
A Bio-inspired Algorithm for Identifying Unknown Kinematics from a
Discrete Set of Candidate Models by Using Collision Detection

Dylan P. Losey, Student Member, IEEE, Craig G. McDonald Student Member, IEEE, and
Marcia K. O’Malley, Senior Member, IEEE

Abstract— Many robots are composed of interchangeable
modular components, each of which can be independently con-
trolled, and collectively can be disassembled and reassembled
into new configurations. When assembling these modules into
an open kinematic chain, there are some discrete choices dic-
tated by the module geometry; for example, the order in which
the modules are placed, the axis of rotation of each module
with respect to the previous module, and/or the overall shape
of the assembled robot. Although it might be straightforward
for a human user to provide this information, there is also a
practical benefit in the robot autonomously identifying these
unknown, discrete forward kinematics. To date, a variety of
techniques have been proposed to identify unknown kinematics;
however, these methods cannot be directly applied during
situations where we seek to identify the correct model amid
a discrete set of options. In this paper, we introduce a method
specifically for finding discrete robot kinematics, which relies on
collision detection, and is inspired by the biological concepts of
body schema and evolutionary algorithms. Under the proposed
method, the robot maintains a population of possible models,
stochastically identifies a motion which best distinguishes those
models, and then performs that motion while checking for a
collision. Models which correctly predicted whether a collision
would occur produce candidate models for the next iteration.
Using this algorithm during simulations with a Baxter robot, we
were able to correctly determine the order of the links in 84%
of trials while exploring around 0.01% of all possible models,
and we were able to correctly determine the axes of rotation
in 94% of trials while exploring < 0.1% of all possible models.

I. INTRODUCTION

Body schema—adaptive representations of the body which
change over time—are hypothesized to guide movements and
actions in humans and other animals. Hoffmann et al. [1]
argue that robots which are capable of autonomously iden-
tifying unknown kinematics can also be thought to possess
body schema, since these continuously updating models help
robots move correctly despite changes in their structure. In
particular, identifying kinematics in real time helps robots
compensate for unexpected failures, deal with unstructured
environments, and adapt to mechanical modifications; plus, it
reduces expenses associated with the robot’s re-programming
and maintenance [2]. Robotic “body schema” (i.e., kinematic
identification processes) also provide a platform to explore
the cognitive development of human body representations,
particularly in regards to infant growth and tool usage [3].
Lastly, considering the connection between body schema and
disabilities caused by strokes [4]—as well as the correlation

This work was funded in part by the NSF GRFP-0940902, and in part
by the NSF IGERT-1250104. The authors are with the Mechatronics and
Haptic Interfaces Laboratory, Department of Mechanical Engineering, Rice
University, Houston, TX 77005. (e-mail: dlosey@rice.edu)

from body schema to prosthetic embodiment [5]—the study
of body schema acquisition methods may afford insights for
better rehabilitation devices and prosthetic designs.

Several techniques have been proposed to automatically
identify unknown kinematic information, some of which
resemble biological notions of body schema. Hollerbach and
Wampler [6] used closed kinematic chains and joint position
sensors in order to calibrate continuous Denavit-Hartenberg
parameters with least squares optimization. Hersch et al.
[7] demonstrated an online gradient descent approach which
employed cameras to determine the translation and rota-
tion between successive links; their results were improved
by Martinez-Cantin et al. [8], who reintroduced recursive
least squares and added intelligent testing. Sturm et al. [9]
developed Bayesian networks—in conjunction with external
sensors and visual markers—so as to both identify the robot’s
kinematic structure from scratch and directly relate action
signals to manipulator pose. Bongard et al. [10] programmed
machines which can learn their own morphology through
self-modeling before compensating for damages; multiple
models constantly compete to explain preceding sensor data,
and the most likely body schema is used to generate desired
behaviors. From a more biologically-inspired perspective,
Fuke et al. [11] built cross-modal maps to create repre-
sentations for robotic segments invisible to the camera, and
Saegusa et al. [12] described a framework by which action
generation engenders understanding of the robot’s kinematics
and interaction capabilities.

While the listed methods can identify unknown kinematics
in most situations, they cannot be straightforwardly applied
when there exists only a discrete set of possible models.
Although uncommon, this situation arises with robots com-
posed of interchangeable, modular components which can
be assembled into a finite variety of configurations [13].
Consider, for example, the relative order of modules a and b;
since a is attached either before or after b with respect to the
robot’s base frame, any model must choose one of these two
discrete options. Interestingly, even when the kinematics and
controllers for each individual module are known, there are
still several aspects of the overall kinematics—e.g., module
order, relative axis of rotation, resultant shape—which can
only be described by a discrete set of candidate models.

In our paper, we propose an algorithm specifically for
identifying unknown kinematics when a discrete set of
candidate models are given (see Fig. 1). While designing this
algorithm we attempted to mimic biological body schema;
in particular, given the significance of touch in human body

6th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob)
June 26-29, 2016. UTown, Singapore

978-1-5090-3287-7/16/$31.00 ©2016 IEEE 418

Fig. 1. Proposed method for obtaining unknown kinematic information
given a discrete set of candidate models. We use model evolution, intelligent
test selection, and collision detection sensors to efficiently identify unknown
kinematics. Although intended for modular robots, this algorithm can also
be applied to more traditional manipulators, such as the pictured Baxter.

schema acquisition [3], [5], [11], [14], [15], we analogously
used collision detection sensors to determine the accuracy
of candidate models. It is not necessary that these sensors
locate where the collision has occurred—rather, they should
simply report whether or not a collision is detected. We also
leveraged evolutionary algorithms similar to those described
by [10] in order to find the correct kinematic model without
exploring all of the discrete candidates. Finally, we intro-
duced a tunable sampling-based planner that considers the
bound on position errors when selecting which tests best
distinguish among candidate models. Section II more com-
prehensively describes our problem formulation by detailing
the robot, workspace, collision detection, kinematic models,
and two specific applications. In Section III we overview the
proposed algorithm, while Section IV includes simulations
implementing this algorithm on a model Baxter robot.

II. PROBLEM FORMULATION AND APPLICATIONS

We here consider a serial robot composed of multiple,
independently controlled, reconfigurable modules, where the
kinematics of each individual module are known. The serial
robot assembled from N modules has n total joints, N ≤ n.
Each joint may be either revolute or prismatic, where the
joint positions are denoted by q = [q1, q2, . . . , qn]T , and q is
an element of configuration space Q. Joint i is physically
constrained by limits qmax,i and qmin,i and is measured
using some on-board sensor—such as an encoder—with
accuracy ±∆qi. A desired trajectory q̇d(t) can be input;
the independent, decentralized, module-level controllers then
drive each joint along this reference path.

Collision detection senors within each module are used
in order to determine whether the physical robot has col-
lided with any boundary of the free configuration space.
Alternatively, a fault detection scheme may be leveraged;
for example, Geravand et al. [16] proposed a high-pass filter
on joint torques, in conjunction with thresholding, to discern
unexpected contacts without sensors. Let c ∈ {0, 1} represent
the output of our chosen collision detector, where c = 1 when
a collision is perceived and c = 0 otherwise; if at q0 the

manipulator does not intersect any obstacle, we can monitor
c(t) to confirm that a path from q0 to q is collision free.
Note that obstacles include both objects in the workspace and
intersections among the robot’s modules. Since we are only
using touch sensors, we here must assume that the workspace
is known; in future work, we hope to lessen this assumption
through integrating visual sensors.

The serial robot’s forward kinematics are formulated as

X = f(q, φ) (1)

where X ∈ SE(3) is a transformation from the base frame
to the end-effector frame of the robot, specifying the robot’s
shape. Candidate model φ ∈ Φ is a guess of the unknown
kinematic information; for applications with M discrete
options for φ, the set of all possible candidate models is given
by Φ = {φ1, φ2, . . . , φM}, and the superscript ∗ indicates a
correct model. Thus, f : Q × Φ → SE(3) serves as the
“body schema” mapping between discrete candidate models
and robot pose. When the joint position q is given, we can
now compute the expected robot pose f(q, φi) corresponding
to an arbitrary candidate model φi. Next, we check if this
proposed robot shape collides with any obstacles by running
a collision detection algorithm; if a collision is found, we let
cm,i = 1, otherwise we let cm,i = 0, where cm,i indicates
the output of the collision check for model φi. Repeating
this process for multiple candidate models, we obtain a
vector a predicted collisions, cm, where each entry in the
vector is associated with a particular candidate model, and
specifies whether that model predicts a collision. Finally, by
comparing the collision sensor, c, and the vector of predicted
collisions, cm, over a sufficiently small interval in Q, we can
assess the relative accuracy of our candidate models.

A. Applications

We will focus on two example applications: identifying
the order of the modules with respect to a home frame, and
identifying the axis of rotation of each module with respect
to the previous module. When determining the relative
ordering, we seek find the sequence in which to multiply
the N known module transformations such that the resultant
forward kinematics match the actual serial robot. Let Xi ∈
SE(3) be the kinematics of module i, and let candidate
model φ be a permutation of the integers 1 to N , denoted
φ = perm(1, 2, . . . , N). In this case, we can re-write (1) as

f(q, φ) = Xφ1(q)Xφ2(q) . . . XφN
(q) (2)

Since the set Φ must accommodate all permutations of the
sequence (1, 2, . . . , N), there are M = N ! discrete options
for φ, and therefore N ! potential robot poses at a given joint
position. Of course, this makes it impractical to examine
every candidate model as the number of modules increases.

Identifying the axis of rotation (or translation) of each
module with respect to the previous module or a global frame
is a more common kinematic identification problem, and is
explicitly addressed in the continuous case by [6], [7], [9].
For this work, however, we consider the unique situation
where there are only finite discrete choices for each axis of

419

rotation, as dictated by the module’s geometry and mechani-
cal attachments. Given that the global frame is assigned such
that a principal axis aligns with the known axis of rotation
of the robot’s first module, let us assume that, in some home
position, the remaining modules’ axes of rotation are parallel
to either the x, y, or z-axis of our global frame. Emulating
[17], we here denote an axis of rotation as ω ∈ R3, ‖ω‖ = 1.
Due to our assumption, ω ∈ {[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T },
and the candidate model φ is a matrix of N predicted axes
of rotation, φ = [ω∗1 , ω2, . . . , ωN], where the first axis of
rotation is known. Retaining our previous notation, for this
application we can re-write (1) to be

f(q, φ) = X1(q, φ∗1)X2(q, φ2) . . . XN (q, φN) (3)

Since the geometry from base to tip of individual modules
is known, specifying orientation offsets between consecutive
modules is sufficient to formulate the forward kinematics.
Hence, the set Φ is composed of all M = 3N−1 options
for the 3 × N matrix φ, again suggesting that it might be
impractical to examine every candidate model.

III. PROPOSED ALGORITHM

Our goal is to develop a method with which to efficiently
identify φ∗, the correct candidate model that contains the
unknown discrete kinematic information, given the modular
robotic system described by Section II. In cases with few
possible models, the correct candidate model can be found
by comparing the collision sensor data to the collisions
predicted by every φ ∈ Φ; as M increases, however, it
becomes computationally infeasible to explicitly examine all
discrete candidate models. Both the discontinuity of Φ (the
discrete candidate model space) and nonlinearities in cm
(the collision checking logic) prohibit the use of gradient
descent or least squares estimation techniques, such as those
employed by [6]–[8], [11]. Moreover, since the type of
unknown model information—and therefore the form of φ—
may vary among applications, the proposed search procedure
should readily adapt to different situations.

In order to find φ∗ without having to check every φ ∈ Φ,
we utilized bio-inspired evolutionary algorithms [18]. More
specifically, we modified the hybrid coevolution process de-
scribed by Bongard and Lipson [19]: alternately developing
candidate models and informative tests. A population of
models is here evolved based on relative fitness. The test
which best differentiates among the current model population
is carried out by the robot, and the models which accurately
explain the collected data then serve as parents during the
next iteration. Within this generic algorithm outline, however,
we introduced specialized mechanisms that evolve candidate
models and select test trajectories while considering both our
robot’s collision detection capabilities and the discrete set of
candidate models, as shown in Fig. 2.

A. Candidate Model Evolution

Let Φm(t) ⊆ Φ denote the population, or set, of µ + λ
total candidate models which we are examining at iteration
t, where µ+ λ ≤M . Although discrete versions of particle

swarm optimization [20] or artificial bee colony [21] algo-
rithms could alternatively be used to decide how the candi-
date model population changes over time, we here implement
classical evolution strategies [18] to better investigate our
algorithm’s baseline performance. After each test trajectory
carried out by the robot, the fitness vector h of the candidate
model population is updated as shown in [19]

h = hprev +
∣∣c ·~1− cm∣∣ (4)

where c is the scalar output of the collision detection sensor,
~1 is the all-ones vector of dimension µ + λ, and cm is
the vector of collision predictions corresponding to each
candidate model φ ∈ Φm. Because fitness h is error-based,
it is inversely related to performance; we should therefore
evolve Φm to minimize the elements of h.

When selecting the µ candidate models from Φm(t) which
will produce offspring, we (a) select the fittest model as a
parent, (b) select the µ − 1 remaining parent models using
deterministic tournament selection, and (c) ensure no candi-
date model is selected to become a parent more than once
per iteration. The chosen parents then produce λ children
through application-specific mutation operators with a low
probability of random seeding (examples in Section IV). Pro-
posed children are compared to the model bank—comprised
of the candidate models already examined—and are retained
only if they have not been previously considered. Finally,
both parent and children models build the next population of
candidate models, Φm(t + 1), yielding a (µ + λ) evolution
strategy [18]. Thus, the number of candidate models in Φm
is constant throughout the evolutionary process.

Because we have changed the original algorithm to only
allow candidate models a single introduction into Φm, it is
important that candidate models which accurately predict the
robot’s collision sensor data are not inadvertently rejected.
Indeed, since we guaranteed that the best candidate model
in Φm(t) is also a member of Φm(t+1), we can prevent the
most accurate models from being lost during the evolutionary
process. One motivation for preventing discrete models from
being re-entered into the candidate population is that it
would be inefficient to keep examining the same poorly
performing kinematics while ignoring untested candidate
models, especially when better candidates have already been
identified. A second motivation is to escape local minima;
by ensuring that previously unconsidered candidate models
are introduced at every iteration, we prevent the candidate
model population from converging until φ∗ is found.

Fig. 2. Outline of proposed algorithm. Several test trajectories may be
selected and performed within the inner loop before advancing to evolve
candidate models; here h is a vector of candidate model fitnesses, t indicates
the iteration count of the outer loop, and φg denotes the best candidate
model currently identified by the search procedure.

420

B. Robotic Test Selection

We here describe our method for choosing a new desired
joint position, qd, which, when reached using the individual
modules’ controllers, causes differences in the candidate
model population’s fitness. Ideally, for some φ ∈ Φm, the
robot pose f(qd, φ) collides with an obstacle, while for other
φ ∈ Φm, f(qd, φ) lies in the free space. Then, regardless
of whether a collision occurs while the robot carries out
test trajectory qd, evaluating (4) will cause the entries of
h to change relative to one another, helping us determine
which candidate models are the most accurate. To find a
test trajectory qd that satisfied these requirements, we used
a straightforward sampling-based planner [22]. Let α be a
tunable parameter that determines how many different qd
are proposed, and let qd be randomly chosen such that
qmin ≤ qd ≤ qmax, where qd is a sufficiently short distance
step size from the current joint position, q0. Using the
collision detection algorithm for every φ ∈ Φm, a collision
prediction vector cm can be assigned to each proposed qd.
Finally, the qd that maximizes the variance in cm among the
γ most accurate candidate models, γ ≤ µ+λ, is selected as
the next test trajectory.

While calculating the collision prediction vector cm asso-
ciated with a given qd, joint sensor accuracy should be taken
into consideration. Recall that the joints are measured using
sensors with accuracy ±∆q; during cases where ∆q is large
and/or the robot has many joints, these sensors may report
that the robot has achieved qd, when in actuality the robot’s
joint position is q. But then, for some q 6= qd, we might find
that cm corresponding to qd does not match cm at q, leading
to incorrect predictions. For serial robots, we can write

‖∆X‖ ≤ ‖∆q‖ · σmax (5)

where σmax is the greatest singular value of the robot’s Jaco-
bian matrix [17]. To account for the variety of possible poses
conservatively bounded by (5), we employ stochastic colli-
sion checking over the probability density function (PDF)
of the joint position sensors. Given the joint sensor PDF, β
random joint positions q′d are accordingly chosen around qd.
After applying collision checks for every combination of φ
and q′d, and then normalizing by β, cm,i now indicates the
fraction of possible joint positions at qd for which model φi
predicts a collision. Moreover, as β (the number of q′d tested)
increases, the predicted collision probability approaches its
true value. The resulting procedure used to select informative
test trajectories while explicitly considering bounds on joint
sensor accuracy is summarized in Algorithm 1.

When the test trajectory found by this algorithm is carried
out by the robotic hardware, module-level controllers drive
the robot from q0 to qd while c is recorded, where q is the
actual joint position reached given the joint sensor reading
qd. Let q0 lie in free configuration space; if no contact
is detected during motion, then we update q0 = qd and
are ready to begin the next test. If, on the other hand, a
collision is detected, we use the module-level controllers
to drive the robot back to q0 before preforming the next

Algorithm 1 Procedure to select a test trajectory which
causes disagreement among candidate models
Input

Φm : the set of candidate models
q0 : the robot’s current configuration
α : the number of joint positions to examine
β : the number of joint variations to examine
γ : the number of candidate models to distinguish

Output
qd : a desired position in joint space
cm : a vector of probabilities where cm,i is the expecta-
tion with which model i predicts a collision at qd

1: S ← ∅
2: for i = 1 to α do
3: qrand ← a randomly chosen element of Q bounded

by qmin and qmax
4: qd ← progress q0 by step size along the straight

line in Q between q0 and qrand
5: cm ← ∅
6: for j = 1 to β do
7: q′d ← a randomly chosen configuration selected

from the joint sensor PDF about qd
8: for all φk ∈ Φm do
9: Xk ← f(q′d, φk)

10: if CollisionCheck(Xk) then
11: cm,k ← cm,k + 1/β
12: end if
13: end for
14: end for
15: S ← S ∪ {(qd, cm)}
16: end for
17: return the element of S where cm predicts the greatest

variance among the γ best performing models

test. Remember that the distance from q0 to qd is small;
this ensures that larger motions are composed of smaller
steps, and comparisons of collision prediction vs. collision
detection occur over these small increments.

C. Interaction between Models and Tests

Unlike [19], here the fitness of new candidate models is
not based on previous test results; instead, we re-initialize
h after each iteration of evolution. Practically, calculating
model fitness for a consistent number of test results helps
the algorithm maintain a constant runtime. From a biological
standpoint, it could also be argued that “active learning”
(i.e., performing motions to examine kinematic models) more
closely resembles both the agency and plasticity of body
schema development than does an extensive memory (i.e.,
remembering previous motions to evaluate current models)
[1]. Of course, updating candidate model fitness without
using the entire collision detection dataset will likely increase
the total number of physical experiments required before
φ∗ is identified; it may thus be reasonable to adjust this
forgetting factor in response to testing cost, computational
time, and study motivation.

421

IV. SIMULATIONS

We simulated the algorithm outlined in Section III on the
arms of a Baxter robot (Rethink Robotics). Although Baxter
is not a modular robot—the intended application of our
work—we thought it would be helpful to perform simulations
using a robot with which many people are familiar so that our
results could be more easily replicated. Both of Baxter’s arms
have 7 joints. We here considered each joint and subsequent
link to be a module (N = 7 per arm), and then attempted
to identify the order of the modules with respect to a home
frame (order), and the axis of rotation of each module with
respect to the previous module (axes), i.e., the example
applications described in Section II-A. Simulations were
performed in MATLAB (MathWorks); the robot’s geometry
and joint sensor parameters were derived from [23]. Our
environment consisted of a table and wall (see Fig. 1), so
collision checks monitored interactions with these planar
obstacles as well as intersections among modules.

During the order simulations, we assumed that the N
modules which belonged to each arm were known, but the
relative order of those modules was unknown. Hence, there
were M = (N !)2 discrete candidate models φ ∈ Φ for the
unknown kinematics, and φ was a permutation of the module
order along both arms. During the axes simulations, the first
module’s axis of rotation was known and aligned with a
global frame. Then, there were M = 313 discrete candidate
models φ ∈ Φ for the remaining 13 axes of rotation, and
each φ consisted of a different guess for these unknown
kinematics. We used exchange operators to create mutations
in the children of a parent candidate model; for the ordering
simulations, each module position in φ had a 1/N chance
of being swapped with another randomly chosen module
position, and for the axes simulations, axes 2 through N
in φ had a 1/(N − 1) chance of being replaced with a new
and different axis of rotation.

Candidate population size (µ+λ) and α, the number of qd
proposed when choosing a new test trajectory, were varied
between simulations. When α = 1, only a single qd was
proposed, and thus each test trajectory was simply a random
motion. When α > 1, however, the test trajectory was
selected using Algorithm 1 in order to best distinguish the
fittest candidate models. Other simulation parameters—listed
in Table I—were held constant throughout the simulations.

TABLE I
PARAMETERS USED WHEN SIMULATING THE PROPOSED ALGORITHM

Trials 100

Max. Iterations / Trial 50

Children / Parent (λ/µ) 5

Tournament Size µ+ λ

Test Traj. / Iteration, Order 30

Test Traj. / Iteration, Axes 10

Joint Variations (β) 5

Models to Differentiate (γ) 1
3
(µ+ λ)

(a)

(b)

Fig. 3. Error of the fittest candidate model (averaged across all trials) as a
function of iteration number. Applications: (a) identifying module ordering,
(b) identifying module axes of rotation. Increasing α (solid lines) reduced
the number of incorrectly identified elements when compared to completely
random motions (α = 1, dotted lines). Increasing population size (orange
vs. blue) also improved the algorithm’s performance.

An iteration consisted of a series of test trajectories (30
during the ordering simulations, 10 during axes simulations)
followed by candidate model evolution. Each simulation
contained 100 trials, where individual trials were terminated
after either φ∗ was found or 50 iterations occurred. Trials
were completed in less than 10 min on a destop computer.

Simulation results are depicted in Fig. 3 and listed in
Table II. Data is presented in the form mean ± std where
applicable. Here candidate model φg denotes the fittest
candidate model identified during the final iteration of a
trial (i.e., our best current guess of the unknown kinematics),
and habs(φg) denotes the number of elements of φg which
are incorrectly identified. Candidate model rate is the total
number of candidate models examined divided by M , the
total number of candidate models. Our results demonstrate
that the proposed algorithm can be used to correctly identify
φ∗, the unknown discrete kinematics, while exploring a
small percentage of the discrete candidate model space. The
unknown module ordering was successfully identified in 84%
of trials while reducing the search space by 4 orders of
magnitude, and the unknown module axes of rotation were
successfully identified in 94% of trials while reducing the
search space by 3 orders of magnitude.

We found that our proposed test selection procedure was
more effective than purely random motions; increasing α
from 1 to 5 increased success rates by an average of 45%,
while also reducing both the number of candidate models
examined and tests trajectories carried out by the robot.
On the other hand, we note that when α = 5, there was

422

TABLE II
SIMULATED PERFORMANCE OF THE PROPOSED ALGORITHM USING DIFFERENT CANDIDATE POPULATION SIZES AND TEST SELECTION METHODS

µ+ λ α Success Rate (%) habs(φg) Cand. Models Cand. Model Rate (%) Tests Performed Total Test Length [rad]

Id
en

tif
yi

ng
M

od
ul

e
O

rd
er 48

1 27 3.83 ± 2.86 1886 ± 328 0.0074 1387 ± 235 2311 ± 383
5 49 1.88 ± 2.19 1698 ± 478 0.0067 1252 ± 348 2595 ± 735

90
1 43 2.63 ± 2.81 3286 ± 780 0.0129 1291 ± 300 2152 ± 507
5 84 0.55 ± 1.42 2585 ± 935 0.0102 1023 ± 368 2203 ± 814

Id
en

tif
yi

ng
M

od
ul

e
A

xe
s

30
1 13 5.01 ± 2.83 1210 ± 211 0.075 473.1 ± 81.4 785.3 ± 139.3
5 65 1.03 ± 1.77 934 ± 338 0.059 368.1 ± 131.5 722.5 ± 262.6

60
1 30 3.19 ± 2.78 2252 ± 565 0.141 441.4 ± 109.2 734.4 ± 182.8
5 94 0.17 ± 0.80 1311 ± 600 0.082 259.5 ± 118.7 518.1 ± 244.7

consistently larger variability among trials in terms of models
examined, tests performed by the robot, and total test trajec-
tory length. Results also show that increasing the candidate
model population size (λ+µ) leads to smaller errors and less
robotic motions, indicating a trade-off between the number of
models examined and the number of test trajectories carried
out by the robot.

V. CONCLUSION

In this paper we focused on autonomously identifying
unknown robot kinematics when only discrete candidate
models are present. To resolve this problem, we drew from
the biological concepts of body schema and evolutionary
algorithms, and used contact sensors to determine the ac-
curacy of candidate models. Because there may be too
many candidate models for each to be individually exam-
ined, we modified an existing co-evolutionary algorithm to
efficiently guide our search, while still guaranteeing that
the correct candidate model will be eventually identified.
We also introduced a procedure to choose more useful test
trajectories while explicitly considering joint accuracy limits.
Simulations of the resultant algorithm on a Baxter robot
with two different example applications validated both the
discrete candidate evolution and test selection process. While
this paper represents a first-pass solution, in future work we
would like to implement our algorithm on modular robots,
refine the described algorithm to deal with encountered
hardware difficulties, and explore how different obstacle
configurations affect algorithm performance.

REFERENCES

[1] M. Hoffmann, H. G. Marques, A. H. Arieta, H. Sumioka, M. Lun-
garella, and R. Pfeifer, “Body schema in robotics: A review,” IEEE
Trans. on Autonomous Mental Development, vol. 2, no. 4, pp. 304–
324, 2010.

[2] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A
survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[3] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmental
robotics: A survey,” IEEE Trans. on Autonomous Mental Development,
vol. 1, no. 1, pp. 12–34, 2009.

[4] J. Schwoebel and H. B. Coslett, “Evidence for multiple, distinct rep-
resentations of the human body,” Journal of Cognitive Neuroscience,
vol. 17, no. 4, pp. 543–553, 2005.

[5] P. D. Marasco, K. Kim, J. E. Colgate, M. A. Peshkin, and T. A. Kuiken,
“Robotic touch shifts perception of embodiment to a prosthesis in
targeted reinnervation amputees,” Brain, vol. 134, no. 3, pp. 747–758,
2011.

[6] J. M. Hollerbach and C. W. Wampler, “The calibration index and
taxonomy for robot kinematic calibration methods,” The International
Journal of Robotics Research, vol. 15, no. 6, pp. 573–591, 1996.

[7] M. Hersch, E. Sauser, and A. Billard, “Online learning of the body
schema,” International Journal of Humanoid Robotics, vol. 5, no. 2,
pp. 161–181, 2008.

[8] R. Martinez-Cantin, M. Lopes, and L. Montesano, “Body schema
acquisition through active learning,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 2010, pp. 1860–1866.

[9] J. Sturm, C. Plagemann, and W. Burgard, “Body schema learning
for robotic manipulators from visual self-perception,” Journal of
Physiology-Paris, vol. 103, no. 3, pp. 220–231, 2009.

[10] J. C. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–
1121, 2006.

[11] S. Fuke, M. Ogino, and M. Asada, “Body image constructed from mo-
tor and tactile images with visual information,” International Journal
of Humanoid Robotics, vol. 4, no. 2, pp. 347–364, 2007.

[12] R. Saegusa, G. Metta, G. Sandini, and L. Natale, “Developmental
perception of the self and action,” IEEE Trans. on Neural Networks
and Learning Systems, vol. 25, no. 1, pp. 183–202, 2014.

[13] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[14] J. Medina and H. B. Coslett, “From maps to form to space: Touch
and the body schema,” Neuropsychologia, vol. 48, no. 3, pp. 645–654,
2010.

[15] H. E. Van Stralen, M. J. E. Van Zandvoort, and H. C. Dijkerman,
“The role of self-touch in somatosensory and body representation
disorders after stroke,” Philosophical Transactions of the Royal Society
B: Biological Sciences, vol. 366, no. 1581, pp. 3142–3152, 2011.

[16] M. Geravand, F. Flacco, and A. De Luca, “Human-robot physical
interaction and collaboration using an industrial robot with a closed
control architecture,” in Proc. IEEE Int. Conf. on Robotics and
Automation, 2013, pp. 4000–4007.

[17] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL, USA: CRC, 1994.

[18] F. Neumann and C. Witt, Bioinspired Computation in Combinatorial
Optimization: Algorithms and Their Computational Complexity. New
York, NY, USA: Springer, 2010.

[19] J. C. Bongard and H. Lipson, “Nonlinear system identification using
coevolution of models and tests,” IEEE Trans. on Evolutionary Com-
putation, vol. 9, no. 4, pp. 361–384, 2005.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. on Neural Networks, 1995, pp. 1942–1948.

[21] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (ABC)
algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007.

[22] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementation. Boston, MA, USA: MIT Press,
2005.

[23] Rethink Robotics, “Baxter research robot: Hardware specifications,”
http://sdk.rethinkrobotics.com/wiki/Hardware Specifications, 2015.

423

