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Abstract 
Stroke and spinal cord injury (SCI) are a leading cause of disability in the United States, and 
researchers have pursued using robotic devices to aid rehabilitation efforts for resulting upper-
extremity impairments. To date, however, robotic rehabilitation of the upper limb has produced 
only limited improvement in functional outcomes compared to traditional therapy. This paper 
explores the potential of myoelectric control and neuromusculoskeletal modeling for robotic 
rehabilitation using the current state of the art of each individual field as evidence. Continuing 
advances in the fields of myoelectric control and neuromusculoskeletal modeling offer 
opportunities for further improvements of rehabilitation robot control strategies. Specifically, 
personalized neuromusculoskeletal models driven by a subject’s electromyography signals may 
provide accurate predictions of the subject’s muscle forces and joint moments which, when 
used to design novel control strategies, could yield new approaches to robotic therapy for stroke 
and SCI that surpass the efficacy of traditional therapy.  
 
Keywords 
Robotic rehabilitation, upper limb motor impairment, electromyography, neuromusculoskeletal 
modeling 
 
Introduction 
Approximately 270,000 people who have sustained a spinal cord injury are living in the United 
States, with over 40% of survivors reporting incomplete tetraplegia [1]. Additionally, an 
estimated 7 million adults in the United States self-report having had a stroke, with stroke being 
a leading cause of long-term disability [2]. Loss of upper-limb function due to neurological injury 
significantly limits the ability of survivors to live and work independently. Intensive motion 
therapy after either spinal cord injury or stroke has been shown to have a positive effect on 
sensory-motor recovery in the upper-extremities [3]. 

 
Rehabilitation robots, both end-effector and exoskeleton types, are capable of delivering 
intensive upper-limb movement therapy using a range of control strategies that aim to maximally 
engage the participant [4]. An advantage of exoskeleton type robots over end-effector type 
robots is that a one-to-one correspondence exists between the robot’s joints and the subject’s 
joints. Assist-as-needed type controllers, which provide movement assistance only when the 
participant is unable to complete the movement independently, have been shown to promote 
recovery of movement coordination to a greater degree than controllers that move a passive 
limb throughout the arm’s workspace [5,6]. Despite significant advances in both robotic 
hardware and controller technologies in recent years, robotic rehabilitation outcomes only match 
outcomes for traditional therapy when the number of repetitions is matched between the two 
strategies [7]. A recent meta-analysis comparing robotic therapies and conventional therapy 
showed no statistically significant improvements in performing activities of daily living after 
robotic therapy [8]. 
 
To address the limited progress robots have made in improving upper-extremity rehabilitation 
outcomes, this review examines a promising new approach of combining myoelectric control 
with neuromusculoskeletal (NMS) modeling to develop novel robot controllers that may lead to 
significant functional recovery. Myoelectric control takes in electromyogram (EMG) signals from 
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the subject, which are often used to determine user intent as inputs to a control law. NMS 
modeling can convert these measured EMG signals into muscle forces and moments, 
accounting for the complex nonlinear physiological and biomechanical relationships involved in 
the conversion. Combining myoelectric control with NMS modeling could facilitate the 
development of physiologically based control strategies that can decode user intent and 
determine assistive robotic torques. This review analyzes progress in assist-as-needed robot 
control strategies, myoelectric control, and NMS modeling individually while keeping in mind the 
broader goal of combining the three areas into more effective rehabilitation robot control 
strategies, illustrated in Fig. 1. The studies surveyed in this paper are summarized in Table 1. 
 
Control Techniques for Robotic Rehabilitation 
Robots are used for upper-extremity rehabilitation because they are well suited to deliver high 
repetitions of precise movements and capture quantitative measures of movement coordination 
(see Blank et al. for a recent survey [5]). Despite these capabilities, existing robotic rehabilitation 
strategies offer limited benefits in clinical and functional outcomes when compared to 
conventional therapy [7,8]. Recently, a significant research focus in the field of robotic 
rehabilitation has been the development of novel control strategies that attempt to elicit 
improvements in motor coordination by modulating the robot behavior in response to the 
capabilities of the participant. This research has been performed with robotic devices including 
exoskeletons with varying degrees of freedom (DOF), for movements in two and three 
dimensions. Controllers have been tested with able-bodied participants, as well as those with 
SCI or stroke (see Table 1, top section, for a summary).  
 
Impedance controllers are the basis for a large class of robotic rehabilitation control strategies. 
Impedance controllers modulate the dynamic relationship between force and motion and ensure 
safe physical interactions between the human user and the robot. In contrast, a position-based 
control scheme results in the robot following a prescribed trajectory while the human user simply 
“rides along.” Impedance controllers are preferred in rehabilitation applications because they 
facilitate the user’s engagement and participation in movement execution. An impedance control 
framework typically relies on a reference trajectory, and the controller provides force feedback 
based on that reference trajectory. Because of this approach, if a participant is able to complete 
the motion, the controller provides no force, and in this way, it acts as an “assist-as-needed” 
strategy. Pure impedance control still permits slacking on the part of the participant because the 
robot will follow the reference trajectory regardless of the participant’s contribution to movement 
execution. Various adaptations of “assist-as-needed” type controllers have been proposed to 
prevent slacking, with most approaches requiring an estimate of the ability of the participant to 
complete the movement, and then modulating the gains on the controller based on this estimate 
to promote engagement [9,10].  
 
More generalized control strategies beyond the “assist-as-needed” paradigm have been 
proposed and evaluated in the context of robotic rehabilitation, including resistive and error 
augmenting controllers [11,12]. Studies discussed in this paper focus on assist-as-needed 
controllers, which provide a more intuitive connection to NMS modeling; however, other 
controllers for robotic rehabilitation could be adapted to incorporate myoelectric control and 
NMS modeling. 
 
Clinical evaluation of these assist-as-needed type controllers for rehabilitation of the upper limb 
has been conducted in both stroke and SCI populations. In one study involving 17 participants 
with incomplete SCI, an assist-as-needed controller implemented on an upper-limb exoskeleton 
robot was compared to a subject-triggered controller [6]. The assist-as-needed controller 
allowed a variable amount of error on the motion and adapted the reference trajectory in real-
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time to challenge the participant. Recalculating the reference trajectory in real-time allowed the 
participant to deviate from the reference trajectory without a restoring force if the new motion 
was towards the goal. Despite demonstrating participant engagement and increasing levels of 
challenge with the novel controller, no statistically significant improvement in function was 
observed in the assist-as-needed control group compared to the subject-triggered control group 
after therapy intervention. More recently, an assist-as-needed controller was applied to 
rehabilitation of the upper limb of individuals following stroke [13]. The impedance-type 
controller implemented in this study included an adaptation law to vary the error gain, and a 
forgetting factor to limit slacking. This controller was tested in a therapy regimen with 6 stroke-
impaired individuals, and there were no statistically significant improvements in functional ability 
outcomes. Further, the study did not use a control group receiving conventional therapy. Mounis 
et al. developed a method to estimate the functional ability of a subject based on the Wolf Motor 
Function Test using an exoskeleton and proposed a decaying control law based on this 
estimate. Results show success in estimating the functional ability similar to clinical evaluations, 
but the subsequent controller was only evaluated in a simulation environment and not with 
robotic hardware [14].   

 
Additional novel control strategies to promote participant engagement in robotic rehabilitation 
have recently been proposed though not yet evaluated with motor impaired populations. One 
strategy suggests ways to adapt the task, assistance, and visual feedback based on the 
participant’s ability [15]. Another proposed control strategy uses machine learning to determine 
a subject’s ability to complete a task and adjusts the assistance based on the determined ability 
of the subject [16]. Because these controllers rely on reference trajectories, they do not attempt 
to determine user intent but rather only attempt to predict user capability. To improve robotic 
rehabilitation, researchers will likely need to incorporate control strategies that directly detect 
user intent. One promising approach is the use of the individual’s own muscle excitations, 
measured with electromyography (EMG), as a means to use physiological signals for intent 
detection. 
 
Myoelectric Control: Utilizing Physiological Signals 
Myoelectric control relies on the detection of electrical activity from muscles, often through the 
use of surface electrodes placed on the skin over the muscle belly, to determine the intended 
action of the human and transform this action into corresponding commands to the support 
robot. These EMG signals serve as the inputs to a given control strategy that generates the 
resulting action to be taken by the robot. This approach is commonly used in human-robot 
interaction and human intent detection applications ranging from the intuitive control of 
prosthetic limbs to assistive exoskeletons (see Bi et al., 2019 for a review) [17]. Use of EMG 
signals as inputs to a robot control system presents a number of technological challenges for 
implementation. These include ensuring consistent placement of electrodes over time; variable 
EMG signal quality, especially in impaired populations; and development of model-based or 
machine learning approaches to convert signals to useful control inputs [17]. Despite these 
challenges, myoelectric control is increasingly used for the purpose of decoding motion and 
intent, predicting movements, and controlling assistive and therapeutic robotic devices.  
 
Decoding focuses on analyzing EMG signals along with limb kinematics to determine how the 
EMG signals map to movement. This operation can be performed to determine mappings 
between EMG and joint positions, joint velocities, or joint torques. Liu et al. demonstrated the 
ability to decode shoulder, elbow, and wrist angles in both able-bodied and stroke-impaired 
populations [18]. Decoding operations can also be used to predict the participant’s attempt to 
move via increased EMG signal amplitudes, or intended movement directions for isometric 
movements [19]. Decoding is a process that can be done offline (after data has been collected), 
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or it can be used for real-time intent detection and classification as part of a robot control 
scheme. A recent example demonstrated the detection of movement onset in one of two pre-
defined directions based on EMG signals from seven muscles of the upper limb as a proof of 
concept for real-time control of an assistive exoskeleton [20]. While the study documented the 
viability of the algorithm for offline use, the authors discussed its applicability for real-time 
control of an exoskeleton. Others have used high-density EMG and classification algorithms to 
decode twenty arm and finger/thumb movements in stroke-impaired individuals [21].    
 
Motion prediction takes things a step further, attempting to predict the intended future motion of 
the limb based on real-time acquisition of EMG-signals. Like decoding, motion prediction maps 
EMG-signals to joint angles, velocities, or torques, with the objective being real-time movement 
prediction based on time-varying EMG signals acquired from a set of electrodes. This real-time 
prediction remains an open problem, with some recent progress showing the viability of 
recursive algorithms to predict both basic and dynamic wrist motions that resemble those 
involved in activities of daily living. Despite the intention for prosthesis control, this work has 
only been demonstrated in an offline mode and remains to be implemented in real-time [22].  
 
Myoelectric control of a robot uses the decoding and predicting concepts described above to 
interpret the intentions of the participant and subsequently command a robot to achieve the 
desired movement. Most work in myoelectric control has been for prosthetics and powered 
orthotics applications, where EMG signals are acquired from intact muscles of the amputee and 
used to control a prosthetic arm [23] or an assistive exoskeleton for achieving hand dexterity 
[24]. In most applications of myoelectric control, the EMG signals are used as direct inputs to a 
controller, or machine learning algorithms are used to classify EMG signal features and 
determine the intended action to be taken.  
 
Only recently have groups started to use EMG signals as an input to a rehabilitation robot 
intended to restore function, primarily with the goal of maintaining user engagement like that 
achieved through impedance type assist-as-needed controllers. Sarasola-Sanz et al. noted that 
using pathological EMG signals from the paretic limb of an individual post-stroke would likely 
lead to pathological motion, so they examined using EMG signals from the healthy limb and 
mirroring the signal to assist movements of the paretic limb in a rehabilitation scenario [25]. 
Lambelet et al. developed the eWrist, a portable wrist exoskeleton that combines force and 
myoelectric control in an assist-as-needed control strategy [26]. Pilot evaluation with able-
bodied participants demonstrated the validity of the approach, but additional work remains to 
evaluate the benefit of myoelectric control of the eWrist for rehabilitation applications. In related 
work, McDonald et al. demonstrated the potential of EMG sensing for intended movement 
direction detection in individuals with SCI using an upper limb exoskeleton, but they did not 
incorporate the approach into a rehabilitation control scheme [19]. Teramae et al. developed a 
myoelectric plus assist-as-needed controller that estimates user torque with EMG-signals and 
combines this estimation with a model predictive control scheme, recalculating a new optimal 
trajectory at each instant in time [27]. Despite the potential of these personalized, EMG-based 
control strategies, degraded performance has been observed when these techniques are 
applied to individuals with stroke or spinal cord injury [19]. This degraded performance 
motivates the need for more accurate prediction of motion from EMG signals in individuals with 
stroke or spinal cord injury, especially to achieve real-time robot myoelectric control in a 
rehabilitation setting.  
 
Neuromusculoskeletal Modeling: Combining Myoelectric Control with Physics 

NMS modeling uses physics and physiological models to map EMG signals into individual 
muscle forces or moments and potentially into motion predictions. For a more detailed overview 
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of NMS modeling, the reader is directed to [28]. For upper extremities, NMS modeling has been 
used for both motion prediction and control involving various number of DOFs and for 
individuals with intact limbs and for those with amputations (see Table 1, top section, for a 
summary). Because of its basis in physics and physiology, NMS modeling can provide a more 
accurate and robust prediction of motion than machine learning methods [29,30]. NMS modeling 
also allows for extrapolation to situations outside of available data because of its grounding in 
laws of physics and principles of physiology, something machine learning techniques cannot 
achieve.  
 

Recent work using NMS models for motion prediction has focused on motion in the wrist and 

hand, with work on 2 and 3 DOF systems. In 2015, a simplified NMS model was used to predict 

2 DOF motions in the wrist and hand using a limited number of EMG-signals [31]. Though this 

technique was used for myoelectric prosthesis control, the results can be extrapolated to other 

areas such as robotic exoskeletons. In 2017, this work was expanded to include a third DOF to 

predict wrist and hand motion offline [32]. Other recent motion prediction work has focused on 

evaluating different model variations, specifically for EMG-to-activation dynamics [33]. Given 

their ability to estimate internal forces and moments, which are closer physically to body motion 

than are EMG signals, NMS models are likely to be better suited than machine learning models 

for use in myoelectric controls schemes. Physics-based NMS models interpolate and 

extrapolate well from experimental data whereas machine learning models only interpolate well. 

 

Combining rehabilitation robots, myoelectric control and NMS modeling has the potential to 

create more effective, robust, and personalized robotic rehabilitation treatments. While studies 

have already examined myoelectric control for rehabilitative robotics, the fact that EMG based 

motion classifiers perform worse for individuals with motor impairments is concerning for further 

progress in the field. In contrast, personalized NMS models allow for physically and 

physiologically accurate mapping of EMG signals to joint moments and motion for both able-

bodied individuals and those with motor impairments. 

 

How, then, could rehabilitation robots, myoelectric control, and NMS modeling be combined to 

support the design of personalized rehabilitation interventions? One approach is based on the 

concept of “computational neurorehabilitation,” a term coined by Reinkensmeyer et al. 

describing the use of computational models to predict how neuroplasticity and motor learning 

would occur in an individual patient over time as a result of a rehabilitation intervention [34]. An 

advantage of this approach is that the robot control strategy could be adapted gradually over 

time to support the patient’s changing needs throughout the therapy process. An associated 

disadvantage is that an explicit model is required of how the patient’s neural control strategy 

adapts over time, which is a challenging modeling problem, especially when representing 

specific patients. An alternate approach involves predicting a potentially achievable neural 

adaptation that would produce a desired functional outcome, and then seeking to drive the 

central nervous system in that direction through robotic rehabilitation [35]. This approach would 

not predict gradual neural control changes over time, and it requires assumptions about which 

aspects of a patient’s neural control strategy are, and are not, changeable through therapy. 

However, it involves a simpler predictive modeling approach that can already represent specific 

patients and has the potential to predict personalized rehabilitation strategies in the near future 

[36,37]. Both approaches provide exciting avenues for future research at the intersection of 

rehabilitation robots, myoelectric control, and NMS modeling. 
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While the prediction capabilities of NMS modeling are important, these models must have real-

time capabilities if they are to be used for robot control purposes. Because of the complexity of 

a typical model, this problem is not trivial. However, recent work has shown promise in 

achieving real-time control using NMS models. Crouch et al. successfully implemented their 2 

DOF model as a controller in a virtual environment and had subjects complete a path tracing 

task with EMG-signals as the only control input [38]. Boungiorno et al. examined whether a 

simplified model with only one subject-specific parameter per muscle could provide accurate 

motion predictions. Their results showed that the simplified model functioned comparably to a 

more complex model and would be more suitable for real-time control applications [39]. Sartori 

et al. achieved real-time control of a physical prosthetic device using NMS modeling with a 3 

DOF wrist and hand model [40]. Recently, Blana et al. showed the feasibility of real-time control 

of finger movements using an NMS model [41]. 

 

While the above studies achieved real-time control, results were achieved with able-bodied 

individuals rather than those with stroke or SCI. Similar to the machine learning techniques 

discussed above, it is important to examine NMS modeling capabilities for stroke and spinal 

cord injury rehabilitation applications. Multiple recent studies have reported work in this area for 

lower-limb control [36,42,43]. However, the authors could not find any studies examining the 

application of NMS modeling to upper-limb robotic rehabilitation for individuals with a stroke or 

spinal cord injury. The extensive work modeling lower-extremity motion has demonstrated that 

personalized NMS models can correctly predict motion for individuals with stroke or spinal cord 

injury [36,42]. Recently, Durandau et al. not only predicted motion with an NMS model but also 

successfully controlled a lower-extremity exoskeleton with a controller based on an NMS model 

in individuals with stroke and spinal cord injury [43].  

 

Conclusion and Future Directions 

This review has focused on the most recent work in the areas of rehabilitative robotics, 

myoelectric control, and NMS modeling. While novel assist-as-needed control algorithms have 

been shown to engage neurologically impaired individuals during upper-limb robotic 

rehabilitation, clinical studies have not demonstrated statistically significant improvements in 

functional outcomes as a result of these interventions. Measuring an individual’s muscle activity 

via electromyography has been shown to be a viable method of detecting movement intent and 

predicting intended arm movements; however, the machine learning algorithms on which these 

methods are based do not perform as well when used with individuals who have suffered 

neurological injuries like stroke and spinal cord injury. NMS models can predict internal muscle 

forces and moments from EMG and kinematic measurements, providing robot control inputs 

that are closer physically to body motion than EMG signals. To date, NMS modeling-based 

control algorithms have not been implemented for real-time control of upper limb rehabilitation 

robots, though recent studies have shown promise in using NMS modeling to predict motion and 

control lower-extremity exoskeletons for individuals with stroke or SCI. 

 

The physiological basis of NMS modeling provides many other potential benefits to the field of 

rehabilitative robotics. Rather than simply providing assistive torques based on deviations from 

a reference trajectory, control strategies based on NMS modeling might produce new robotic 

rehabilitation control methods that can facilitate both movement compensation and movement 

restoration, either based on assist-as-needed controllers or for other paradigms that introduce 

challenge (e.g. error augmentation, resistance). From a compensation standpoint, an NMS 
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model-based control strategy could calculate the user-provided torque and determine the 

robotic torque necessary to achieve the desired movement. From a restoration standpoint, an 

NMS model-based control strategy could determine the EMG-signals required for the desired 

motion and develop a personalized strategy aimed at restoring those proper EMG-signals.  

 

As an example, model-based control methods that utilize a subject’s real-time EMG and 

kinematic data could facilitate the design of personalized assist-as-needed robot controllers that 

eliminate the “slacking” problem and the need for predefined motion trajectories [44]. Recent 

improvements in EMG-driven modeling now make it possible to construct subject-specific 

neuromusculoskeletal models that can reproduce a subject’s experimentally measured motion 

when driven by the subject’s experimentally measured EMG signals [36,37,45]. One possible 

way to use such models to design personalized assist-as-needed robot controllers that eliminate 

slacking and the use of predefined motion trajectories is outlined below: 

1. Have the subject perform a specified task as well as possible without robotic assistance 

while collecting experimental EMG and kinematic data. 

2. Personalize an EMG-driven neuromusculoskeletal model to the subject’s EMG and 

movement data. The personalized model will be able to predict the subject’s 

experimentally measured motion when the subject’s experimental EMG data are used as 

inputs. The personalized EMG-driven model will also automatically account for the 

subject’s abnormal neural control strategy. 

3. Predict minimal changes in the subject’s EMG signals such that the subject completes 

the desired task, and calculate the corresponding changes in the subject’s joint 

moments. The personalized EMG-driven model would be used to develop these 

predictions, which represent the subject’s minimal neural control changes that will 

achieve the desired task. While the predicted EMG signals will likely remain abnormal, 

they will also likely be more achievable by the subject than would healthy EMG signals. 

4. Create a linear regression model that estimates the predicted changes in the subject’s 

joint moments as a function of the subject’s EMG signals. This model will be different 

from existing proportional myoelectric control approaches that scale a single EMG signal 

to calculate the applied robot control torque at a particular joint [46]. 

5. Develop an assist-as-needed robot controller where the applied robot control torques are 

calculated by the linear regression model based on the subject’s current EMG signals. If 

the subject “slacks” and does not generate sufficiently large EMG signals, then the robot 

control torques needed to complete the task will not be generated. Furthermore, 

knowledge of a pre-defined motion trajectory will not be required. 

6. Over time, gradually withdraw the assistive robot control torques with the hope that the 

subject will gradually learn the minimal EMG changes needed to achieve the task. 

 

While the personalized robot controller design approach outlined above holds promise, 

significant research is still needed to bring together the neuromusculoskeletal modeling and 

experimental elements required to implement it. 

 

Future work in rehabilitation robotics should begin developing and testing control strategies that 
combine myoelectric control with NMS models. As discussed here, the area of NMS modeling in 
upper-extremity rehabilitation has been largely unexplored yet shows great potential to achieve 
better functional outcomes than the current state-of-the-art robotic rehabilitation as well as 
traditional therapy.  
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Tables and Figures 

 
Table 1: Recent studies examining robotic rehabilitation, myoelectric control, or neuromusculoskeletal modeling. 

 

 
Study Joints EMG Population NMS Model Control 

Control 
Implementation 

R
o
b
o
ti
c
 

R
e
h
a
b
ili

ta
ti
o

n
 Pehlivan 2015 [9] E,W N H N C R 

Frullo 2017 [6] E,W N C N C R 

Stroppa 2017 [16] S,E N H N C R 

Agarwal 2019 [15] H N H N C R 

Mounis 2019 [14] S,E N S N C S 

Oliveira 2019 [13] S,E,W N S N C R 

M
y
o
e
le

c
tr

ic
  

C
o
n
tr

o
l 

Zhang 2012 [21] E.W.H Y S N P NA 

Lambelet 2017 [26] W Y H N C R 

Meeker 2017 [24] H Y S N P R 

Bakshi 2018 [22] W Y H N P NA 

Sarasola-Sanz 2018 [25] S,E,W,H Y S,H N P NA 

Teramae 2018 [27] E Y H N C R 

Trigili 2019 [20] S,E Y H N P NA 

Liu 2020 [18] S,E,W Y S,H N P NA 

McDonald 2020 [19] E,W Y C,H N P NA 

N
M

S
 

M
o

d
e
lin

g
 

Crouch 2015 [31] W,H Y H Y P NA 

Crouch 2016 [38] W,H Y H Y C S 

Pan 2017 [32] W,H Y H Y P NA 

Sartori 2018 [40] W,H Y A,H Y C R 

Blana 2020 [41] H Y H Y C R 

Joints: S = shoulder, E = elbow, W = wrist, H = hand involved in the study  

EMG:  Y = yes, N = no if EMG signals were acquired from the participants  

Population: H = able-bodied/intact, S = stroke, C = spinal cord injury, A = amputee 

NMS (neuromusculoskeletal) Model: Y = yes, N = no if NMS models were used 

Control: C = control action is computed, P = prediction of movement only   

Control Implementation: When control action is computed, was implementation S = simulation only, or R = with robotic hardware 
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Figure 1: Venn diagram showing the intersection of robotic rehabilitation, myoelectric control, 

and neuromusculoskeletal modeling. 

Jo
urn

al 
Pre-

pro
of



Annotated References 

1.  National Spinal Cord Injury Statistical Center: Spinal Cord Injury Facts and Figures at 
a Glance. J Spinal Cord Med 2013, 36:1–2. 

2.  Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, 
Chamberlain AM, Chang AR, Cheng S, Das SR, et al.: Heart Disease and Stroke 
Statistics—2019 Update: A Report From the American Heart Association. Circulation 
2019, 139:56–528. 

3.  Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC: Effects of 
Intensity of Rehabilitation After Stroke. Stroke 1997, 28:1550–1556. 

4.  Weber LM, Stein J: The use of robots in stroke rehabilitation: A narrative review. 
NeuroRehabilitation 2018, 43:99–110. 

5.  Blank AA, French JA, Pehlivan AU, O’Malley MK: Current Trends in Robot-Assisted 
Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr 
Phys Med Rehabil Reports 2014, 2:184–195. 

6.  Frullo JM, Elinger J, Pehlivan AU, Fitle K, Nedley K, Francisco GE, Sergi F, O’Malley MK: 
Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete 
Spinal Cord Injury: A Parallel-Group Controlled Trial. Front Neurorobot 2017, 11:26. 

7.  Norouzi-Gheidari N, Archambault PS, Fung J: Effects of robot-assisted therapy on 
stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the 
literature. J Rehabil Res Dev 2012, 49:479. 

8.  Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS: Effects of 
robot-assisted upper limb rehabilitation in stroke patients: a systematic review 
with meta-analysis. Neurol Sci 2017, 38:1561–1569. 

9.  Pehlivan AU, Sergi F, OMalley MK: A Subject-Adaptive Controller for Wrist Robotic 
Rehabilitation. IEEE/ASME Trans Mechatronics 2015, 20:1338–1350. 

10.  Hussain S, Jamwal PK, Van Vliet P, Ghayesh MH: State-of-the-Art Robotic Devices for 
Wrist Rehabilitation: Design and Control Aspects. IEEE Trans Human-Machine Syst 
2020, doi:10.1109/THMS.2020.2976905. 

11.  Liu LY, Li Y, Lamontagne A: The effects of error-augmentation versus error-
reduction paradigms in robotic therapy to enhance upper extremity performance 
and recovery post-stroke: A systematic review. J Neuroeng Rehabil 2018, 15:1–25. 

12.  Marchal-Crespo L, Reinkensmeyer DJ: Review of control strategies for robotic 
movement training after neurologic injury. J Neuroeng Rehabil 2009, 6. 

*13.  Oliveira AC de, Rose CG, Warburton K, Ogden EM, Whitford B, Lee RK, Deshpande AD: 
Exploring the Capabilities of Harmony for Upper-Limb Stroke Therapy. In 2019 IEEE 
16th International Conference on Rehabilitation Robotics (ICORR). . IEEE; 2019:637–
643. 

 
The authors designed and tested a novel 7 degree of freedom upper-extremity exoskeleton. The 

exoskeleton was designed to ensure proper should movement in various tasks, and it showed 

potential in preliminary use on subjects with stroke. 

 
14.  Mounis SYA, Azlan NZ, Sado F: Assist-as-needed control strategy for upper-limb 

rehabilitation based on subject’s functional ability. Meas Control 2019, 52:1354–
1361. 

*15.  Agarwal P, Deshpande AD: A Framework for Adaptation of Training Task, 
Assistance and Feedback for Optimizing Motor (Re)-Learning With a Robotic 
Exoskeleton. IEEE Robot Autom Lett 2019, 4:808–815. 

 

Jo
urn

al 
Pre-

pro
of



The authors developed a strategy to personalize a robotic rehabilitation therapy. They proposed 

three different aspects to personalize based on a specific subject and their ability. These three 

aspects were the task, the assistance, and the visual feedback. 

 
16.  Stroppa F, Marcheschi S, Mastronicola N, Loconsole C, Frisoli A: Online Adaptive 

Assistance Control in Robot-Based Neurorehabilitation Therapy. IEEE Int Conf 
Rehabil Robot 2017, 2017:628–633. 

17.  Bi L, Feleke AG, Guan C: A review on EMG-based motor intention prediction of 
continuous human upper limb motion for human-robot collaboration. Biomed Signal 
Process Control 2019, 51:113–127. 

18.  Liu J, Ren Y, Xu D, Kang SH, Zhang L-Q: EMG-Based Real-Time Linear-Nonlinear 
Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-
Bodied Persons and Stroke Survivors. IEEE Trans Biomed Eng 2020, 67:1272–1281. 

19.  McDonald CG, Sullivan JL, Dennis TA, O’Malley MK: A Myoelectric Control Interface 
for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury. IEEE Trans 
Neural Syst Rehabil Eng 2020, 28:978–987. 

*20.  Trigili E, Grazi L, Crea S, Accogli A, Carpaneto J, Micera S, Vitiello N, Panarese A: 
Detection of movement onset using EMG signals for upper-limb exoskeletons in 
reaching tasks. J Neuroeng Rehabil 2019, 16:45. 

 
The authors developed a means to detect movement onset using EMG-signals with an intended 

application of assistive exoskeletons. They used a machine learning approach to detect EMG-

signal features and combined this with information theory to determine potentially redundant 

features and provide further analysis. 

 
21.  Xu Zhang, Ping Zhou: High-Density Myoelectric Pattern Recognition Toward 

Improved Stroke Rehabilitation. IEEE Trans Biomed Eng 2012, 59:1649–1657. 
22.  Bakshi K, Manjunatha M, Kumar CS: Estimation of continuous and constraint-free 3 

DoF wrist movements from surface electromyogram signal using kernel recursive 
least square tracker. Biomed Signal Process Control 2018, 46:104–115. 

23.  Losey DP, McDonald CG, Battaglia E, O’Malley MK: A Review of Intent Detection, 
Arbitration, and Communication Aspects of Shared Control for Physical Human–
Robot Interaction. Appl Mech Rev 2018, 70. 

24.  Meeker C, Park S, Bishop L, Stein J, Ciocarlie M: EMG Pattern Classification to 
Control a Hand Orthosis for Functional Grasp Assistance after Stroke. In 2017 
International Conference on Rehabilitation Robotics (ICORR). . IEEE; 2017:1203–1210. 

25.  Sarasola-Sanz A, Irastorza-Landa N, López-Larraz E, Shiman F, Spüler M, Birbaumer N, 
Ramos-Murguialday A: Design and effectiveness evaluation of mirror myoelectric 
interfaces: a novel method to restore movement in hemiplegic patients. Sci Rep 
2018, 8:16688. 

26.  Lambelet C, Lyu M, Woolley D, Gassert R, Wenderoth N: The eWrist — A Wearable 
Wrist Exoskeleton with sEMG-based Force Control for Stroke Rehabilitation. In 
2017 International Conference on Rehabilitation Robotics (ICORR). . IEEE; 2017:726–
733. 

*27.  Teramae T, Noda T, Morimoto J: EMG-Based Model Predictive Control for Physical 
Human–Robot Interaction: Application for Assist-As-Needed Control. IEEE Robot 
Autom Lett 2018, 3:210–217. 

 

Jo
urn

al 
Pre-

pro
of



The authors used EMG-signals as the input into an assist-as-needed control scheme for 

rehabilitation. They predicted joint torques from the EMG-signals and used a model-predictive 

control scheme to estimate the necessary robot torque to complete a given task. This study 

shows one of many possibilities for how EMG-signals could potentially be used in the 

rehabilitation setting. 

 
28.  Buchanan TS, Lloyd DG, Manal K, Besier TF: Neuromusculoskeletal Modeling: 

Estimation of Muscle Forces and Joint Moments and Movements from 
Measurements of Neural Command. J Appl Biomech 2004, 20:367–395. 

*29.  Kapelner T, Sartori M, Negro F, Farina D: Neuro-Musculoskeletal Mapping for Man-
Machine Interfacing. Sci Rep 2020, 10:5834. 

 
The authors created a myoelectric control scheme for upper-extremity prosthetics that combined 

machine learning and neuromusculoskeletal modeling. They used machine learning to map 

EMG-signals to muscle excitations which were used as the inputs to a neuromusculoskeletal 

model. In this work, the neuromusculoskeletal model was only used to predict motion offline 

rather than online in a controller. 

 
*30.  Pan L, Crouch DL, Huang H: Comparing EMG-Based Human-Machine Interfaces for 

Estimating Continuous, Coordinated Movements. IEEE Trans Neural Syst Rehabil 
Eng 2019, 27:2145–2154. 

 
The authors recorded EMG-data for wrist and hand movements at different postures for 

subjects without neural impairment. They retrospectively predicted the motions with both 

machine learning methods and a neuromusculoskeletal model. Results showed that the 

neuromusculoskeletal model predicted the wrist and hand motions better than both machine 

learning methods tested.  

 
31.  Crouch DL, Huang H: Musculoskeletal Model Predicts Multi-joint Wrist and Hand 

Movement From Limited EMG Control Signals. In 2015 37th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). . IEEE; 
2015:1132–1135. 

32.  Pan L, Crouch D, Huang H: Musculoskeletal Model for Simultaneous and 
Proportional Control of 3-DOF Hand and Wrist Movements from EMG Signals. In 
2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). . IEEE; 
2017:325–328. 

33.  Desplenter T, Trejos A: Evaluating Muscle Activation Models for Elbow Motion 
Estimation. Sensors 2018, 18:1004. 

34.  Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen 
SP, Ward NS, Schweighofer N: Computational neurorehabilitation: Modeling 
plasticity and learning to predict recovery. J Neuroeng Rehabil 2016, 13. 

35.  Fregly BJ: A Conceptual Blueprint for Making Neuromusculoskeletal Models 
Clinically Useful. Appl Sci 2021, 11:2037. 

36.  Meyer AJ, Eskinazi I, Jackson JN, Rao A V, Patten C, Fregly BJ: Muscle Synergies 
Facilitate Computational Prediction of Subject-Specific Walking Motions. Front 
Bioeng Biotechnol 2016, 4:77. 

37.  Sauder NR, Meyer AJ, Allen JL, Ting LH, Kesar TM, Fregly BJ: Computational Design 
of FastFES Treatment to Improve Propulsive Force Symmetry during Post-stroke 

Jo
urn

al 
Pre-

pro
of



Gait: A feasibility study. Front Neurorobot 2019, 13. 
38.  Crouch D, Huang H: Simple EMG-Driven Musculoskeletal Model Enables Consistent 

Control Performance During Path Tracing Tasks. In 2016 38th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). . IEEE; 
2016:1–4. 

39.  Buongiorno D, Barsotti M, Barone F, Bevilacqua V, Frisoli A: A Linear Approach to 
Optimize an EMG-Driven Neuromusculoskeletal Model for Movement Intention 
Detection in Myo-Control: A Case Study on Shoulder and Elbow Joints. Front 
Neurorobot 2018, 12:74. 

40.  Sartori M, Durandau G, Došen S, Farina D: Robust simultaneous myoelectric control 
of multiple degrees of freedom in wrist-hand prostheses by real-time 
neuromusculoskeletal modeling. J Neural Eng 2018, 15:066026. 

*41.  Blana D, Van Den Bogert AJ, Murray WM, Ganguly A, Krasoulis A, Nazarpour K, 
Chadwick EK: Model-Based Control of Individual Finger Movements for Prosthetic 
Hand Function. IEEE Trans Neural Syst Rehabil Eng 2020, 28:612–620. 

 
The authors performed three different experiments to test a previously developed 

neuromusculoskeletal model of the hand. The first and second experiment, of the most 

relevance to rehabilitation robotics, showed the prediction capability of the model as well at its 

ability to be used for real-time control of a 5-DOF robot. 

 
42.  Shao Q, Bassett DN, Manal K, Buchanan TS: An EMG-driven model to estimate 

muscle forces and joint moments in stroke patients. Comput Biol Med 2009, 
39:1083–1088. 

*43.  Durandau G, Farina D, Asín-Prieto G, Dimbwadyo-Terrer I, Lerma-Lara S, Pons JL, 
Moreno JC, Sartori M: Voluntary control of wearable robotic exoskeletons by 
patients with paresis via neuromechanical modeling. J Neuroeng Rehabil 2019, 
16:91. 

 
The authors created a human-machine interface that predicted subject-specific lower limb joint 

torques from a neuromusculoskeletal model and used the predicted torques as an input to a 

exoskeleton controller. They demonstrated real-time, task-independent control with this method 

for subjects with neural impairment.  

 
44.  Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-

based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst 
Rehabil Eng 2008, 16:286–297. 

45.  Meyer AJ, Patten C, Fregly BJ: Lower extremity EMG-driven modeling of walking 
with automated adjustment of musculoskeletal geometry. PLoS One 2017, 12. 

46.  Song R, Tong KY, Hu X, Li L: Assistive control system using continuous myoelectric 
signal in robot-aided arm training for patients after stroke. IEEE Trans Neural Syst 
Rehabil Eng 2008, 16:371–379. 

 
 

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Jo
urn

al 
Pre-

pro
of


