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Abstract— In this paper, we summarize a novel approach to
robotic rehabilitation that capitalizes on the benefits of patient
intent and real-time assessment of impairment. Specifically,
an upper-limb, physical human-robot interface (the MAHI
EXO-II robotic exoskeleton) is augmented with a non-invasive
brain-machine interface (BMI) to include the patient in the
control loop, thereby making the therapy ‘active’ and engaging
patients across a broad spectrum of impairment severity in the
rehabilitation tasks. Robotic measures of motor impairment
are derived from real-time sensor data from the MAHI EXO-
II and the BMI. These measures can be validated through
correlation with widely used clinical measures and used to drive
patient-specific therapy sessions adapted to the capabilities of
the individual, with the MAHI EXO-II providing assistance
or challenging the participant as appropriate to maximize
rehabilitation outcomes. This approach to robotic rehabilitation
takes a step towards the seamless integration of BMIs and
intelligent exoskeletons to create systems that can monitor and
interface with brain activity and movement. Such systems will
enable more focused study of various issues in development of
devices and rehabilitation strategies, including interpretation
of measurement data from a variety of sources, exploration of
hypotheses regarding large scale brain function during robotic
rehabilitation, and optimization of device design and training
programs for restoring upper limb function after stroke.

I. INTRODUCTION

Stroke is the leading cause of neurological disability in the
United States [22]. Repetitive, task-specific training of the
affected limb can result in significant motor recovery more
than one year after the stroke incident [21]. Experiments
show that robot-assisted training of the impaired arm can
be as effective as unassisted repeated practice [14] and more
effective than neuro-developmental therapy commonly used
for motor recovery after stroke [19]. Furthermore, robotic
rehabilitation systems offer increased efficiency, lower cost,
and new sensing capabilities to the therapist.

Given the proven potential of robotic rehabilitation sys-
tems, we aim to accelerate the development, efficacy, and
use of robotic rehabilitation after stroke. This paper presents
our approach to the development of robotic rehabilitation
systems designed to capitalize on the benefits of patient intent
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Fig. 1. MAHI EXO-II exoskeleton on tetraplegic patient, for determination
of robotic measures of motor impairment.

and real-time assessment of impairment. We use a brain-
machine interface (BMI) based on electroencephalography
(EEG) to control a robotic exoskeleton that will guide a
patient’s limb through a naturalistic movement with the goal
of training brain networks that might aid in motor recovery
from incomplete paralysis. The robotic device enables accu-
rate positioning of the impaired limb while simultaneously
providing assistance or resistance forces and collection of
motion data that can be used to characterize the quality
of the patient’s movements. To evaluate the efficacy of the
system and the degree of motor recovery, we use real-time
data acquired from the robotic exoskeleton and the BMI to
calculate objective performance metrics, and we compare
these to traditional clinical measures of motor function.

II. BACKGROUND AND MOTIVATION

A. Robotic rehabilitation systems

Various aspects of robotic rehabilitation have been in-
vestigated previously, including a significant effort in the
design of novel rehabilitation robots (e.g., [10], [13], [16]).
Rehabilitation engineering research has increasingly focused
on quantitative evaluation of residual motor abilities in an
effort to obtain an objective evaluation of rehabilitation
effects [6]. Exoskeleton rehabilitation robots, such as the
MAHI EXO-II (Fig. 1) used in our system [9], [18], offer
the advantage of precisely recording and monitoring isolated
joint movements of the arm and wrist, rather than just the end
effector (as in the MIT-MANUS and MIME systems [13]),
and hence are better-suited for quantifying motor impairment
of multi-joint upper extremity reaching movements.



B. Neural interfaces

The last decade has seen remarkable advances in neural
decoding and assistive BMI systems to reconstitute motor
function, enabling control of computer cursors, robotic limbs,
and orthoses in real time (e.g., [2], [4], [11], [20]). Based
on recent findings that BMI training can be used for selec-
tive induction of use-dependent CNS plasticity that might
facilitate motor recovery, the concept of restorative BMI has
emerged [3], [5], [7]. Although long-term BMI use has been
shown to result in the formation of a stable, addressable,
and robust cortical map for 2D prosthetic control [8], little
is known about the nature of the cortical representation
for BMI control of limb movements at the macro-scale
of EEG. We believe that developing non-invasive BMI-
exoskeleton robot systems in closed-loop with the injured
brain is critical for (1) understanding current limitations of
BMI systems, (2) improving their chance to succeed when
applied to patient populations such as stroke, (3) allowing
robots to work cooperatively (i.e., shared-control) with peo-
ple to extend, restore, or augment their human capacities,
and (4) conducting reverse-translational studies of the effects
of BMI-induced cortical plasticity that can contribute to a
better understanding of cortical physiology while informing
computational models of brain function.

C. Assessing motor deficits and recovery after stroke

Clinical measures of motor improvement, while reliable
and widely accepted, have several drawbacks including
variability, subjectivity, and lengthy evaluation procedures
[12], [17]. In contrast, robotic measures (e.g., movement
accuracy, timing, and smoothness) and EEG-based measures
have the benefits of being completely objective, capturing
quality of movement and the current state of the movement
representation, and providing patients and therapists with
immediate feedback on patient progress. Despite these ad-
vantages, robotic and EEG-based measures lack the wide
acceptance of clinical measures because they are often
device- or task-specific and have not been tested for relevance
to clinical outcomes. Our system will record robotic and
EEG-based measures during clinical testing to facilitate the
identification of task- and device-independent robotic and
neurophysiological measures that correlate well with clinical
measures, enabling the incorporation of objective measures
of motor function into clinical rehabilitation procedures.

III. APPROACH

The goal of this research is to accelerate the development,
efficacy, and use of robotic rehabilitation after stroke by
capitalizing on the benefits of patient intent and real-time
assessment of impairment. Toward this goal, we augment
the MAHI EXO-II, a physical human-robot interface, with
a non-invasive EEG-based BMI to include the patient in
the control loop and make the therapy ‘active’. Using this
system, we are developing robotic and EEG-based measures
of motor impairment and recovery that will allow real-
time evaluation of patient progress and drive patient-specific
therapy sessions. When appropriate, the MAHI EXO-II can

then provide assistance or challenge the participant as needed
to maximize rehabilitation outcomes. The following sections
describe the components of the system and the methods for
evaluation.

A. The MAHI EXO-II robot exoskeleton

The MAHI EXO-II (Fig. 1) is a five-DOF exoskeleton
comprised of a revolute joint at the elbow, a revolute
joint for forearm rotation, and a 3-RPS (revolute-prismatic-
spherical) serial-in-parallel wrist actuated by DC brush mo-
tors for lowered cost. The design allows for 100% of
wrist abduction/adduction range-of-motion (ROM) and 63%
of wrist flexion/extension ROM during activities of daily
living (ADL), and offers key design improvements over
prior versions such as reduced backlash and singularities,
increased torque output in some DOF, improved wearability
by allowing the device mount to be abducted at the shoulder,
and streamlined interchange between left and right arm con-
figurations [15]. The device is equipped with high-resolution
sensors that enable accurate measurement of position and
velocity in the workspace (see [9], [10] for detailed perfor-
mance data). During therapy, the device actuators can provide
variable and patient-controlled assistance forces to vary the
difficulty of the task.

B. The non-invasive BMI-exoskeleton system

A closed-loop real-time BMI system will be integrated
with the physical exoskeleton and a real-time open source
virtual exoskeleton model (VEM), as shown in Fig. 2. Our
architecture modularizes the key components of the neural
exoskeleton system into inputs, signal analysis, controls,
plant, and presentation (virtual or physical). As a result of the
common interfaces of the system, EEG decode algorithms
implemented in the signal processing module can be used
interchangeably, which facilitates comparison across labs
and teams. In Fig. 2, the Inputs correspond to the EEG
signals (outputs of Block II) recorded using a 64 channel
Active electrode EEG cap (Block I). Block III corresponds
to the Signal Analysis, which consists of our proposed time-
domain decoding algorithms, including sub-band filtering
and subsystems for decision fusion. The Controls and Plant
are embedded within Block IV, which represents the virtual
or actual MAHI EXO-II. To harness the increased sensing
capabilities in advanced exoskeleton device designs, users
will require interfaces supported by novel forms of sensory
feedback and novel control paradigms. To allow for this,
Block V contains the presentation of visual and ‘robotic’
feedback of the exoskeleton during BMI operation. The pro-
posed system is the first comprehensive robust, safe, solution
based on EEG decoding of natural volitional movement,
using state-of-the-art active EEG and a robotic exoskeleton
platform for use by human subjects. Note that for improved
robust brain control, the system has built-in redundancy due
to its multiple decoders (e.g., Wiener and Kalman filters, and
a motor intent classifier for switching the neural interface
during periods of non-movement intention).



Fig. 2. Closed-loop BMI system architecture for the control of the MAXI EXO-II using EEG signals.

C. EEG Methods

All participants will complete training to learn how to use
their intentions to move the exoskeleton through repeated
single-joint and multi-joint movements while they wear the
BMI system. During BMI training, subjects will imagine
moving their limb while watching the robot’s resulting
movement. (For unimpaired subjects, muscle activity from
the limbs will be monitored via electromyography (EMG) to
ensure that only ‘movement thoughts’ are used to control the
robot; patients will be asked to actively attempt to perform
the movements.) Importantly, the single-joint and multi-joint
targeted movements will be self-selected and self-initiated
by the subjects. (See [1] for detailed behavioral task and
setup.) The aim is for patients to intentionally evoke robotic
assitance through the BMI to increase the range of paretic
arm movement by controlling the robot to move through a
larger range than they can produce on their own. For each
group, this is accomplished by reconstructing trajectories of
the elbow and wrist joints decoded from EEG to control
the MAHI EXO-II in real-time with visual feedback of the
robot’s movement.

D. Clinical measures

To evaluate patient performance, we are focusing on three
common clinical measures: Fugl-Meyer (FM) upper-limb
component, Action Research Arm Test (ARAT) and Jebsen-
Taylor Hand Function Test (JT). These tests rate motor im-
pairment (FM and ARAT) and functional performance (JT)
of motions associated with activities of daily living. The time
to complete each task is recorded and compared to normative
data for interpretation. Our goal is to obtain robotic measures
that correlate well with these clinical measures.

E. Structural and functional neuroimaging measures

To look for evidence of neural plasticity over time,
structural and functional fMRI will be performed on a 3T
MRI scanner. Subjects will perform a controlled repetitive
movement task of the hand during an fMRI blocked design
paradigm with four cycles alternating between 30 seconds of
movement followed by 30 seconds of no movement. After the

task fMRI, an additional resting fMRI scan will be done to
look at functional connectivity of activated regions. Finally, a
10 minute diffusion-weighted sequence will be done to look
at structural connectivity. The structural MRI results will be
used to measure damage to brain regions involved in upper
extremity movement and will provide an anatomical basis to
localize the functional MRI data. The functional MRI results
will be used to localize activation in brain regions during
upper extremity movement and at rest. The DTI will look at
structural connectivity.

We anticipate finding increased activation in the stroke-
affected primary cortex (M1), premotor cortex (PMC), sup-
plementary motor area (SMA), and ipsilateral cerebellum.
We predict that changes in activation of these specific brain
regions will correlate with change in behavioral functions
and movement quality. We also predict that improvement in
behavioral functions and movement quality will positively
correlate with the functional and structural connectivity
among specific brain regions.

F. Robotic measures
Robotic measures are calculated by post-processing the

data files collected via the robotic exoskeleton while the
participant makes point-to-point reaching movements. Mea-
sures that capture movement speed (such as movement time
and average velocities), accuracy (such as trajectory error
and variability), and smoothness of movement (such as jerk
and number of zero crossings in the acceleration profile)
can be used to quantify motor impairment from robotic
sensor data. These robotic measures are derived from known
characteristics of healthy human movements for center-out
reaching tasks and are normalized for broad applicability
across robotic hardware.

Currently, we are exploring the use of trajectory error (TE)
and smoothness of movement (SM) measures to objectively
evaluate motor function. In healthy human movements, the
nominal desired trajectory is a straight line from the last
target to the current target. Absolute values of the deviations
from this straight line trajectory during the point-to-point
movement are summed to obtain the raw TE value, which
is then normalized with respect to the number of data points



and the distance traveled to create a device-independent
measure of accuracy. The SM measure is a correlation co-
efficient that expresses the correlation between the patient’s
speed profile and a speed profile utilizing the minimum jerk
principle (an optimally smooth speed profile). The TE and
SM measures serve as objective assessments of movement
quality; TE evaluates the patients’ performance of tracking
straight line target trajectories, while SM compares the speed
profile of the patients’ movements with the speed profiles
observed in healthy people’s movements. Both measures
demonstrate how stroke patients’ movements deviate from
healthy people’s movements, and they provide practical, fast,
direct, and objective evaluations of movement quality.

G. Statistical analyses

The primary goal of our statistical analyses is to evaluate
how well the objective robotic and EEG-based measures
reflect the motor improvements captured by accepted clin-
ical measures. To determine treatment effects for the EEG,
robotic, and clinical measures, repeated measures ANOVA
will be used with repeated measures on test day. We will then
use regression analyses to investigate the correlation between
clinical, EEG, and robotic measures at different days of treat-
ment. Clinical and robotic measures of motor impairment
will be compared for each pair (FM-TE, FM-SM, ARAT-
TE, ARAT-SM, JT-TE, and JT-SM) across all participants.
Correlations between robotic and clinical measures will be
used to evaluate the utility of the set of robotic measures. We
expect that the chosen robotic measures (TE and SM) will
correlate strongly with the clinical measures, which would
indicate that these objective robotic measures could be used
in place of the equivalent clinical measures.

IV. CONCLUSION

This paper described a novel approach to robotic reha-
bilitation using patient intent and real-time assessment of
motor function to improve rehabilitation outcomes. This
approach will lead to more complete integration of robotic
exoskeleton devices and brain interfaces, allowing patients to
be more active in their therapy. The use of such an integrated
system will also allow more objective and reliable evaluation
of patient progress by identifying robotic and EEG-based
measures that correlate well with accepted clinical measures.
Incorporating these objective measures into patient therapy
will enable online evaluation of patient progress, leading to
more patient-specific therapy sessions in which assistance
or resistance can be provided as needed through the in-
tegrated physical system. This research will also result in
improvements in the understanding of neuromuscular control
of upper extremities and large scale brain function during
robotic rehabilitation. These advances will be an important
step towards the optimization of device design and training
programs for restoring upper limb function after stroke.
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