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ABSTRACT
Robot-assisted minimally invasive surgery (RAMIS) offers numerous benefits over traditional 
open surgery, resulting in greater prevalence of use and range of approved procedures. 
The proliferation of RAMIS has highlighted a need for effective, robust, and objective 
methods for assessing robotic surgical skills. Traditionally, assessment has relied on expert 
observation using structured grading rubrics. Although validated and widely used, this 
method is also resource intensive and subject to reviewer bias. In response, recent work has 
explored the potential for more robust assessment methods, including the development 
of skill-based metrics, crowd-sourced assessment techniques, and automated evaluation 
systems. This review summarizes recent developments in robotic surgical technical skill 
assessment, focusing on studies using the da Vinci platform. Assessment methods are 
grouped into four categories: structured rubrics, skill-based metrics, crowd-sourcing 
techniques, and automated assessment models. Trends of note include adaptation of 
established rubrics for specific areas of specialty, the implementation of deep learning 
models for automated assessment, and a move to integrate crowd-sourcing platforms for 
efficient and inexpensive evaluation. While traditional grading rubric structures remain the 
standard, multilevel assessment strategies and objective feedback systems are gaining 
traction. Future work should seek to integrate task- and movement-based assessment 
into procedure-level evaluations to create more robust and generalizable models for 
assessment. These advances show a shift towards data-driven and objective assessment 
methods, which could improve surgical training and patient outcomes.
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INTRODUCTION

Robot-assisted minimally invasive surgery (RAMIS) has 
become increasingly prevalent for a range of procedures, 
including proctectomy, cholecystectomy, and hernia 
repair.1 The da Vinci system from Intuitive Surgical® is the 
most common RAMIS platform, installed in hospitals in 
more than 60 countries and used by over 55,000 trained 
surgeons.2,3 Advantages of RAMIS include 3-dimensional 
(3D) visualization, improved instrument manipulation, 
and reduced hospital stays.4,5 Despite these advantages, 
extensive training is needed to gain proficiency on these 
platforms.6 Training curricula typically require surgeons 
to perform to an acceptable degree, so assessing surgical 
proficiency is vital when implementing effective robotic 
surgery training programs. Surgical proficiency is typically 
characterized by technical skills (eg, instrument handling, 
collisions, and dexterity), and nontechnical skills (eg, 
procedural knowledge, stress management, and leadership). 
Proficiency in both of these categories is important for 
ensuring desired patient outcomes. Since nontechnical 
skills are difficult to measure, most assessment methods 
focus on differentiating based on technical skill scores.7

For open, minimally invasive, and robotic procedures, 
assessment of surgical skill traditionally relies on expert 
observation of trainee surgical performance. The most 
widely used assessment methods involve structured 
grading rubrics—for example, OSATS (Objective Structured 
Assessment of Technical Skill)—and procedure-specific 
checklists. These tools aim to provide objective evaluations 
of surgical ability based on clearly predefined criteria. Such 
assessments may be performed using physical models 
such as benchtop simulators, cadaveric specimens, or 
video recordings of clinical procedures. This diversity in task 
format allows expert evaluators to assess skills ranging 
from basic instrument handling to complex full-procedure 
performance. Despite their widespread use, structured 
assessments of surgical skill by experts have notable 
limitations. Primarily, they are time and resource intensive 
and may suffer from bias or inconsistencies in scoring.8

New methods of surgical skill assessment are emerging, 
particularly for RAMIS, that aim to reduce reliance on the 
expert evaluators typically required for structured grading 
assessments. Increasingly, these assessment techniques 
employ kinematic data from the robotic platform itself or 
other objective metrics that can be interpreted by nonexpert 
raters or machine learning models.9 Crowd-sourcing 
approaches have also been explored to lessen evaluator 
workload, using structured grading rubrics scored by large 
groups of nonexperts. Furthermore, the integration of 
robotic kinematic data with advanced computer vision and 
machine learning techniques is driving the development 

of automated surgical skill assessment systems, offering 
scalable alternatives to expert and crowd-sourced 
evaluation.10 To capture the latest developments in RAMIS 
technical skill assessment that are absent in less recent 
reviews, we surveyed articles published in the past 10 years, 
specifically focusing on studies using the da Vinci platform 
as their primary surgical system. First, we describe our 
search methodology used to gather the articles included 
in the survey. Next, we identify and explain the varying 
approaches to assessment represented in the survey 
articles. Finally, we discuss the applications and potential 
gaps in the current assessment literature.

METHODS

SEARCH METHODOLOGY
We used Scopus® to locate full text articles written in 
English that were published between 2014 and 2024. We 
used the query (robotic AND surgery) OR (robotic AND 
assisted AND surgery) AND (technical AND skill) OR (motor 
AND skill) AND (assessment).

STUDY SELECTION
The initial list of 189 results was screened for relevant articles 
and duplicates by reviewing the titles and abstracts of each 
article. The result was a list of 123 unique and potentially 
relevant articles. We reviewed the reduced list of articles to 
identify studies that covered topics related to the assessment 
of surgeons or surgical trainees while using one of the 
da Vinci robotic surgical platforms developed by Intuitive 
Surgical. This resulted in a list of 57 articles in the final 
analysis. Additionally, four papers focusing on automated 
skill assessment from the references of the curated list were 
added to create a final list of 61 papers (Figure 1).

RESULTS

To understand the current landscape of assessment of 
robotic surgical performance, we conducted a review 
of current literature to identify grading approaches, 
methodologies, and trends and organized the approaches 
into categories based on the type of assessment used.

STRUCTURED RUBRICS
Structured rubrics are assessment tools that consist of 
grading categories with clear criteria for evaluation. The 
areas assessed typically fall into two categories: technical 
skills and procedural knowledge. Common examples 
include Objective Structured Assessment of Technical Skills 
(OSATS),11 The Global Evaluative Assessment of Robotic 
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Skill (GEARS),12 and the Global Operative Assessment of 
Laparoscopic Skills (GOALS).13 Because these rubrics have 
been validated to reliably distinguish between different 
levels of surgical expertise,14 they are widely regarded as 
the standard approaches to surgical skill assessment. As 
a result, structured grading rubrics are commonly used 
not only for trainee evaluation but also to validate surgical 
training curricula and emerging assessment methods.

OSATS is a structured rubric built to assess the technical 
skills of surgical procedures. Initially designed to train 
technical skills in the laboratory, OSATS has also been used 
as a performance assessment tool during operations.11 
The OSATS rubric consists of seven categories that assess 
technical skills, such as respect for tissue, time and motion, 
use of assistants, handling and knowledge of instruments, 
flow of the operation, and knowledge of the specific 

procedure. These categories are assessed on a five-point 
scale, and the summed value of these individual ratings 
yields a Global Rating Score (GRS). Due to its established 
use and extensive validation, OSATS is routinely employed 
for assessing robotic procedures15-22 or for validating new 
assessment methods and curricula.23-25

GEARS is a grading rubric used to measure the surgeon’s 
technical performance when performing robotic surgery, 
evaluating skills in six areas: depth perception, bimanual 
dexterity, efficiency, force sensitivity, autonomy, and 
robotic control.12 Like OSATS, each area is assessed on a five-
point scale. GEARS was designed to capture the nuances of 
operating on a robotic platform, which traditional rubrics 
like OSATS may overlook. Like OSATS, GEARS is often used to 
assess surgical procedure performance16,19,26-29 or validate 
other metrics and training curricula.30-35

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram shows selection process for papers 
included in final analysis.
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GOALS is a structured grading method that assesses 
participants on depth perception, bimanual dexterity, 
efficiency, tissue handling, and autonomy, also based on 
a five-item global scoring rubric. GOALS has been shown 
to have high intraclass correlation values for surgeons, 
showing potential to discriminate between skill levels.13

Our survey also identified a number of alternative 
grading rubrics used to assess robotic surgery, many 
of which were developed to address specific tasks or 
limitations of more widely adopted tools such as OSATS and 
GEARS. These alternative rubrics offer diverse approaches 
to performance evaluation, often tailored to particular 
procedures or experimental settings.

A common method among researchers is to adapt 
standardized rubrics to better fit their specific use case. For 
example, a modified OSATS (mOSATS) is a rubric adapted 
from OSATS to include categories for suture handling and 
quality of the final product and excluding non-applicable 
categories.36 Other examples, such as robotic OSATS, 
rate depth perception, tissue handling, dexterity, and 
efficiency,37,38 while anastomosis OSATS, designed for 
gastrointestinal procedures, evaluates fifteen procedural 
steps on a three-point scale.39 Another example is the 
Structured Assessment of Robotic Microsurgical Skills (SARMS), 
which adapts the Structured Assessment of Microsurgical 
Skills (SAMS) rubric, with robotic-specific elements like wrist 
articulation and camera control.40 Modified GEARS is another 
example of a rubric designed to address gaps in the original 
by adding domains applicable to general robotic skills.41,42

Some rubrics propose new developments instead of 
simply modifying existing tools. The Assessment of Robotic 
Console Skills evaluates specific technical skill sets with six 
evaluation categories such as dexterity, field of view, and 
force sensitivity, showing reliability in distinguishing across 
surgeon skill levels.32 Another example is The Objective 
Clinical Human Reliability Analysis (OCHRA), an error-based 
tool that attempts to evaluate technical mistakes as the 
distinguishing factor in skill. Recent adaptations of OCHRA 
for basic robotic tasks demonstrate strong reliability and 
correlation with GEARS.35

CROWD-SOURCED ASSESSMENT METHODS
A more recent approach to assessing surgical skills employs 
crowd-sourcing to generate rubric-based scores. Typically, 
expert surgeons administer grading rubrics; however, 
rubric scoring can be a time-intensive and tedious task, 
making it difficult to recruit experts willing to complete the 
assessments. Crowd-sourcing approaches solve this issue 
by having the performance rating done by a large group of 
laypeople.

Crowd-sourcing of surgical skill assessment is typically 
facilitated through platforms like Crowd-Sourced 

Assessment of Technical Skill (C-SATS), which recruits 
nonexpert raters, often via services like Amazon Mechanical 
Turk,43 to score surgical videos using structured grading 
rubrics such as GEARS in the case of C-SATS. These raters 
undergo brief training to familiarize them with the rubric 
criteria before evaluating video clips. Multiple independent 
ratings are then aggregated using statistical methods to 
produce reliable scores. This method has been shown to be 
comparable to expert rater scores when assessing generic 
technical skills37,44 and robotic radical prostatectomy.45

SKILL-BASED METRICS
Surgical performance can also be assessed using individual 
skill-based metrics. These metrics are typically selected 
because they are inherently valuable in the surgical context 
(eg, patient outcomes, absence of intraoperative errors) or 
because they have been separately validated, often by 
comparison with established grading rubrics.

Completion Time
Time is a prevalent metric for robotic and traditional surgical 
performance. In the context of surgical assessment, time 
as a metric can be calculated as the time to complete an 
entire operation33,46 or individual tasks.15,20,47-53 Completion 
time has also been shown to be effective at distinguishing 
surgical skill level.15,16,53 This, paired with its ease of capture, 
makes completion a desirable and easy metric to include 
when performing skill assessment.

Kinematic-based Metrics
In robotic surgery, kinematic data refers to motion-related 
information from surgical instruments and robotic arms, 
such as position, velocity, acceleration, and joint angles 
captured from either the surgeon- or patient-side tools. 
Many robotic platforms are capable of recording this data 
during procedures; however, access is often limited due 
to proprietary restrictions.54 Despite this, when available, 
kinematic data allows researchers and system developers to 
design quantitative metrics for skill assessment and training.

A common approach to assess surgical performance 
in robotic surgery is to build metrics based on kinematic 
data collected from the surgical platform. Some of these 
metrics are based on tool velocity, acceleration, and other 
higher-order features that aim to capture the surgeon’s 
fine motor control and are used to distinguish technical 
skills. For example, higher mean tool speeds may indicate 
either improved efficiency or, conversely, a lack of control 
in less experienced users.55 These metrics can be sensitive 
to noise and therefore often require filtering or smoothing 
techniques to ensure robustness.51,55

Another frequently used metric is path length, the 
total distance traveled by the instrument tips during a 
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task. In several studies, reductions in path length have 
been correlated with improved performance on structured 
rubrics, suggesting construct validity as a measure of 
surgical expertise.47,55,56

Completion-based Criteria
Researchers have also used task progression to evaluate 
performance, particularly in motor tasks performed on 
robotic platforms.15,57,58 This method involves breaking 
down a larger task into smaller sub-steps. Performance 
scores are typically reported in arbitrary units and are 
calculated based on how many sub-steps a participant 
completes. This metric has shown moderate to high 
correlations to GRS scores.15

Examples of other criteria include the completeness 
of tissue closure in suturing, the completeness or quality 
of tissue resection,46 or the requirement of additional 
resources or steps to complete the task.21

Outcome-based Metrics
When looking at outcome-based metrics, surgical skill or 
expertise is assessed based on the procedure’s outcomes. 
Outcomes include survival rates, intra/postoperative 
complications (eg, blood loss, tissue injury), and recovery 
indicators such as length of hospital stay or time to diet 
resumption.21,22,26,58 These outcome measures have been 
increasingly used to infer technical proficiency across diverse 
surgical contexts. Additionally, validated assessment tools 
like OSATS have shown significant associations with some 
surgical and postoperative complications.22

Robotic Control
User performance in robotic surgery can be evaluated based 
on how effectively robotic instruments are manipulated. 
Key metrics include maintaining instruments within the 
camera’s field of view,34 securely grasping or handling 
tissue and objects without dropping them,23,50 and avoiding 
collisions with tissue or other instruments.34,46 Instrument 
collisions are commonly measured by frequency, contact 
duration, or force and vibration levels during interaction.16,59

Studies have shown that experts tend to exhibit lower 
instrument vibration magnitudes, fewer collisions, and 
reduced contact forces compared to novices, all of which 
correlate with higher GRS and GEARS scores.16,46

Precision or Accuracy Errors
Precision or accuracy errors refer to deviations from ideal 
positions, orientations, or motion paths that characterize 
expert performance. These may result from poor robotic 
control or inadequate fine motor skills. Common metrics 
include needle entry/exit point deviation from predefined 
targets,57 instantaneous or root mean square (RMS) position 

and orientation errors,60 tool depth error along the viewing 
axis,50 and deviations in grasp position, orientation, or 
drive path (in or out of plane).59 Less common but relevant 
measures include missed targets, excess tissue piercings, 
and mechanical or unintentional suture failures.21,23,34,59

Others
Other metrics used to assess performance include the 
number of gripper activations,47 use of additional assist 
ports,61 camera use per minute, rate of orientation change, 
laterality,51 and other metrics related to knot security-knot 
tensile strength57,58 and the presence of air knots.23,34 It is 
important to note that many metrics—such as camera 
use per minute, rate of orientation change, laterality, 
normalized angular displacement—together with mean 
velocity and spectral arc length were not significantly 
associated with GEARS.51

In addition, researchers have used metrics that capture 
motion economy or efficiency by measuring normalized 
angular displacement,51 ribbon area, and console 
workspace volume.47,59

Other researchers have explored errors more broadly, as 
any of subjective importance noted by an expert surgeon 
or as error of omission or commission, with omission-based 
errors being those behaviors that have occurred partially 
or not at all and errors of commission being incorrect 
behaviors that have led to a definable mistake.62

AUTOMATED ASSESSMENT
Analyzing technical skills for robotic surgery in an 
automated manner can be done by developing machine 
learning (ML) or deep learning (DL) models that predict 
scores or skill levels in a supervised manner. Supervised 
ML/DL models need a training dataset consisting of signals 
that record relevant robotic tool motion, videos of the tasks 
being performed, and grading by experts, which serve as 
the ground truth. Skill assessment could be performed 
at the task, segment, or gesture level. One early work 
by Malpani et al. trained support vector machines on 
certain tool and camera motion feature data present in 
short segments to create a pairwise preference classifier, 
obtaining ≥ 85% accuracy when tested on video data from 
suturing and knot tying tasks.47

Most works have developed automated assessment 
models on the JHU-ISI Gesture and Skill-Assessment 
Working Set,63 popularly known as the JIGSAWS dataset. 
JIGSAWS includes synchronized videos and kinematic 
recordings of dry lab surgical tasks—specifically knot tying, 
needle passing, and suturing—along with self-reported skill 
levels and mOSATS scores. Data from the JIGSAWS dataset 
has been used to train models for predicting skill level and 
mOSATS scores.36,55,64-66 Skill level prediction, typically posed 
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as a binary (novice/expert) or ternary (novice/intermediate/
expert) classification problem, is judged in terms of 
percentage accuracy (%) in classification. The prediction 
of mOSATS scores is a regression problem and is typically 
judged in terms of the Spearman correlation metric (ρ), 
which is computed between the predicted scores and the 
expert scores on the test subset.

Prior to the advent of DL methods, research focused 
on using ML models such as k-nearest neighbors, logistic 
regression, or support vector machines to predict skill levels 
or scores36,55 and followed a more descriptive analysis 
approach; for example, they computed features or metrics 
from kinematic data and trained ML models on the features. 
Works that subsequently followed typically used raw 
kinematic tool motion data and trained expressive DL models 
such as 1-D Convolutional Neural Networks (CNNs)64,65 and 
CNNs with bidirectional long-short term memory (LSTM) 
models.66 These works have demonstrated high precision in 
predicting skill level.36,65 Fawaz et al. achieved 100% accuracy 
on suturing and needle passing tasks in the JIGSAWS dataset, 
while Benmansour et al. also showed Spearman correlation 
values with moderate-to-high correlation (ρ ≥ 0.6) when 
comparing predicted scores to OSATS scores.66

In addition to supervised approaches, one group was able 
to use self-supervised learning and uncertainty estimation 
to adapt a DL model that was originally trained on JIGSAWS 
data to a novel data set that consisted of videos showing 
participants performing the ring-transfer task in a virtual 
reality setting.60 The model was able to adapt without the 
need for manual labeling or task knowledge.

Due to the difficulties present in gathering proprietary 
kinematic data, some researchers have opted to assess 
skill through video alone. By using easily accessible video 
capture in combination with computer vision methods, 
researchers can estimate kinematic values and perform 
assessment using the estimates. However, this process can 
be challenging due to its multidimensional and complex 
nature. In a recent study by Funke et al.,67 3D CNN layers 
alongside a Temporal Segment Network were used to 
classify subject skill level (expert, intermediate, or novice) 
in the JIGSAWS dataset, achieving ≥ 95% accuracy in all 
three tasks.67 Lee et al. demonstrated that surgical tool 
tracking from robotic thoracic surgery videos enabled skill 
level prediction using OSATS and GEARS thresholds with 
83% accuracy.68 Beyond just performing skill prediction, 
one group used surgical error annotations on Robot-
Assisted Radical Prostatectomy (RARP) operations to train 
a deep learning model for automated error detection.69

Apart from using kinematic motion data or video 
data, Shafiei et al. asked participants to perform 
robotic tasks while wearing eye tracking devices and 
electroencephalogram (EEG) machines.70 Using generalized 

linear models, the authors demonstrated a link between 
EEG features, eye gaze features, and experience-related 
metrics with performance and learning rate evaluation 
measures, thus highlighting the potential of using auxiliary 
signals for skill assessment.

While it may be important to automate surgical 
skill assessment and scoring, it can also be critical to 
determine whether feedback from such methods can help 
users effectively learn surgical technical skills. Malpani 
et al.59 conducted a randomized controlled trial and 
demonstrated that automated real time teaching cues 
based on grasp orientation during virtual reality-based 
robotic surgical training are effective. Another recent 
randomized controlled trial focused on suturing tasks and 
feedback using artificial intelligence (AI) models.71 They 
showed that AI-based automated feedback—provided in 
the form of video clips demonstrating ideal performance—
significantly improved needle handling scores, particularly 
for under-performers.

DISCUSSION

While a variety of methods exist for assessing surgical 
training, structured rubrics remain the gold standard. 
Their widespread adoption is due to strong validation 
in distinguishing between different levels of surgical 
expertise as well as their established integration into 
formal surgical education programs. Rubrics such as 
OSATS and GEARS are not only used to assess trainee 
performance but have also become the benchmark for 
evaluating the effectiveness of alternative assessment 
techniques and the validity of training curricula. This 
significant role reinforces their influence in both clinical 
and research settings, enabling consistent comparisons 
across studies and institutions.

Most research has assessed surgical skill at a single 
level, procedure, task, or gesture without integrating these 
individual assessments into a full performance profile. 
While some researchers have compared metrics across 
various levels,56 they did not combine them into a full 
procedure assessment. This highlights an opportunity for 
future research to develop methods that aggregate lower-
level assessments into larger comprehensive evaluations, 
potentially enabling assessments to be more robust, 
interpretable, and applicable to actual surgery.

Additionally, we noted that several studies in our survey 
employed surgical console simulators as platforms for 
performance assessment. These systems offer practical 
advantages in that they are low-cost, require no physical 
setup or expendable resources, and allow for consistent, 
repeatable task conditions across trials.20,24,29,31,49,51,72,73 
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However, results are mixed regarding their effectiveness 
for skill development. Some studies report no significant 
difference in performance outcomes between simulator-
trained and traditionally trained participants73 while 
other studies suggest that simulator training may result 
in inferior performance compared to dry lab or cadaver-
based training.72

There has also been a strong push towards automation 
in technical skill assessment, with eight out of thirteen 
automated skill assessment papers studied in this 
review published in the last 5 years. Several works have 
developed models using the JIGSAWS dataset.63 However, 
the JIGSAWS dataset has several limitations, including 
a small number of study participants and low-resolution 
video quality. Thus, there is a need for a large-scale skill 
assessment dataset that is openly available to the wider 
research community.

Researchers have also used crowd-sourcing for 
assessment and validation due to its cost efficiency and 
quick turnaround times. By implementing platforms such 
as C-SATS, researchers are able to perform assessments 
that are shown to correlate with expert raters assessment 
with lower costs and more quickly than traditional 
methods. Crowd-sourced grading costs approximately $16 
USD per case compared to $50 to $100 USD for expert-
based evaluations. This makes for a quick and affordable 
approach to performing surgical assessment. However, 
because crowd-sourced raters typically lack specific domain 
knowledge, much of the assessment is based on visual 
cues alone. This limits the use of crowd-sourced raters to 
applications where visual cues are sufficient to determine 
surgical performance, reducing the overall applicability of 
this method for medical programs.

CONCLUSION

Robotic surgical skill assessment has evolved significantly 
in recent years, with structured rubrics such as OSATS 
and GEARS remaining central due to their validation 
and widespread adoption. However, growing interest in 
objective, scalable, and automated methods has driven the 
development of skill-based metrics, ML models, and vision-
based systems. While most studies assess isolated tasks 
or gestures, there is a clear need for multilevel frameworks 
that integrate fine-grained and procedural assessments 
into a unified understanding of surgical competence. As 
the field moves toward automation and personalized 
feedback, future efforts should focus on creating large, 
diverse datasets and cross-platform generalizable models 
to ensure accurate, efficient, and clinically meaningful 
evaluation of surgical performance.

KEY POINTS

•	 Structured rubrics (eg, the Objective Structured 
Assessment of Technical Skill and the Global Evaluative 
Assessment of Robotic Skill) remain the most validated 
and widely used methods but are limited by evaluator 
time burden and potential bias.

•	 Crowd-sourced assessment platforms such as Crowd-
Sourced Assessment of Technical Skill offer cost-
effective and validated alternatives to traditional 
evaluation methods.

•	 Automated assessment models using kinematic and 
video data show high accuracy in predicting skill level 
of surgeons, particularly with the use of deep learning 
approaches.

•	 There is a need for assessment frameworks that 
integrate more granular assessment into larger 
performance profiles.
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