that guidance

is administered physically to a patient or novice via a haptic interface. Thus, a

therapist or coach might still retain high-level control over the course of training

or even participate teleoperatively, but all physical interactions with the novice are

mediated by the haptic interface and related control systems (the “robot”).

Robot-mediated training offers many potential advantages over traditional “human-

mediated” training. If enough autonomy can be given to the robot or a “virtual

expert”, one human expert could potentially train a large number of novices simul-

taneously, increasing the reach of training. This is an example of shared-control

guidance, and will be discussed in detail in Section 3.4. If the haptic interface is

linked to a virtual environment, this offers the advantages of being able to quickly

change or reset the training environment in order to facilitate training and help keep
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the novice’s attention through long training sessions. More importantly, a robot can

also offer objective measures of performance much more frequently than a human

expert [13]. Winstein [14] and others have shown that providing accurate and timely

feedback to a novice can directly improve training outcomes, and such measures can

be used by a real or virtual expert to tune or adapt other aspects of the training as

the novice improves over time. For instance, Li et al. [15] and Huegel and O’Malley

[16] used these measures to progressively decrease the amount of guidance provided

to novices as their performances improved.

Guidance during robot-mediated training is usually provided via simple perceptual

overlays such as virtual fixtures. Virtual fixtures, as proposed by Rosenberg [17], are

simply perceptual overlays that passively prevent participants from entering forbidden

regions of a work environment, and are most often used to constrain a novice’s motions

to an optimal trajectory. Guidance might also take a more active form, such as the

“record-and-replay” strategy used by Gillespie et al. [1] to train novices to balance a

inverted pendulum.

Such “assistive” methods are based on a number of intuitions about how people learn

to perform visuo-motor tasks. Unfortunately, there is little evidence to back up some

of these intuitions or to suggest how they can best be applied to enhance the efficacy of

assistive strategies. A common assumption is that physically guiding a novice through

the successful completion of a task will help the novice to somehow internalize and

encode that pattern, and thus help the novice to repeat the pattern on his or her own

in the future. While sounding plausible, this assumption is only weakly supported by

the literature in the context of rehabilitation [18, 19], and has been refuted in many

cases in the context of training healthy individuals [20–22]. Schmidt and Bjork [23]

showed that guidance in many sorts of training (not just in visuo-motor tasks) can

actually impair learning and retention, and proposed the “guidance hypothesis” to
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account for this discrepancy between the expected and actual results of guidance-

based training.

The probable flaw in the assumption that assistive guidance improves training is that

while the proprioceptive sensory pathways are active in the presence of guidance, the

motor pathways are comparatively less active. Israel et al. [24] showed that when

physically guided through a task, novices tend to become “passive participants” and

exert less energy (reflecting less motor pathway activity) than when they perform the

task on their own. Shadmehr and Mussa-Ivaldi [25] showed that the CNS relies on

encoding and storing control loops between proprioceptive input and motor output

in order to perform dynamic tasks, and thus if this control loop is weak or absent in

the presence of guidance, the CNS will not be able to encode and retain it as it would

during practice.

Another problem with assistive guidance is that because novices are passive and

constrained to an optimal trajectory, they are going to make fewer errors than they

would during practice. Error has been shown to drive learning of dynamic tasks and

building of internal models, and thus assistive guidance is likely to impair learning

by preventing the commission of error.

Finally, a significant problem with assistive guidance is that it corrupts the inherent

dynamics of a task as perceived by the novice. Most guidance methods are impedance-

based, meaning that they apply a force in order to control the novice’s position.

Thus, a movement made during practice will result in force-feedback based on the

inherent task dynamics, while an identical movement during training will result in

force-feedback based on some combination of the task dynamics and guidance forces.

If novices spend a bulk of their time in training, then in effect they will be learning the

wrong task! Crespo and Reinkensmeyer [26] showed that “subjects who trained with
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guidance reacted as if the assistance provided on assisted trials was a perturbation

rather than following its example,” lending credence to this hypothesis.

This brings to light a problem with the traditional proxy model, as mentioned in

Section 2.3: it cannot discriminate between guidance and task forces, and thus the

two types of forces are confounded when displayed to the user. This could lead to

impaired training and understanding by the user. For instance, imagine that a novice

is being trained to grasp a virtual egg with an appropriate level of force to lift it

without crushing it. The task forces in this environment are calculated based on the

pressure applied to the egg, which is a function of the displacement of the fingers.

A potential training scheme would then be to calculate the error between the actual

displacement of the fingers and the optimal displacement, and display a force to the

novice in order to correct the error. However, using the traditional proxy model,

this guidance force will be unavoidably confounded with the task force and result in

confusing feedback and suboptimal training. If the guidance force gain is low, the

novice will grasp the egg too tightly or loosely and will essentially be practicing. If

the guidance force gain is high, the novice will seek to minimize the apparent force (to

“give in” to the guidance) and will grasp the egg with a nearly-but-not-quite-optimal

level of “task” force, but will not actually feel that force being rendered (since the

rendered force is a combination of the task and guidance forces). Thus, they will not

be able to build an internal model of the task in the same way that they could in

practice, and their learning of the task could actually be hindered.

Part of the guidance hypothesis is that challenge is integral to the learning process,

and a number of “resistive” methods have been developed based on this principle.

These methods will be discussed in detail in Section 4.5.
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3.4 Shared-Control Guidance

In general, the problem with robot-mediated training is that it has been unable to

replicate many of the human-human training and cooperation paradigms that novices

are accustomed to. In fact, the type of guidance provided in robot-mediated training

is relatively limited and primitive compared to the rich and varied interactions that

occur between human experts and novices. Thus, there have been some pushes to

more closely emulate human-human training and cooperation paradigms in human-

robot or human-robot-human environments.

Traditionally, such as in fly-by-wire aircraft control systems, conflicting control inputs

by multiple users are reconciled by simply averaging the inputs. However, Summers

et al. [27] showed that this is not necessarily the best cooperation paradigm. For

instance, Reed and Peshkin [5] make the following excellent point:

Averaging the input command is a simple strategy but not necessarily the

best combination since each individual’s motion will be diluted. Imagine

the effect if one pilot attempts to avoid an obstacle by turning to the left

while the other to the right: the average effect is straight into the obstacle.

This logic also applies to the traditional guidance schemes described in previous

sections.

Nudehi et al. [28] proposed a shared-control scheme for telesurgical training that

essentially calculated a control output based on the weighted average of the control

inputs of two operators. By adjusting this weight or control authority “α”, control

could be shifted between the novice or expert surgeon.

Gillespie et al. [1] proposed the use of a virtual teacher, a more active form of guidance
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than virtual fixtures that instructs novices to perform dynamic tasks by giving them

shared control of a task with a virtual expert. O’Malley et al. [29] showed that

such shared-control systems were as effective as virtual fixtures at facilitating skill

transfer. The model of a virtual teacher proposed by Gillespie et al. replicates real-

world teaching methods in order to facilitate skill transfer and reconcile the problem of

guidance force corrupting task dynamics. He presents the example of a tennis expert

teaching a novice how to swing a racket using hands-on demonstration. There are

three ways that this demonstration could occur. In an “indirect contact” paradigm,

the expert and the novice grasp the racket in different locations and perform the

swing together. In a “double contact” paradigm, the novice grasps the racket while

the expert grasps the novice’s hand and guides the novice through the swing. In a

“single contact” paradigm, the expert grasps the racket and the novice grasps the

expert’s hand. In the indirect and single contact paradigms, the task forces (those

generated by the dynamics of the tennis racket) are simply summed with the guidance

forces (those generated by the expert exerting control over the racket). In the double

contact paradigm, the forces are separated spatially, with task forces being applied

to the novice’s palm and guidance forces to the back of his or her hand. Gillespie

et al. [1] hypothesized that this double contact paradigm would be the most effective

at eliciting skill transfer, because it passes the greatest amount of haptic information

to the novice and allows the novice to easily discriminate between guidance and task

forces. However, they were not able to conclusively determine whether this paradigm

was indeed better than the others.
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Chapter 4

Guidance Paradigm Taxonomy

I propose that all guidance paradigms currently implemented in the literature in

human-human, human-robot, and human-robot-human training architectures can be

classified as one of the five types in this chapter based on three characterizing factors.

The most apparent and important factor that differentiates guidance paradigms is

whether they assist or resist the novice in completing the task. Guidance schemes

will thus be classified as either “assistive” or “resistive.”

The second major distinction that can be made is based on how paradigms reconcile

the co-presentation of task and guidance forces. As mentioned in Section 2.3, task

and guidance forces should be interpreted by the novice in fundamentally different

ways. If the novice cannot clearly distinguish between the two, the guidance forces

will alter the perceived dynamics of the task and potentially impair training. Most

existing guidance schemes confound task and guidance forces in just such a way by

combining them using a simple weighted average function so that both forces can be

displayed simultaneously via a single haptic device. I will refer to this traditional

method of reconciling task and guidance forces as “gross” guidance.

Finally, many guidance schemes will adjust the relative weights (gains) of these forces

over time in response to a novice’s performance improvement. Such schemes will be

referred to as “progressive.”
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4.1 Gross Assistance

Classic virtual fixtures are the archetypal example of gross assistance (GA). By their

nature, virtual fixtures have to be relatively stiff in order to keep novices from entering

forbidden regions of the workspace, and thus guidance forces generated by collisions

with virtual fixtures will dominate any extant task forces. Simple spring-damper

couplings or attractor potential models used to “pull” novices towards a target are

also typically implemented as GA, and can interfere with the perceived dynamics of

tasks in a more subtle way than virtual fixtures. Shared-control guidance schemes

also sometimes fall into this category, including the indirect-contact and single-contact

virtual teacher paradigms proposed by Gillespie et al. [1].

Gross assistance has been shown to be generally ineffective at improving training

outcomes compared to practice without guidance. Reinkensmeyer [18] showed in

simulation that “continual guidance” (GA) is “never beneficial compared to no assis-

tance”. Crespo and Reinkensmeyer [30] showed that “fixed guidance” (GA) produced

only “slightly better immediate retention than did training without guidance,” but

did not show that this improvement was statistically significant. “Triggered” assis-

tance is a type of GA that requires the novice to exert a certain amount of control

effort before assistance is provided. There is little evidence in the literature to suggest

that this variation is superior to standard GA. O’Malley et al. [31] implemented a

force-based triggered mode on the MIME/RiceWrist exoskeleton, while Kahn et al.

[32] implemented a displacement-based triggered mode on the ARM Guide, but nei-

ther showed any significant improvement over practice for the rehabilitation of stroke

patients.

Generally speaking, most of the assistive paradigms discussed in Section 3.3 that

can be classified as GA were shown to be ineffective compared to practice without
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guidance. This negative outcome might have been predicted and explained in part

by the “guidance hypothesis” proposed by Salmoni et al. [33], which states that

subjects will tend to become reliant on guidance when it is present in order to improve

performance instead of relying on “other cues in the task that are important for motor

learning”. In this case, the “other cues” might be the task dynamics, which are being

dominated by guidance forces.

One possible exception to the generally negative efficacy of GA is for tasks that are

extraordinarily difficult and for novices in the very early stages of training for a new

task. Crespo and Reinkensmeyer [30] showed that there was a significant improvement

of the GA groups over the practice groups in the very first stages of training, but that

this improvement quickly diminished and became insignificant as training continued.

4.2 Progressive Gross Assistance

Some researchers have attempted to capitalize on this early-stage benefit of GA by

decreasing the guidance gains over time as a novice’s performance improves. This

“progressive gross assistance” (PGA) theoretically allows the novice to make more

errors in later stages of training and further refine his or her motor control. Indeed,

many of the same studies in Section 3.3 showing that GA was ineffectual also showed

that PGA was superior to both GA and practice conditions.

For instance, Reinkensmeyer [18] showed in simulation that “guidance as-needed”

(PGA) was superior to both GA and practice without guidance. Crespo and Reinkens-

meyer [30] validated these findings using healthy subjects and a steering task. Li et al.

[15] showed that “progressive guidance” (PGA) was superior to GA at training sub-

jects to perform a dynamic target-hitting task.
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However, PGA has some potential downfalls. First, PGA requires complex gain-

reduction algorithms that depend on accurate and objective performance metrics.

Choosing the correct algorithm and performance metrics is highly task-dependent and

potentially difficult. Additionally, PGA suffers from the same pitfall of traditional

GA in that it confounds guidance and task forces during the majority of training, and

it may in fact exacerbate this impairment by subtly changing guidance gains (and

thus the task dynamics as well) over time.

4.3 Temporally Separated Assistance

The characterizing factor of temporally separated assistance (TSA) is that it sepa-

rates guidance and task forces temporally, displaying each type alternately in quick

succession via a single haptic device. Novices primarily experience unadulterated

task forces, but training is frequently (on the order of 1 Hz) punctuated by brief pe-

riods of pure guidance, intended to “cue” novices as to the appropriate movements

to make. In this way, the expert exerts “cognitive dominance” over the novice, while

allowing the novice to retain “physical dominance”- in other words, allowing a novice

to commit errors and actively generate movement plans in order to better learn the

task dynamics. With this advantage, I hypothesize that TSA can achieve the same

level of performance as PGA without being subject to the complexities of adaptive

algorithms. Additionally, compared to progressive paradigms that provide all of the

guidance during training “up front,” TSA provides guidance consistently and pre-

dictably throughout training, hopefully improving training outcomes.

Endo et al. [34] are the only group known to have proposed and tested a TSA

paradigm. In a pilot study, they showed that TSA was effective at training partici-
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pants to grip a virtual object using proper grasping forces and fingertip placements.

However, they did not study its effectiveness at training for dynamic tasks, and I

could find no other implementations of TSA in the literature.

4.4 Spatially Separated Assistance

Whereas TSA separates the presentation of task and guidance forces temporally in

order to present them via a single haptic channel, spatially separated assistance (SSA)

makes use of two haptic channels in order to present task and guidance forces simul-

taneously via the separate channels. The first and perhaps best example of SSA is the

double-contact paradigm proposed by Gillespie et al. [1]. As described in Section 3.4,

this paradigm makes use of a specialized haptic device in order to present guidance

from a virtual expert via one haptic channel (through the back of a novice’s hand)

and forces arising from the task dynamics via a second channel (through the novice’s

palm). The results of this study were inconclusive as to whether SSA was superior to

practice conditions.

Similarly, Wulf et al. [35] showed that a weak form of SSA was superior to practice

without physical guidance at training novice’s to perform a simulated skiing task.

This might be considered a “weak” form of SSA because haptic feedback was provided

via actual mechanical fixtures rather than electromechanical systems and a virtual

expert. However, this guidance paradigm still qualifies as SSA because guidance was

provided via a spatially distinct channel (i.e. the poles) from the primary interface

with the simultator (i.e. the simulated skis).

There are no other known implementations of SSA in the literature, likely due to the

relative complexity and propriety of the haptic devices necessary to implement e.g.

22



the double-contact paradigm. While replicating a real-world teacher in this way is

an elegant and intuitive approach to implementing SSA, the utility of the double-

contact paradigm is limited to cases where the physical constraints of the task being

taught allow for this specific type of spatial separation of forces. Presenting forces

in this manner effectively requires haptic devices with up to twice as many degrees

of actuation and significantly higher complexity. In some cases, presenting forces in

this manner may simply not be possible given the physical constraints of the task.

Providing guidance and task feedback via separate but identical haptic devices might

be a more feasible solution. This method of spatial separation is tested in this study.

4.5 Gross Resistance

Gross resistance (GR) can take a number of different forms, but is generally charac-

terized by increasing the difficulty of a task or resisting a novice’s optimal completion

of a task in some way. The theory behind GR is simply based on over-training:

after training extensively in the presence of artificial resistance, novices will find it

relatively easy to execute the same task in the absence of the resistance. There are

three common implementations of GR: as a constant force-field or viscous force op-

posing movement, as a force that augments errors, or as forces producing random

disturbances.

Constant (Coulomb) or velocity-dependent (viscous) forces opposing the direction of

movement have been shown to improve training outcomes particularly in the field

of rehabilitation. For instance, Lambercy et al. [36] designed a haptic knob offering

varying levels of resistive force in order to help stroke patients regain grasp strength

and coordination. A meta-review by Morris et al. [37] showed that resistance training
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(though not necessarily robot-mediated) can help reduce musculoskeletal impairment

in stroke patients.

Error augmentation has also been shown to improve training by taking advantage of

the CNS’ error-driven learning process. Emken and Reinkensmeyer [38] showed that

amplifying the task dynamics and in turn producing larger movement errors improved

the adaptation of healthy novices to a viscous force-field. In rehabilitation, Patton

et al. [39] showed that force-fields that amplified the movement errors made by stroke

patients in a reaching task improved training outcomes compared to practice.

Finally, Lee and Choi [40] showed that training in the presence of random noise-based

disturbance was superior to PGA and practice at training healthy novice’s to perform

a path-following task. Such noise-based GR has not been discussed elsewhere in the

literature and is a prime candidate for further evaluation.
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Chapter 5

Dynamic Task Platform

The Dynamic Task Platform (DTP) is an object-oriented, modular, and extensi-

ble software package written in C++ that allows for the rapid development of hu-

man studies involving dynamic tasks. This platform is unique among similar rapid-

prototyping haptic packages such as CHAI3D in that it is designed from the ground up

to handle the specific needs of human studies, such as high-frequency data collection

and robust haptic rendering even on a non-realtime operating system. It easily ac-

comodates various experimental designs, automatically tracks subjects’ performance

and handles their progression over the course of several sessions, accommodates any

number of experimental groups and conditions, and supports multiple user input and

output methods (such as mice, multiple simultaneous haptic devices, and multiple

displays).

5.1 Robust Haptic Rendering in a Non-Realtime

Environment

Ensuring robust and high-fidelity rendering in haptic-enabled environments is par-

ticularly challenging due to the relatively large disparity between the computational

complexity and necessary loop rates of the different feedback mechanisms that must

be present. For instance, in a typical haptic simulation, advancing the physical simula-

tion and computing haptic feedback might be computationally simple, but must occur
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at extremely high loop rates (1000 Hz) in order to ensure a stable and high-fidelity

simulation. Conversely, rendering the visual output is very computationally intensive

even for simple environments but need only occur at a frequency of 30 Hz to 60 Hz.

Various other components of the simulation (such as data logging) might need to run

at intermediate frequencies.

The DTP maintains high simulation loop rates (1000 Hz) by rendering visual output

in a separate thread from the simulation. The “haptic” thread is thus responsible

for advancing the physical simulation, performing collision detection, logging data,

rendering haptic feedback, and controlling program flow at a fixed loop rate, while

the “display” thread renders the corresponding visual output on a “best-effort” basis

(nominally 60Hz). The display thread carefully culls information from the physical

simulation in a non-blocking manner while using semaphore locks to ensure thread-

safety.

5.2 Ensuring Experimental Integrity

The DTP has a number of features and specific design considerations intended to

ensure overall experimental integrity by guaranteeing stable loop rates (to the great-

est extent possibility on a non-realtime operating system), maintaining a consistent

testing environment between sessions, reducing the chance of human error, and con-

tinuously monitoring all of these safeguards so that anomalies can be brought to the

attention of the experimenter.

As mentioned, high loop rates are ensured by running time-critical tasks in separate

threads (and on separate processors, if available). Special attention is also given to

high-frequency data logging, since disk input and output is a traditional bottleneck
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in high-performance computing and cannot be threaded in the same manner. Access

times for typical modern hard disk drives average around 10 ms, but can grow sud-

denly and unpredictably if another process is writing to disk. This severely limits the

rate at which data can be reliably logged without impacting the overall performance

of the program. The DTP overcomes this limitation by buffering data in system mem-

ory and only accessing the hard disk during periods of inactivity, such as the brief

period between trials. A separate watchdog process monitors the haptic, display, and

data logging loop rates and immediately pauses the experiment if a significant drop

in loop rate is detected.

The most common source of error during an experiment is simply human error, and

thus the DTP is designed to avert some of the most common sources of human error.

For instance, the entire experimental progression, from trial to trial and session to

session, is computer controlled. When starting a session, subjects only need to enter

a single piece of data (a user ID), which is then validated and used to configure

the session based on parameters provided by the experimenter. Additionally, meta-

data on the progress and outcomes of each session is stored separately from the

bulk low-level data, allowing for cross-checking and validation. Calibration of the

haptic devices is performed automatically and without any human intervention, while

special algorithms simultaneously check for adequate power, loose capstans, and worn

out bearings. Finally, the color scheme is carefully chosen to take into account the

most common types of color-blindness, and colors are used with consistent meanings

throughout the tasks in order to make task objectives as clear and intuitive as possible.
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5.3 Future-Proofing and Accessibility

The DTP relies on a set of standard design methodologies and open source tools that

in turn ensure a high degree of portability, accessibility, and sustainability by future

researchers.

Instead of being written directly in an integrated development environment (IDE)

such as Microsoft Visual Studio (MSVS), DTP is packaged as a set of C++ source

files and related resources. Accompanying these source files are a set of “make”

files that can be used by a number of open-source programs to generate project files

compatible with nearly any build environment. For instance, CMake can be used to

generate MSVS solutions for MSVS 6, MSVS 2005, MSVS 2010, and presumably any

future version of MSVS as well. Thus, multiple researchers collaborating on the same

task are no longer required to have the same IDE or even the same operating system!

The open-source program Doxygen can also be used to generate comprehensive doc-

umentation (including automatically generated class diagrams, inheritance graphs,

etc...) in formats such as PDF and HTML.

Finally, besides the drivers and libraries necessary to interface with individual haptic

devices, the only third-party code that DTP relies on is freeglut, an open-source and

cross-platform implementation of the OpenGL Utility Toolkit (GLUT) with wider

platform support and active development.

5.4 Simple Construction of Tasks and Experiments

Because of its object-oriented design, DTP is easy to customize to suit a wide variety

of tasks and experiments.
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Each experimental session is broken down into a number of phases and trials. Trials

are typically 20-30 seconds in length, with a brief pause between each. A series of

similar trials is considered a “phase” of the experiment; between phases there is a brief

pause and chime that alerts subjects to a change in experimental conditions. Creating

the desired experimental structure is accomplished by simply deriving from base phase

and trial classes, and then adding phases to a session using simple statements or logical

conditions (for instance, based on a user’s experimental group). Data from each trial

is logged in a tabular format, and any class in the program can at any point add data

to the log by simply specifying a column name.

Each task environment is built from a combination of three simple “primitives”:

nodes, linkages, and constraints. Nodes are any object that can be interacted with

by the user, including masses, targets, and haptic devices. Nodes are coupled by

linkages, which are spring-damper couplings that can dynamically modulate force

output based on experimental conditions. Finally, constraints bind nodes to move in

proscribed manners, for instance reducing a two degree-of-freedom task to one degree-

of-freedom by constraining the novice to move along a straight line. Of course, any

of these objects’ base class can be derived in order to support new haptic devices and

build new tasks.

5.5 Rapid Real-Time Physics Simulation

The DTP physics engine ensures high-fidelity real-time simulation by using a simple

Newtonian particle-based physics model. “Real-time” in this context indicates that

the simulation is advanced at a one-to-one ratio with reality with each iteration.

Each node’s state is described by a position vector x, velocity vector v, and body
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force vector F . The body force F is a sum of the forces due to gravity, friction,

linkages, and constraints(Fg, Ff , Fl, Fc, respectively). With each timestep (1 ms),

the state of each node is updated according to the following equations:

dt = t1 − t0

F (t0) = Fg + Ff + Fl + Fc

a(t0) =
F (t0)

m

x(t1) = x(t0) + v(t0)dt+
1

2
a(t0)dt

2

v(t1) = a(t0)dt

The force exerted on each node by a linkage is calculated according to the linkage

stiffness k, damping b, and scaling factors Ra and Rb. In a real-world context, the

forces exerted by each end of the linkage must be equal and opposite, but in the

virtual environment the forces can be scaled using these scaling factors. For instance,

if the expert is “node a” and the shared proxy (S.P.) is “node b” (as shown in

Figure 6.1), then Ra = 0 and Rb = 1, because the expert-S.P. linkage only transmits

force information unilaterally (from the expert to the S.P.). The forces exerted on

nodes connected by a linkage (Fa and Fb) are calculated according to:

Fl = (xb − xa)k + (vb − va)b

Fa = (−1)FlRa

Fb = FlRb

Finally, because most haptic devices provide only a position and not a velocity reading

with each iteration, velocity must be calculated by differentiating the position signal.

This can be problematic at high sampling frequencies (such as 1000 Hz), leading

to noisy and highly non-continuous velocity readings. Thus, a low-pass filter with

a cutoff frequency of 16 Hz is applied to produce continuous and steady velocity
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Figure 5.1: Effect of a low-pass filter on velocity readings at high sampling rates.

Note how the raw velocity (calculated using the forward-difference method) is noisy

and very discretely valued, while the filtered velocity is a nearly continuous function.

Note that this accurately represents a low-pass filter with a 16 Hz cutoff frequency,

but is not based on actual position data.

values, as shown in Figure 5.1. Kuchenbecker et al. [41] showed that encoder noise

tends to dominate inputs from the human hand at frequencies above 30 Hz, and

for this combination of haptic device and task it was expected that noise would

dominate above roughly 16 Hz. The discretized time-domain form of this filter is

v1 = 0.09516(x1 − x0) + 0.9048v0, where v0, v1, x0, and x1 are the old and new

velocities and positions at each timestep.
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Chapter 6

Shared-Control Proxy Model

A number of factors make stable rendering of the interaction between a haptic in-

terface and virtual environment a non-trivial task. Foremost among these are the

physical limitations of even the most modern haptic devices, which tend to be rel-

atively compliant compared to the virtual objects that they interact with. In order

to maintain a one-to-one relationship between the position of the haptic device in

real space and in the virtual environment, the device would have to penetrate un-

realistically far into the virtual object. Thus, direct calculation of interaction forces

based on a physics model is generally not possible, as the forces would tend to sat-

urate quickly enough to lead to explosive instability, and some other general haptic

rendering algorithm is required.

Zilles and Salisbury [42] proposed a “constraint-based god-object” rendering algo-

rithm (commonly referred to as a “proxy model”) for calculating and displaying in-

teractions between a haptic interface and a virtual environment. In this model, a

massless “god-object”, “avatar”, or “proxy” represents the user in the virtual envi-

ronment, and must obey all of the physical constraints of the virtual environment (i.e.

walls, friction, etc...). This proxy is then connected to the haptic device by a virtual

spring and damper coupling, and the force output to the device is simply calculated

based on this coupling (usually amplified by a constant gain). This allows the hap-

tic device to penetrate virtual surfaces without necessarily leading to instability or

requiring a specialized physical model.
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Figure 6.1: Traditional and Shared-Control Proxy Models.

As mentioned in Section 2.3, one potential problem with the traditional proxy model

is that it cannot discriminate between guidance and task forces in shared-control

systems, and thus the forces are confounded when displayed to the user. This could

lead to impaired training and understanding by the user.

The proposed shared-control proxy model overcomes this deficiency by adding a sec-

ond proxy and replacing the traditional spring-damper couplings with a series of

“biased” spring and damper couplings. Whereas traditional couplings can only ex-

ert equal and opposite forces on attached nodes, biased couplings can exert opposite

but arbitrarily scaled forces on each node and are only realizable in a virtual en-

vironment, as they essentially break Newton’s Third Law. These couplings link the

novice, expert, “shared proxy”, and “avatar proxy” as illustrated in Figure 6.1, where

arrows indicate the general directions of force transfer (in other words, the end of the

coupling with a higher force gain).

The massless shared proxy’s position is influenced equally by the expert and the

novice, but is not influenced at all by the position of the avatar proxy, nor does it

interact with the virtual environment. Because of this, the shared proxy remains

exactly between the novice and expert at all times, representing the averaged input
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of the novice and expert. Note that this average could be weighted in order to adjust

the control authority α (as proposed by Nudehi et al. [28]) by simply changing the

relative stiffnesses of the expert and novice couplings. The force generated by the

coupling between the novice and shared proxy represents a pure guidance force FG,

since it is proportional to the deviation from the expert and unaffected by the virtual

environment. Note that in this case, the expert will not receive any force feedback

and thus will not be affected by the novice, which is the logical setup for tasks with

a virtual expert. However, with a human expert present, force-feedback could be

provided in a way similar to how the novice receives force feedback.

The avatar proxy must obey all of the constraints of the virtual environment and

is coupled to the shared proxy, so that in free space both proxies ideally share the

same position. However, when the user comes into contact with a virtual surface,

the invisible shared proxy will penetrate the surface to the same extent as the haptic

device, while the avatar proxy will remain outside the surface. The force generated

by the coupling between the two proxies then represents a pure task force FT , since it

is proportional to the deviation between the commanded position of the shared proxy

and actual position of the avatar proxy.

The presentation of guidance and task forces to the novice can now be modulated in

any of the manners discussed in Chapter 4.
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Chapter 7

Evaluation of Four Guidance Paradigms

7.1 Methods

7.1.1 Experimental Design

Four prototypical guidance schemes chosen from the guidance taxonomy proposed in

Chapter 4 were implemented on the Dynamic Task Platform, and their effectiveness

at training subjects to perform dynamic tasks was evaluated in a 16-subject pilot

study and 50-subject primary study. Subjects trained with the assistance of a virtual

expert using the shared-control proxy model described in Figure 6.1, which allowed

for the discrimination of task and guidance forces.

Evaluation and Training Trials Subjects performed the tasks over a number of

trials. Each trial was 20 seconds long and generally categorized as either an “evalua-

tion” trial or a “training” trial. In evaluation trials, participants had sole control over

the system via a single joystick and were instructed to perform the task to the best

of their ability. During training trials, a virtual expert was also present in the sys-

tem. This expert followed a predefined optimal trajectory for each task, and shared

control of the system with each participant under one of the experimental conditions.

Participants were instructed to track the expert as closely as possible during training,

and by exactly matching the expert they could achieve the best score possible in each
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task.

Structure Participants performed a target-hitting task and path-following task on

two consecutive days, with a single session and type of task per day. The order of

task presentation was balanced between groups. Each session consisted of 106 trials

grouped into a number of different blocks or “phases.” Evaluation phases consisted

of three evaluation trials, training phases consisted of 12 training trials, and a final

generalization phase consisted of 12 generalization trials. Generalization trials were

similar to evaluation trials but with slightly modified task parameters, and were

intended to test the robustness of acquired motor skills to changing task dynamics.

Participants were also allowed a one-minute familiarization trial before attempting

each task for the first time. During this trial, subjects completed a representative but

substantially different and easier version of the task, which allowed them to become

familiar with the task without developing any significant task-specific skills. The

structure of each session is illustrated in Table 7.1.

Workloads At the end of each session, participants also reported their perceived

workload during the task by completing the NASA TLX questionnaire developed by

Hart [43]. This questionnaire allows participants to rate their perceived workload on

six different sub-scales: mental demand, physical demand, temporal demand, perfor-

mance, effort, and frustration. It then lets them weight the contributions of each type

of workload to the overall workload, and uses this information to compute a weighted

average of the overall workload.

Pilot Study The purpose of the pilot study was to gather preliminary information

about how to best organize the experiment and implement the guidance paradigms.

36



Trial type F E T E T E T E T E T E T E G

Number of trials 1 3 12 3 12 3 12 3 12 3 12 3 12 3 12

Table 7.1: Order of trials in each session: Familiarization (F), Evaluation (E),

Training (T), and Generalization (G) trials. Note that there was a mandatory 5-

minute break midway through each session.

The size of the study was too small to draw significant conclusions about the paradigms,

and the design changed too much between the pilot and primary studies for the data

to be pooled; thus, the results of the pilot study are not included in this work.

A total of 16 participants enrolled in the pilot study. Participants performed a target-

hitting task over the course of 10 sessions on consecutive days, with each session

consisting of 30 trials and thus taking 10-15 minutes. This configuration of sessions

was determined to elicit the fastest training in a pre-pilot study as compared to fewer

sessions of greater length or more sessions of shorter length. Each session consisted of

five evaluation trials (“pre-evaluation” trials), then twenty training trials, and finally

five more evaluation trials (“post-evaluation” trials). After analyzing the results of

the pilot study, it was determined that this configuration overcomplicated the data

collection and analysis procedures, and thus the primary study was organized into

only two sessions (one for each task).

7.1.2 Subjects

A total of 50 participants enrolled in the primary study, and were divided evenly be-

tween 5 experimental groups: no guidance, GA, TSA, SSA, and SR. Five participants

were left-handed, 45 right-handed, 33 male, and 17 female. All participants controlled

the task with their dominant or preferred hand. All participants provided their in-
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Guidance Force (Joystick 1) Force (Joystick 2)

Control FT (t) 0

GA FT (t) + FG(t) 0

TSA
FT (t) + sin( t∗π

t0
)FG(t) if t mod t1 ≤ t0;

FT (t) if t mod t1 > t0.
0

SSA FT (t) FG(t)

GR FT (t) + FPN(t) 0

Table 7.2: Force outputs for guidance conditions. The task force FT is composed

of forces inherent to the task environment, such as from the swinging mass in the

target-hitting task. The guidance force FG is a perceptual overlay intended to guide

the novice towards the expert’s position. Both FT and FG are calculated as shown

in Figure 6.1 using the rendering algorithms described in Section 5.5. The resistive

force FPN is calculated according to the Perlin noise function shown in Figure 7.1.

For the purposes of these experiments, t0 = 100 ms and t1 = 500 ms.

formed consent as approved by the Rice University Institutional Review Board, had

no significant visual or motor impairments and no or little prior experience with vir-

tual dynamic target-hitting tasks. In order to encourage subjects to perform to the

best of their ability and follow the given instructions, gift cards were awarded to each

subject that scored highest in evaluation trials and followed the expert the closest in

training trials.

7.1.3 Guidance Conditions

The mathematical representations of the guidance paradigms used during training

trials are given in Table 7.2.

No Guidance (Control) Only task forces were displayed. Thus, participants

could track the expert visually on-screen but received no haptic indication of his
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position. This served as a control condition.

Gross Assistance (GA) Task forces and guidance forces were combined by simple

summation and presented via a single joystick. The two types of forces were scaled

so as to each have a peak magnitude of about half of the maximum force output level

of the joystick.

Temporally Separated Assistance (TSA) Task forces were displayed at all

times, and guidance forces were overlaid in 100 ms sinusoidal pulses at a frequency of

2 Hz (the optimal frequency and ratio as experimentally derived by Endo et al. [34]).

Participants described these guidance forces as “pulsating” and interpreted them as

nudges or resistance that indicated the direction that they should be moving. The

pulses were not frequent enough or large enough in magnitude to exert significant

control over the task; thus, this mode prevented participants from becoming reliant

on guidance forces, a problem described by Li et al. [44].

Spatially Separated Assistance (SSA) Participants in this group used two joy-

sticks during the experiment. Participants controlled the system using the primary

joystick, onto which only task forces were displayed. Guidance forces were displayed

on the secondary joystick so that its trajectory matched that of the expert’s, also

visible on-screen. Participants were instructed to lightly grasp this joystick with their

non-dominant hand and to replicate the movements displayed there on the primary

joystick. This allowed participants to intuitively mimic the expert’s trajectory while

still experiencing undistorted task dynamics. This paradigm also shares with tempo-

ral separation the advantage of forcing the participant to take control of the task and

not rely on the expert to do any “heavy lifting”.
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Figure 7.1: Joystick force output from Perlin noise function under GR condition.

Gross Resistance (GR) Task forces were combined with a randomly-generated

disturbance force in the manner described by Lee and Choi [40]. A Perlin noise

function with a nominal range of −1.2 N to 1.2 N was randomly generated for each

joystick axis as shown in Figure 7.1 using the open-source libnoise library. At each

timestep, the guidance force was generated from the values of these functions and

summed with the task force to produce the net force displayed to the joystick.

7.1.4 Tasks

40



Figure 7.2: A participant performing a target-hitting evaluation trial in a pilot

study. Note that screen objects have been enlarged 10x for illustrative purposes.

Target-Hitting Task The target-hitting task used in these experiments was based

largely on a task originally used by O’Malley et al. [29], O’Malley and Gupta [45].

Participants controlled the position of an on-screen pointer using a 2-DOF haptic

joystick (Immersion, Inc.’s IE2000), as shown in Figure 7.2. This was connected to

a 5 kg mass by a spring with stiffness k = 100 N/m and damping b = 3 Ns/m, as

shown in Figure 7.3. Details about how this spring-mass system was rendered can be

found in Section 5.5. Thus, participants could control the position of the mass only

indirectly. Two targets were positioned equidistant from the center of the screen and

at a 45◦ angle to the horizontal. At any given time, one target was inactive (blue)

and the other active (orange). The active target could only be “hit” by the swinging
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Figure 7.3: Task layout and dynamic models for evaluation and training trials.

Participants control a pointer that is linked to a mass-spring-damper system and try

to guide the mass to alternating targets. In evaluation trials, a simple spring and

damper link the mass and the novice. In training trials, a series of “directional”

spring and damper systems link the novice, expert, proxy, and mass, where arrows

indicate the directions of force transfer.

mass, at which point the opposite target would become active. Each task trial was

20 seconds long, and the goal during evaluation trials was to hit as many targets as

possible in this time frame. Thus, by moving the pointer at the resonant frequency

of the system (0.71 Hz) along a straight line connecting the targets participants could

achieve the highest hit-count possible (approximately 28 hits).

During training, participants shared control of this system with a virtual expert,

represented on-screen by an orange pointer that tracked the optimal trajectory (a
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6 in

Figure 7.4: Shapes used in the path-following task.

straight-line path between the targets at a frequency of 0.71 Hz). Shared control was

implemented via the shared-control proxy model described in Figure 6.1.

During evaluation trials, participants were instructed to hit as many targets as pos-

sible, while in training trials they were instructed to follow the expert as closely as

possible. Gift cards were awarded to the subjects that best achieved each of these

goals.

In the primary study, the target sizes were doubled (as compared to the pilot study) in

order to facilitate greater performance improvement over a smaller number of trials.

Path-Following Task The path-following task was similar to a traditional pursuit-

rotor task in that it required novices to track a virtual expert as closely as possible as

the expert traced the outline of a simple shape at a constant speed. The task is based

loosely on that proposed by Lee and Choi [40]. In evaluation and training trials,

subjects traced the outline of one of the three shapes shown in Figure 7.4 (a circle,

square, or X). In any given phase, the shapes would be presented in equal number

but a random order. In the familiarization and generalization phases, subjects were

shown triangles and lemniscates (respectively). In all cases, the goal was to trace

the expert as closely as possible, and thus performance was defined as cumulative

deviation from the expert’s position (in centimeters) over the course of each trial.

Gift cards were awarded to the subjects that achieved the lowest deviation.
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Figure 7.5: Target-hitting task: Hit counts achieved by subjects versus trial num-

ber. Each point represents the number of hits achieved by a subject in a given trial.

Subjects are color-coded by group. Lines of best fit are shown for each combination

of phase and group. The shorter phases are evaluation phases (consisting of three

evaluation trials), the longer phases are training phases (consisting of twelve training

trials), and the final phase is the generalization phase. A small amount of “noise”

has been introduced in the plotting process to make the data appear more continuous

and prevent multiple data points from directly overlapping one another.

7.2 Results

The raw data collected in tabular flat files during experimental sessions was processed

using Matlab to produce a set of data coded at the level of individual trials. This

data includes such information as the trial number, trial type, number of hits achieved

during the trial (“hit count”) for target-hitting trials, and cumulative deviation (“de-

viation”) in centimeters for path-following trials. Outliers were defined for each cell
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Figure 7.6: Path-following task: Cumulative deviation (cm) of subjects versus trial

number. Each point represents the cumulative deviation (in centimeters) accrued by

a subject in a given trial. Subjects are color-coded by group. Lines of best fit are

shown for each combination of phase and group. The shorter phases are evaluation

phases (consisting of three evaluation trials), the longer phases are training phases

(consisting of twelve training trials), and the final phase is the generalization phase. A

small amount of “noise” has been introduced in the plotting process to make the data

appear more continuous and prevent multiple data points from directly overlapping

one another.
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(each unique combination of group and trial) as points further than 1.5 interquartile

ranges (IQR) from the cell mean. In repeated-measures data analysis, outliers are

often replaced with the outlying subject’s mean or with the grand mean. However,

both of these means tended to be even more extreme than the outliers themselves, so

outliers were instead replaced with their respective cell mean.

This trial-level data is shown for target-hitting trials in Figure 7.5 and for path-

following trials in Figure 7.6. Plotting the data initially at this low level allows for

many valuable observations and insights:

• Horizontal striations in target-hitting training data can be noted for subjects

achieving between 18 and 30 hits, and indicate that subjects nearly always

achieved an even number of hits during training trials. While the exact process

leading to these striations is difficult to explain, it’s generally suspected to

be due to the oscillatory nature of the task and the consistent initial state of

the expert between trials. It is not suspected to be due to any error in the

experiment or data collection process. However, its existence is potentially

detrimental to the analysis of training trial data, as it effectively reduces the

number of possible hit count outcomes for most subjects in the later stages of

training from 6-8 to 3-4.

• Subjects’ performances tend to increase dramatically over the course of indi-

vidual evaluation phases, while increasing comparatively little during training

phases. Note that this applies to the control group as well as other groups.

This would seem to indicate that subjects are recovering from some detrimen-

tal impact of the transition between evaluation and training trials, rather than

actually improving their performance in a global sense during evaluation trials.

Due to this observation, many of the data analysis procedures described below
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were also attempted with the first evaluation trial in each phase removed, in

order to obviate this interference effect, but this did not show any improvement

in the consistency of the data or significance of the results.

• The GA group’s training performance improves and plateaus quickly, which

qualitatively matches the behavior of the GA group observed in prior studies.

• Performance during training follows a bimodal distribution, with many subjects

scoring zero hits even during the final training trials. It is helpful and germane

to remember that subjects were instructed to focus only on following the expert

during training, and not necessarily to maximize hit counts. Thus, this might

indicate that not all subjects were following the instructions, or that there are

actually multiple distinct populations of subjects being tested based on natural

aptitude. Prior studies and pilot studies have shown that some participants

can be classified as “natural experts” based on high entrance scores, while oth-

ers are “poor learners” and remain at a low level of performance throughout

training. Regardless of the explanation, these results make certain kinds of

analysis difficult or impossible because each type of subject might show little

or no performance improvement over the course of training, and additionally

the variance of the cumulatively sampled population is very high. Due to this

observation, many of the data analysis procedures described below were also

attempted on smaller subsets extracted from the main data set based on the

initial performance of subjects at entry into the study. However, this did not

improve the significance of the results.

Two general types of statistical analysis were employed for evaluating subjects’ per-

formance: mixed ANOVAs on trial data and one-way (between-subjects) ANOVAs

on curve-fit parameters, both followed by family-wise error-corrected multiple com-
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Group Group Diff. p (raw) p (adj) Sig.

Ctrl GA 2.04 .081 .402

Ctrl TSA 5.99 < .001 < .001 ∗
Ctrl SSA 4.89 < .001 .001 ∗
Ctrl GR 1.21 .300 .836

GA TSA 3.95 .001 .008 ∗
GA SSA 2.84 .016 .110

GA GR −0.83 .473 .952

TSA SSA −1.11 .343 .875

TSA GR −4.78 < .001 .001 ∗
SSA GR −3.68 .002 .017 ∗

Table 7.3: Target-hitting task: Multiple pairwise comparisons for evaluation trials.

Adjusted p-values use the Tukey-Kramer adjustment.

parisons.

7.2.1 Mixed ANOVA on Evaluation Trials

Mixed ANOVAs were performed on evaluation trial outcomes with either hit counts

(for target-hitting) or deviation (for path-following) as the dependent variable, guid-

ance condition (“group”) as a between-subjects factor, and trial number (“trial”) as

the within-subjects factor (repeated measure). Plots of the data for evaluation trials

alone are shown at subject-level in Figure 7.7 and Figure 7.8 and at group-level in

Figure 7.9 and Figure 7.10. Outcomes for the omnibus ANOVA and for pairwise

multiple comparisons, corrected using a Tukey-Kramer adjustment, are shown for

target-hitting in Figure 7.11 and Table 7.3 and for path-following in Figure 7.12. A

Ryan-Einot-Gabriel-Welch adjustment would preserve more power and be preferred,

but was unavailable in the statistics software procedure used for analysis.
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Figure 7.7: Target-hitting evaluation trials: Hit counts achieved by subjects versus

trial number.

This procedure had the benefits of requiring minimal conditioning of the data before

performing the statistical tests, being well-established, and having a higher statisti-

cal power. However, it also suffered from a few limitations. First, it only produces

useful information on mean performance and does not give specific information on

the rate or amount of performance improvement. Second, traditional ANOVA proce-

dures assume normality, but unfortunately the data sets for both target-hitting and

path-following were skewed due to ceiling and floor effects, respectively. Third, the

statistical procedure and process of removing outliers is made complicated by the

inclusion of a repeated-measures factor. Visual inspection indicates that the data is

probably heteroscedastic and non-spherical (the variances are significantly different

between groups and tend to diminish over time). Logarithmic and power (including
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Figure 7.8: Path-following evaluation trials: Cumulative deviation (cm) of subjects

versus trial number.

square root) transformations do not help to normalize the data or improve homo-

geneity of variance, and non-parametric analysis is not an option for mixed-measures

designs. However, ANOVA is robust in the presence of distribution assumption vi-

olations when sample sizes are equal, meaning that the results will probably be too

conservative (sacrificing power) rather than too liberal (producing Type I errors) [46].

7.2.2 Mixed ANOVA on Training Trials

Although the primary goal of this research is to improve robot-mediated training

methodologies, the guidance conditions being tested could also be used for online

correction of user inputs in the midst of task execution, such as when the autopilot

50



0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35
H

it
co

u
n
t

Trial number

Ctrl
GA
TSA
SSA
GR

Figure 7.9: Target-hitting evaluation trials: Mean group hit counts versus trial

number, outliers replaced.

or stick shaker mechanism in an aircraft shares control with the human pilot. Thus,

it’s useful to know how each guidance condition affects task performance while the

guidance is actually active (during training), as shown in Figure 7.13 and Table 7.4.

7.2.3 Mixed ANOVA on Generalization Trials

Also of interest is how motor learning effects transfer to similar tasks with slightly

modified task dynamics (generalization trials). Unfortunately, the omnibus ANOVA

was not statistically significant. Visually inspecting Figure 7.5, it appears that per-

formance may have varied drastically between the start and end of the generalization

phase, so the same analysis was attempted on each half of the generalization phase
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Figure 7.10: Path-following evaluation trials: Mean group deviation (cm) versus

trial number, outliers replaced.

Group Group Diff. p (adj) Sig.

Ctrl GA −1.95 .282

Ctrl TSA 3.86 .035 ∗
Ctrl SSA 3.76 .040 ∗
Ctrl GR 3.99 .029 ∗
GA TSA 5.81 .001 ∗
GA SSA 5.71 .002 ∗
GA GR 5.95 .001 ∗
TSA SSA −0.10 .956

TSA GR 0.13 .940

SSA GR 0.23 .897

Table 7.4: Target-hitting task: Multiple pairwise comparisons for training trials.

Adjusted p-values use the Tukey-Kramer adjustment.
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Figure 7.11: Target-hitting task: Mixed ANOVA results for evaluation trials. Fixed

effect of group: F (4, 113) = 9.46, p < .001. The interaction effect of group and trial

was not significant. Lines indicate pairwise significance at α = .05, family-wise error-

corrected using a Tukey-Kramer adjustment.
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Figure 7.12: Path-following task: Mixed ANOVA results for evaluation trials.

Fixed effect of group: F (4, 258) = 1.45, p = .219. Interaction effect of group and

trial: F (80, 869) = 1.68, p < .001. No pairwise significance was found at α = .05,

family-wise error-corrected using a Tukey-Kramer adjustment.
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Figure 7.13: Target-hitting task: Mixed ANOVA results for training trials. Fixed

effect of group: F (4, 104) = 4.60, p = .002. Interaction effect of group and trial:

F (284, 3061) = 2.31, p < .001. Lines indicate pairwise significance at α = .05,

family-wise error-corrected using a Tukey-Kramer adjustment.

individually, but this too did not produce statistically significant results.

7.2.4 Curve-Fitting on Evaluation, Training, and General-

ization Trials

An alternative means of analysis that has been successful in prior studies (especially

the pilot study) is to fit an exponential curve to each subject’s trial performance

outcomes, as described by Heathcote et al. [47]. This produces three meaningful and

independent coefficients for each subject that can be used as dependent variables in

a one-way ANOVA between guidance groups. The main advantages of curve-fitting

over mixed ANOVA analysis are that curve-fitting provides specific information on

the rate and amount of training and allows for the use of simpler and more robust

statistical tests. Unfortunately, it appears that in the primary study curve-fitting
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analysis had lower statistical power than mixed ANOVA analysis.

An exponential curve of the form y = ±ae−x
b +c was fit to the trial outcomes for each

subject, as shown in Figure 7.14, where the parameters have the following meanings:

a Amount of learning Difference between the final and initial performance levels,

where larger values indicate more learning

b Rate of learning A time constant, where smaller values indicate faster learning

c Final performance level Larger values indicate the subject achieved a higher

performance level at the end of the study

x Trial number

y Performance measure Either hit counts (for target-hitting) or deviation (for

path-following)

Each parameter (a, b, and c) was considered as a dependent variable in a one-way

ANOVA between groups of subjects. Unfortunately, a Kolmogorov-Smirnov test for

normality rejected the null hypothesis that the parameters were drawn from a nor-

mal distribution for almost every combination of parameter and group. This non-

normality is obvious from visual inspection, as in Figure 7.15. Additionally, the data

is clearly heteroscedastic (the variances are heterogeneous between groups), as shown

in Figure 7.16. This precludes the use of a traditional ANOVA- instead, the Kruskal-

Wallis non-parametric ANOVA was used to test curve-fit parameters. However, the

omnibus ANOVA was not significant for any curve-fit parameter (F (4, 45) < 1).

Permutation testing, another form of non-parametric testing, was also used to com-

pare the curve-fit parameters. The only significant pairwise comparisons were found
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Figure 7.14: Curve-fitting example for a subject’s target-hitting session. The

solid line is the best fit of the hit counts (y) from each trial (x) to the equation

y = −ae−x
b + c. Each coefficient (“parameter”) in the fit equation has a physical

meaning: a is the amount of learning, b is the speed of learning, and c is the final

performance value.

Group 1 Group 2 Group 1 Mean Group 2 Mean p

TSA SSA 31.7 16.4 .049

TSA GR 31.7 9.7 .008

Table 7.5: Target-hitting task: Permutation testing results.

for the b (speed of learning) parameter in the target-hitting task, as shown in Ta-

ble 7.5. These results indicate that the SSA and GR groups each improved signifi-

cantly faster than the TSA group.
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Figure 7.15: Cumulative distribution plot of actual vs ideal (normally distributed)

data for a representative curve-fit parameter.

7.2.5 Workloads

As mentioned in subsection 7.1.1, 7 measures of workload were recorded for each

participant’s session. These ratings tended to have homogeneous variances but non-

normal distributions, as shown in Figure 7.17. Minor violations of the normality

assumptions are sometimes acceptable if the data is skewed consistently in one direc-

tion (as is the case with hit counts or deviation), but these are rather severe violations,

and the skew is often in opposite directions from one group to another. Thus, the

Kruskal-Wallis non-parametric ANOVA is warranted. The only statistically signif-

icant omnibus test was for Mental Demand (F (4, 41) = 10.38, p = .035), but no
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Figure 7.16: Box plot of the curve-fit parameter a for each group. Note the non-

normal distribution of values of a for each group and the largely unequal variances

between groups, as well as the relatively similar means between groups.

pairwise comparisons survived a Tukey-Kramer adjustment.
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Figure 7.17: Box plot of frustration self-ratings. While the variances are fairly

homogeneous, the ratings are clearly not normally distributed.

59



Chapter 8

Discussion

The results in Section 7.2 corroborate a strong form of the guidance hypothesis:

namely, that any attempts at guidance (even resistive forms) can impair training

as compared to practice. Previous studies have shown that subjects can become

dependent on assistive guidance, and the guidance hypothesis theorizes that challenge

is necessary to the learning process. The results of this study support that notion,

but also suggest that even additional challenge can impair learning, and indeed that

any interference with the task (through attempts at guidance) will impair training

compared to straight practice. This is supported by the fact that in the target-

hitting task, both of the novel guidance separation paradigms (TSA, SSA), which were

designed specifically to discourage dependency, led to significantly worse performance

than the control group. Additionally, the results suggest that the gross guidance

paradigms (GA, GR) also led to worse performance than the control group. In the

path-following task, while none of the results were statistically significant, the control

group still appeared to perform better than the guidance groups.

It is especially interesting that the separation paradigms (TSA, SSA) actually led

to worse performance than either of the gross guidance paradigms (GA, GR). There

are several factors that might explain this. Generally speaking, it is possible that

subjects were simply unfamiliar with these novel forms of guidance, and did not fully

understand how they were supposed to use the guidance. Anecdotally, subjects had

a relatively easy time understanding the operating principles of GA and GR, while
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they had a comparatively harder time understanding how to use TSA and SSA. Thus,

it is possible that more thorough training for how to use these somewhat complex

paradigms would lead to improved results. Additionally, subjects were not informed

of the theory behind the separation paradigms in order to obviate any placebo effects

resulting from the power of suggestion or experimenter bias. However, it is possi-

ble that if participants had understood why such complex guidance methodologies

were being used, then they would be less frustrated with the guidance and better

understand how to fully utilize it.

Specific to TSA, many subjects reported that they found the constant “nudging” to

be frustrating, although higher frustration in the TSA group was not reflected in the

workload results. Additionally, it is possible that the poor performance of TSA in

the target-hitting task was due to the rhythmic nature of the task. While there is

an optimal excitation frequency and a clearly defined optimal path that minimizes

trajectory error, the initial conditions of the task will produce optimal trajectories

that are out of phase with each other in time. In other words, while it is true that

following the expert precisely would elicit the highest hit count in the task, following

the expert is not a necessary condition for achieving the highest hit count. It is

entirely possible to follow the expert at a phase lag and still achieve the maximum

hit count- in fact, in the GA condition, guidance forces and task forces are actually

equal and opposite when the novice is out of phase with the expert by a certain

amount. By contrast, the TSA group reported that they found the assistance from

the virtual expert to be pervasive and annoying even during later sessions, confirming

that participants were likely performing the task out of phase with the expert. The

fact the the TSA group did not perform significantly differently from other groups in

the path-following task corroborates the potentially detrimental effects of rhythmic

tasks on the effectiveness of TSA.
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These results suggest that perhaps the best way to enhance training is to increase

the difficulty of a task without altering the inherent task dynamics or interfering with

task execution through explicit guidance. For instance, decreasing the target size in

the target-hitting task or augmenting the perceived error in the path-following task

might both be effective ways of enhancing training.

Considering just the effect of the guidance conditions on performance during training,

it is worthwhile to note that the control and GA groups outperformed most other

groups, and results suggest that the GA group outperformed the control group. This

suggests that if guidance is being used to assist an operator in the real-time execution

of tasks, for instance to prevent the operator from entering dangerous or forbidden

regions of the workspace, then GA is the guidance method of choice. Further study

is warranted on how to effectively guide users through the real-time completion of a

task with minimal interference.

It is unfortunate and unexpected that the curve-fitting analysis did not produce sig-

nificant results, as it offers the most detailed information on the effects of the guidance

paradigms and was significant in a pilot study with fewer subjects. There are two fac-

tors that likely contributed to the low power. First, the groups were not well balanced

in terms of subject aptitude and initial perfomance level. Some subjects seemed to be

“natural experts”, performing well in the initial evaluation and improving little over

the course of the study, while others performed very poorly at entrance. Additionally,

some subjects exhibited a consistent learning trend with decreasing variance in per-

formance over time, while others had wildly varying performance over the course of

the study, with only a weak upward trend (as demonstrated by the number of subjects

achieving zero hits even in the final stages of target-hitting training in Figure 7.5).

The distribution of these subjects across groups was not even, and this limited the

ability to account for these factors during data analysis. Secondly, the tasks may not
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have been challenging enough to elicit significant changes in performance over time for

all subjects and guidance conditions. Especially for the path-following task, subjects

tended to quickly reach the performance ceiling (saturation level of performance).

Because the effective training period was so short, there was relatively little data to

draw conclusions from, and the effects of training may have been overshadowed by

the effects of subjects reaching the performance ceiling.

Generally speaking, it is important to keep in mind there was quite a large variability

in performance between subjects, and guidance may not affect all subjects equally.

For instance, it is possible that complete novices who find a task extraordinarily

difficult will still benefit from certain types of guidance, as mentioned in Section 4.1.

Further study on different subject populations is warranted.

Finally, it is also unfortunate and unexpected that the workload analysis did not pro-

duce significant results, as it did in pilot study. Anecdotally, many subjects reported

that the NASA TLX workload scale was simply not intuitive or easy to use. Specif-

ically, they did not understand the pairwise comparisons between subscales used to

produce an overall weighted workload score, and did not have a reference on which

to base their reported workload on each subscale. From a statistical point of view,

this meant that the between-subject variance for each subscale was quite high. In

the future, better training on how to use the TLX scale or the addition of quali-

tative reference values (i.e., “could perform the task in my sleep” through “task is

physically impossible”) might improve power. Other workload scales should also be

considered, such as the Workload Profile scale developed by Tsang and Velazquez

[48]. Rubio et al. [49] showed that the Workload Profile scale has a higher sensitivity

and diagnostic power than NASA TLX.
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Chapter 9

Conclusions

The results of these two studies involving 66 subjects and two disparate dynamic

tasks have shown that many of our instincts about haptic guidance are wrong: con-

ventional approaches to haptic robot-mediated training are not significantly better

than practice, and more complex guidance paradigms can in fact be detrimental to

the learning process. Further study is warranted to determine the generalizability of

these results to training for other types of tasks, to robot-mediated rehabilitation,

and to real-time mediation of task execution.

To facilitate continued research, this work has made a number of additional con-

tributions. A guidance paradigm taxonomy has been proposed that will allow for

easier discussion, classification, and comparison of haptic guidance paradigms. A

new software platform for studying training of dynamic tasks has been developed

with a specific focus on portability and experimental integrity. Finally, the tradi-

tional shared-control proxy model has been improved in order to accommodate a

number of more complex guidance paradigms. Although these paradigms were not

shown to be superior in the context of training, it is hypothesized that they would

be very advantageous in the context of robot-mediated real-time task execution, and

could improve shared-control human-machine interfaces ranging from autopilots to

robotic surgical systems.
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