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ABSTRACT2

Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper3
limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have4
the potential to assist this population by providing a portable, powered, and wearable device;5
however, realization of this combination of technologies has been challenging. In particular, it6
has been difficult to show generalizability across motions, and to define optimal distribution of7
actuation, given the complex nature of the combined dynamic system. In this paper, we present a8
hybrid controller using a model predictive control (MPC) formulation that combines the actuation9
of both an exoskeleton and an FES system. The MPC cost function is designed to distribute10
actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power11
consumption, while ensuring smooth movements along different trajectories. Our controller was12
tested with 9 able-bodied participants using FES surface stimulation paired with an upper limb13
powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller,14
and we measured trajectory error and torque while moving the participant through two elbow15
flexion/extension trajectories, and separately through two wrist flexion/extension trajectories. The16
MPC-based hybrid controller showed a reduction in sum of squared torques by an average of17
48.7% and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively,18
with only small differences in tracking accuracy compared to the exoskeleton alone controller.19

Keywords: functional electrical stimulation, upper limb exoskeleton, model predictive control, hybrid control, movement assistance20

1 INTRODUCTION

There are approximately 291,000 people in the United States living with spinal cord injuries, and the21
majority of these are cervical level injuries, resulting in tetraplegia (NSCISC, 2019). Injuries at such a22
high level of the spinal cord create severe arm and hand disabilities, resulting in an inability to complete23
Activities of Daily Living (ADLs). As a result, 71% of individuals with tetraplegia currently require24
assistance with ADLs (Collinger et al., 2013). Given this, it is not surprising that restoration of arm25
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and hand function is a top priority among people with tetraplegia due to cervical spinal cord injuries26
(SCI) (Anderson, 2004). With scarce rehabilitation and assistive technology options, these individuals are27
largely dependent on full-time caregivers for feeding, grooming, and many other activities of daily living.28
Regaining the ability to perform these tasks independently will reduce requirements on caregivers and29
increase opportunities for individuals to return to social participation in their communities, both of which30
are highly correlated to quality of life (Dijkers, 1997).31

Recovery of arm and hand function through rehabilitation can be achieved for individuals with some32
residual muscle capability (Dietz et al., 2002; Beekhuizen and Field-Fote, 2005), and there are promising33
results that show that the same intensive robotic rehabilitation that has been successful for inducing34
plasticity and recovery following stroke (Reinkensmeyer et al., 2000; Charles et al., 2005; Blank et al.,35
2014; Lum et al., 2012) can be effective for SCI (Kadivar et al., 2012; Fitle et al., 2015; Francisco et al.,36
2017; Yozbatiran and Francisco, 2019; Frullo et al., 2017). For those without residual motor capability,37
however, or for those for whom rehabilitation interventions have not been able to restore functional38
movement, assistive technologies are a more viable option for replacing lost function. Such approaches39
incorporate mechanical devices that are attached to the limb and have the capability to move the limb40
or hand, or approaches that electrically stimulate the existing muscles, causing muscle contraction and41
inducing motion of the upper limb.42

Functional electrical stimulation (FES) is a promising assistive technology to restore arm and hand43
function. By activating a person’s own paralyzed muscles via surface electrodes placed on the skin or44
surgically implanted electrodes, limb movements can be generated. This approach requires very low energy45
consumption and exhibits high embodiment by the person; however, FES cannot produce sufficient torques46
to enable whole-arm reaching movements in people with tetraplegia, as many muscles are unresponsive to47
FES (Mulcahey et al., 1999; Peckham et al., 1976). Further, general multi-joint motions are notoriously48
hard to control with FES even with the most advanced systems (Ajiboye et al., 2017), often resulting in49
fine-tuned feed-forward implementations due to the physiological delays in muscle response to applied50
stimulation, and difficulty in accurately modeling the response to muscle activation. Augmenting FES with51
an assistive robot offers additional torque to support whole arm reaching while also offering improved52
movement accuracy, but this comes at the expense of increased bulkiness and decreased wearability of the53
combined FES-robotic system. An optimal combination of FES and an assistive robot would maximize the54
contribution of FES to minimize size and power requirements of the robot (Dunkelberger et al., 2020).55

This combination of FES with robotic devices is starting to gain traction, and is termed hybrid FES-robot56
(or FES-exoskeleton) control. A conceptual representation of using FES with a robot is shown in Figure57
1, where both robotic and FES action can complement each other to assist in the completion of activities58
of daily living. Many of the early approaches to bring this concept to reality did not truly combine and59
coordinate the actuation strategies for upper limb movements (Dunkelberger et al., 2020). Instead, each of60
the actuation types was used to achieve separate functions. For example, robotic devices have been used to61
lock degrees of freedom (Klauer et al., 2014; Ambrosini et al., 2017) or as gravity compensation (Cannella62
et al., 2016) enabling the muscles to relax and preventing fatigue. Other works have used robotic support63
devices to actuate one set of degrees of freedom, while FES is used to actuate another set (Ajiboye et al.,64
2017; Schulz et al., 2011; Varoto et al., 2008). Typically the robot controls motions that need precision or65
require larger torques and forces to support, such as elbow flexion and extension, while FES is used for66
coarse movements, such as grasping. For upper limb motions with coupled degrees of freedom, such as67
shoulder, elbow, and wrist movements, these existing control strategies pit FES against a robot-imposed68
locked-joint, gravity, or single-joint motion constraint, essentially wasting the free actuation from FES and69
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Figure 1. An example future application of hybrid systems is shown for a reach and grasp task. The
incorporation of both FES and a robot allows for a large portion of the movement to be provided by FES,
and the robot can provide small amounts of power to provide minimal movement corrections. With the
robot alone, all power for the movement must be provided by the robot.

transferring it to the robot. Recently, single-joint hybrid systems that do share actuation on the same joint70
have been explored, but research has been limited, testing only in the elbow flexion extension joint with71
biceps electrodes in a minimum jerk trajectory (Wolf et al., 2017; Burchielli et al., 2022), or in simulation72
(Bardi et al., 2021).73

In lower limb applications, more advanced hybrid control algorithms have been explored, largely enabled74
by the repetitive nature of gait motions (Ha et al., 2016; Bulea et al., 2014; del Ama et al., 2014). These75
lower limb hybrid systems often use a version of iterative learning control that takes advantage of the76
repetitive movements to fine-tune control over several cycles. Some recent research has begun to use model77
predictive control (MPC) algorithms, which can be more readily adapted to non-cyclic movements in the78
lower limbs (Kirsch et al., 2018; Bao et al., 2021), and which are more similar to the non-cyclic movements79
required of upper-limb movements. Results from these studies using MPC have shown the ability to follow80
a step reference trajectory and hold a position, and the algorithms should generalize to arbitrary trajectories.81

A truly shared approach for hybrid FES and robotic control of upper limb reaching movements is needed82
to combine these techniques in a manner that achieves generalized upper limb movement assistance in83
an optimal manner. In this paper, we present a model-based control approach to hybrid FES-exoskeleton84
control. Recent works have demonstrated the first steps towards this vision. Wolf et al. demonstrated the85
use of model-based algorithms to power FES in combination with gravity compensation from a robot86
(Wolf and Schearer, 2022). Our group has also demonstrated shared control of elbow flexion and extension87
movements with FES and exoskeleton assistance acting in coordination to follow a desired trajectory88
(Dunkelberger et al., 2022a). In that work, we showed that a model-based controller for our upper limb89
exoskeleton, which has knowledge of the expected contributions of FES, requires significantly less robot90
torque than a standard PD control algorithm, with minimal loss in trajectory following accuracy. Here,91
we expand our initial demonstration along a number of fronts. First, we present an MPC algorithm that92
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removes the integral term used previously and incorporates an additional proportional-integral-derivative93
(PID) controller acting in parallel, resulting in improved performance in both trajectory following and94
reduction in torque requirements from the exoskeleton compared to our initial controller. We incorporate a95
sophisticated model of the user’s arm dynamics that accurately captures behavior across the exoskeleton96
workspace. We experimentally demonstrate the performance of the hybrid FES-exoskeleton controller in97
able-bodied participants completing two trajectories for two degrees-of-freedom of the exoskeleton (elbow98
flexion-extension and wrist flexion-extension), and we compare the performance of the hybrid controller to99
an exoskeleton-alone case, as illustrated in Figure 1. Finally, we examine longitudinal performance of the100
hybrid FES-exoskeleton control for a subset of participants to determine how performance changes one101
week after the initial experiment trials.102

2 MATERIALS AND METHODS

2.1 Participants103

Nine able-bodied participants (4 female, avg age 22.9) participated in a single session of the experiment104
after providing informed consent. Three of the nine participants, who had experience with FES prior to the105
initial experimental session, also completed a second session of testing using the same protocol at least one106
week after their first experimental session. The study was approved by the institutional review boards at107
Rice University (IRB #FY2017-461) and Cleveland State University (IRB #30213-SCH-HS).108

2.2 Procedure109

The goal of this study is to develop a new hybrid controller that distributes actuation between an110
exoskeleton system and an FES system. The goal of such a controller is that it can reduce the power111
requirements in comparison to an exoskeleton alone system, which can lead to more portable devices in112
the future that can assist individuals with SCI in completing general activities of daily living. To test the113
effectiveness, the developed hybrid controller is used to provide movements on two different degrees of114
freedom (DOF), elbow flexion/extension, and wrist flexion/extension. To understand how this compares115
to available exoskeleton systems, the resulting torque and position profiles for the hybrid controller are116
compared with an exoskeleton-alone controller in following two different trajectories.117

2.3 Materials118

The hybrid FES-exoskeleton system is comprised of two main subsystems that provide actuation. The119
first subsystem, which provides FES, is a transdermic electrical stimulation system (Trier et al., 2001)120
which provides 8 output channels of bipolar stimulation. In this study, two channels are used for the elbow121
flexion/extension joint, and two channels are used for the wrist flexion/extension joint. To provide varying122
levels of output using the FES subsystem, the amplitude and frequencies are kept at a constant value for123
each channel, and the pulsewidth is varied.124

The second subsystem is the robot, the MAHI Open Exoskeleton (Dunkelberger et al., 2022b). This robot125
provides four DOFs of movement support, namely elbow flexion/extension, forearm pronation/supination,126
wrist flexion/extension, and wrist radial/ulnar deviation, and each of these joints line up with the equivalent127
anatomical degree of freedom of a person using the exoskeleton. These will also be referred to by joint128
number throughout this paper, which are joints 1-4 respectively. The exoskeleton has an adjustable129
counterweight to account for varying arm masses, an adjustable slider to account for varying forearm130
lengths, and an adjustable shoulder abduction angle to keep the participant comfortable. The counterweight131
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and forearm slider parameters are adjusted for each subject at the beginning of the experiment, and locked132
for the experiment duration. This shoulder abduction angle was kept at a value of 30° for all participants.133

2.4 Methods134

The study consists of several model characterization steps related to each of the subsystems, followed135
by experimental testing of the hybrid controller which makes use of these characterizations. First, the136
electrodes are placed in appropriate locations, and comfortable ranges of stimulation are found. Recruitment137
curves are characterized for each set of electrodes to define the relationship between commanded pulse138
width and muscle activation level. Gaussian process regression models are created to characterize torque139
output for each electrode based on the orientation of the upper-limb. The mass properties of the participant’s140
arm are then characterized so that a combined dynamic model can be created for the arm-exoskeleton141
subsystem. The hybrid controller is created using the characterizations of each of the components. These142
characterization steps are more completely described in sections 2.4.1-2.4.5. The hybrid controller is then143
compared against an exoskeleton alone controller in a scenario of following two trajectories for each DOF.144

In this study, the elbow flexion/extension and wrist flexion/extension DOFs are tested independently.145
Each of the experimental steps is performed with the elbow flexion/extension joint and corresponding146
electrodes, followed by the wrist flexion/extension joint with corresponding electrodes. The explanations147
that follow apply to both DOFs.148

2.4.1 FES Electrode Placement149

The experimental protocol began by placing the electrodes on the participants. Each of the electrode pairs150
were placed and tested one at a time. A set of electrodes was placed as agonist/antagonist pairs for each151
of the active degrees of freedom. This means for the elbow flexion/extension joint, one set of electrodes152
was placed to target elbow flexion, and another set was placed to target elbow extension using two inch153
square electrodes. For the wrist flexion/extension joint, one set of electrodes was placed to target wrist154
flexion, and another set of electrodes was placed to target wrist extension using one inch round electrodes.155
Electrode placement locations for each of these movements were chosen based on pilot testing based on156
which locations could reliably provide the desired movement. These general chosen locations are shown in157
Figure 2.158

For the elbow flexion electrode placement, a reference electrode was placed, and a Compex motor point159
pen was used to find a specific point that generates biceps contraction, and the second electrode was placed160
there. For the remaining electrodes, the pair of electrodes were placed in a nominal location, and the pulse161
width was increased slowly. The resulting movement with the participant’s arm on a table was observed,162
and the electrodes were adjusted if the desired movement was not produced. The electrodes were then163
wrapped with medical bandage to ensure that the electrodes stayed in the original location.164

2.4.2 Threshold Identification165

Once the electrodes have been placed, the minimum and maximum pulsewidth values that will be used166
for each participant need to be identified. The robot and arm were moved to a neutral configuration, and167
held there using independent PD controllers on all joints. For each electrode placed, the minimum value168
that produced a change in torque output in the PD controller is considered the minimum pulse width value,169
pwmin. The discomfort threshold is then found by increasing the pulsewidth until the participant verbally170
indicates their maximum value which is still comfortable. The maximum pulsewidth value used throughout171
the experiment, pwmax, is taken as a slight reduction from the discomfort threshold. A ramp from the172
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Figure 2. (A) A participant with their arm in the robot in the experimental setup, with the axes of
rotation for the active joints indicated by orange and red arrows for the elbow flexion/extension and wrist
flexion/extension joints respectively. (B) Placement of each of the four sets of electrodes. Electrodes were
placed over the biceps for elbow flexion over the triceps for elbow extension. Electrodes were placed on the
flexor carpi ulnaris for wrist flexion, and extensor carpi radialis longis and extensor carpi ulnaris muscles
for wrist extension.

pwmin to pwmax is then used to verify that the participant remains comfortable throughout the range, and173
that the pwmin is just below the threshold of providing torque output.174

2.4.3 Recruitment Curve Characterization175

With the thresholds defined, a mathematical representation between the pulsewidth range and muscle176
activation is found, defined as a recruitment curve. Previous research has shown that functional electrical177
stimulation produces a muscle recruitment curve in the form of a sigmoid (Durfee and MacLean, 1989).178
To characterize this recruitment curve, the robot is again moved to a neutral configuration, and held there179
using independent PD controllers on each joint. Each of the electrodes sequentially performs four impulses180
at pwmax, followed by four linear ramps between pwmin and pwmax, as shown in Figure 3.181

The ramp deconvolution method is used (Durfee and MacLean, 1989) with the input of pulsewidth values182
and the corresponding torques generated from the stimulation to generate smooth curves to be characterized.183
The sigmoid is then fitted using equation 3 with free parameters of c1 and c2, where pw∗ and pw∗

max are184
defined as pulsewidths normalized so that a pw∗ value of 0, corresponds a pwmin as defined in equations 1185
and 2.186
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Figure 3. (left) Profiles of commanded pulsewidths, and resulting torque outputs due to stimulation
from the wrist extension electrode in the recruitment curve characterization process. (right) Resulting
characterized recruitment curve in the form of a sigmoid based on the ramp deconvolved data.

pw∗ = pw − pwmin (1)

pw∗
max = pwmax − pwmin (2)

α∗ =
c1

1 + e−c2(pw∗−pw∗
max
2 )

− c1

1 + e
c2pwmax

2

(3)

α =
α∗

c1
(4)

This equation results in a sigmoid with a minimum value of 0 and a maximum value of c1. The term c2 is187
related to the slope of the function as it crosses the midpoint. To turn this characterization into the standard188
definition of a recruitment curve which varies from 0 to 1, α∗ is divided by c1 to arrive at an equation for189
activation, α.190

2.4.4 Gaussian Process Regression Model Creation191

The last component needed to mathematically represent the FES subsystem is a representation of the192
torque output based on the arm joint configuration of the participant. A Gaussian Process Regression (GPR)193
model is used to characterize this relationship torque when each of the FES electrode pairs is at a maximum194
activation as a function of the arm configuration. In this case, the black-box representation of the GPR195
models also implicitly capture some of the complex muscle dynamics. For each of the degrees of freedom,196
eight evenly spaced positions are taken between the minimum and maximum values that each joint will see197
throughout the experiment. At each of these positions, PD controllers on each of the individual robot DOFs198
are used to keep the robot at the desired position. The exoskeleton torque required to hold the pose when no199
muscles are stimulated is recorded as τpassive. One electrode is increased to its maximum activation, and200
the exoskeleton torque required to hold that pose is recorded as τhold. We consider the difference between201
the two values as the torque produced by the electrode τrecord.202

τrecord = τhold − τpassive (5)
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Figure 4. Fitted GPR models are shown along with data points used to fit the model for the elbow
flexion/extension joint for the elbow flexion and elbow extension electrode.

The position tested and τrecord at that position are saved as training data for the tested electrode. This is203
repeated for the other electrode active for the current DOF, and at each of the other positions, three times in204
a randomized order. The collected training points are then used to generate a GPR model for each electrode205
using Matlab’s fitrgp function. An example of trained GPR models for elbow flexion/extension torque206
output resulting from the elbow flexion and elbow extension electrodes for a single subject is shown in207
Figure 4. This results in the following equation208

τfes = P (q)α (6)

where P (q) ∈ R1×2 and where column i is an individual GPR model that provides an estimated output209
torque when electrode set i is at maximum stimulation, and the robot is at position q. Recall that this is210
implemented for each joint separately, so there is one P (q) that corresponds to the elbow flexion/extension211
joint and uses the elbow flexion/extension position as an input, and one P (q) that corresponds to the wrist212
flexion/extension joint and used the wrist flexion/extension position as an input.213

2.4.5 Arm Model Characterization214

An accurate model of the dynamic system is needed for effective MPC implementation. Previous work215
has developed a model of the exoskeleton without an arm (Dunkelberger et al., 2022b). In this study, an216
optimization problem was solved to find an estimate of dynamic properties for the arm to be used with the217
exoskeleton dynamic model, including masses, moments of inertia, and friction components.218

To add these dynamic properties of the arm to the dynamic model of the exoskeleton, each joint in the219
arm was assumed to be a rigid body rigidly connected to the corresponding joint on the exoskeleton. With220
this assumption, the mass of each arm joint can be added to the mass of the robot joint, and the inertia of221
each arm joint can be combined with the inertia of each robot joint using the parallel axis theorem. While222
this study mainly focuses on the impact on the elbow flexion/extension and wrist flexion/extension joints,223
this arm characterization process utilizes all four joints of the exoskeleton to create a full dynamic model224
as shown in equation 7, which can then be reduced to the single-joint components for the controller.225
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τ = M(q)q̈ + V (q, q̇) +G(q) + Ff (q̇) (7)

In equation 7, τ ∈ R4×1 is a vector consisting of the torques at each joint. M ∈ R4×4 is known as the226
mass matrix and consists of different combinations of the mass and inertial terms of each joint. V ∈ R4×1227
is the vector of centrifugal and Coriolis terms. G ∈ R4×1 is the gravity vector and gives the affects of228
gravity on each joint, and Ff ∈ R4×1 gives friction on each joint. q is a vector of all joint positions, q̇ is a229
vector of all joint velocities, and q̈ is a vector of all joint accelerations. M , V , G, and Ff were calculated230
using the same methods as previous work (Dunkelberger et al., 2022b), but with the combined arm and231
robot properties serving as lumped parameters in the formulation.232

Equation 7 can be used to characterize the unknown arm mass properties that appear in the equation, given233
experimentally recorded values for τ , q, and q̇. To collect these data for characterization, the user’s arm was234
placed inside the robot and secured. A chirp signal was used as a position reference for the wrist radial/ulnar235
deviation joint while the other three joints were commanded to remain stationary using independent PD236
controllers. This process was then repeated for each more proximal joint. The torque required to complete237
the motions and the resulting joint positions and velocities were recorded. The recorded velocities were238
filtered, and a finite difference derivative was calculated to approximate the accelerations. With these239
values, the difference between the left side and right side of equation 7, recorded and calculated torques240
respectively, could be found given a guess of mass properties. The difference between these two values at241
every time step is the error in the dynamic model, and this error was used as the optimization criteria to242
estimate the mass properties of the arm when combined with the mass properties of the exoskeleton found243
in previous work (Dunkelberger et al., 2022b).244

To keep the number of optimization variables small, the problem was solved one joint at a time, starting245
with the most distal joint, wrist radial/ulnar deviation. This joint was the first to be optimized because246
for any given joint, only the more distal joints impact the current mass property analysis. Each more247
proximal joint was then optimized in order, ending with the elbow flexion/extension joint. At each joint,248
the inertia about the axis of rotation and the distances to the center of mass in the other two axes were249
optimization variables. When running the optimization on any joint except wrist radial/ulnar deviation, the250
next distal joint’s distance to the center of mass along the distal joint’s axis of rotation was also included as251
an optimization variable. This was added because this value does not appear in the calculations for the252
joint moving, but does impact the more proximal joints. Lastly, two optimization variables were added to253
each joint corresponding to the joint kinetic and viscous friction, which were considered to be added to the254
coefficients previously characterized for the exoskeleton by itself. A constant mass was assumed for each255
joint because the mass only appears multiplied by the distance to the center of mass terms. The formulation256
of this optimization problem can be seen in equations 8 and 9.257

argmin
pd

ed =
M∑
t=1

(τcalc d t − τmeas d t)
2 (8)

pd =

{[
Iczz d, rcx d, rcy d, rcx d+1, Fk d, Bd

]
if 1 ≤ d ≤ 3[

Iczz d, rcx d, rcy d, Fk d, Bd,
]

if d = 4
(9)
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Active Joint qhold 1 qhold 2 qhold 3 qhold 4

Elbow F/E N/A 0° 0° 0°
Wrist F/E -30° -30° N/A 0°

Table 1. Holding position of inactive joints throughout testing.

In these equations, pd represents the vector of parameters for a given joint, d. A d of 1 represents the258
elbow flexion/extension joint and d = 4 being the wrist radial ulnar/deviation joint, ed refers to the torque259
error between the calculated torque, τcalc, and measured torque, τmeas, t represents a given time step up to260
M total time steps, Iczz is the moment of inertia about the axis of rotation taken about the center of mass,261
and rcx, rcy, and rcz represent the distance from the axis of rotation to the center of mass in the x, y, and z262
directions respectively.263

The optimization problem was solved using fmincon in Matlab, with initial guesses of zero for all264
optimization variables. The optimal properties found using this method were combined into the lumped265
arm and robot system used in the remainder of this study.266

2.5 Hybrid Controller Design267

We first present the full four-DOF dynamics for the FES-exoskeleton hybrid system, which we will then268
reduce to the single-DOF dynamics for the control formulation. This is similar to the dynamics of the robot269
and arm system in equation 7, but the inputs to the system arise from both the exoskeleton and the FES270
system, so we separate the torque term into the two components.271

τfes + τexo = M(q)q̈ + V (q, q̇) +G(q) + Ff (q̇) (10)

In this equation, τexo ∈ R4×1 and τfes ∈ R4×1 are torques supplied along each of the robot joints due to272
robot torque outputs, and torques provided by FES respectively.273

As in the previous sections, the control problem will be described once, but the equations presented274
apply to either the elbow flexion/extension or the wrist flexion/extension DOF. To limit the full dynamics275
in equation 10 to analyze a single DOF with the rest of the joints remaining stationary, all inactive joints276
can be constrained such that qj = qhold j , q̇j = 0, q̈j = 0 for all joints j that are inactive. Here, qhold j277
is the holding position of joint j when it is inactive, as shown in Table 1. This results with the following278
equation to describe the dynamics of a single DOF system, either in the elbow flexion/extension or wrist279
flexion/extension case.280

P (q)α+ τexo mpc = mq̈ + g sin(q − qeq) + ff (q̇) (11)

For the DOF of interest, m represents the estimated lumped inertia, g represents the gravitational effects,281
ff represents the friction effects, and qeq represents the natural resting position of the combined arm-robot282
system for the DOF of interest. In equation 11, and throughout the remainder of the paper, all variables that283
appear in equations are referring to a single DOF, and the values of these variables are different in the elbow284
flexion/extension DOF and the wrist flexion/extension DOF, but the symbolic expressions apply to both285
DOFs. For example, when this equation is applied to the elbow flexion/extension joint, q, q̇, and q̈ are the286
position, velocity, and acceleration of the robot elbow flexion/extension joint, and α is the vector [α1, α2]

T ,287
which are the activation levels of the electrodes placed to induce elbow flexion, and elbow extension.288
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To develop our control problem, we define the following quantities as the system state, x, system output,289
y, and and control input, u, where C is the output matrix describing the variables we can observe.290

x = [q, q̇]T (12)

C = I2 (13)

y = Cx (14)

u = [τexo mpc, α1, α2]
T (15)

To use standard analysis techniques, we would like to have our dynamics in the form of ẋ = f(x,u),291
which by definition is the vector [q̇, q̈]T By solving equation 11 for q̈ as follows, we can obtain an explicit292
definition for the representation of f(x,u).293

q̈ =
1

m
(P (q)α+ τexo mpc − g sin(q − qeq)− ff (q̇)) (16)

To implement real time control, it is beneficial to use a linearized form of the dynamics to reduce294
computation time. We can then convert the dynamics to a linearized form by calculating the Jacobian of the295
dynamics about time k with respect to the input and output. The following gives a estimate for the dynamic296
equations at time i, linearized at time k.297

Ak =
∂f

∂x

∣∣∣∣
x=xk,u=uk

(17)

Bk =
∂f

∂u

∣∣∣∣
x=xk,u=uk

(18)

˙̄xi = Akxi+Bkui + ẋ|x=xk,u=uk
(19)

These linearized dynamics are then used in the MPC formulation. The cost function is as follows, where i298
represents a discrete point in time in the standard MPC formulation.299

Ji = (ri − ȳi)
TQ(ri − ȳi) + ∆uT

i R∆ui + uT
i Rmui (20)

The matrices Q ∈ R2×2, R ∈ R3×3, and Rm ∈ R3×3 are positive diagonal matrices used to weight300
predicted trajectory error, control input rate of change, and control input magnitude respectively. In this301
equation, the control input rate of change at timestep i is defined as ∆ui = ui − ui−1. Initial values for302
these gains were chosen based on pilot studies that provided desired behavior as described below.303
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Q =

[
Qpos 0
0 Qvel

]
(21)

R =

Rexo 0 0
0 Rfes 0
0 0 Rfes

 (22)

Rm =

Rm exo 0 0
0 Rm fes 0
0 0 Rm fes

 (23)

The general ideology behind the choice of gains in the hybrid controller is as follows. The gains for Q304
represent the importance for the controller to follow the desired trajectory, with higher gains indicating305
better tracking, but less stable behavior if there are model errors. The gains for Rm are chosen so that306
Rm exo ≫ Rm fes, which is the main method by which the hybrid control strategy reduces exoskeleton307
torque compared to a strategy which only uses an exoskeleton. Additionally, these gains are chosen such308
that (ȳi − ri)

TQ(ȳi − ri) ≫ uT
i Rmui, so that trajectory accuracy is not sacrificed to allow for overall309

torque reduction. The gains for R are chosen so that Rfes ≫ Rexo so that the FES system, which has310
significant delay, remains stable by mainly responding with low-frequency changes in torque while the311
exoskeleton does mostly quick corrective actions. This combination of chosen gains for R and Rm are312
intended to have the general effect of the FES subsystem providing low frequency, high amplitude torque,313
allowing it to provide a bulk of the power requirement, yet maintain smooth motions despite the time delay.314
The exoskeleton subsystem provides high frequency, low amplitude torque, which provides necessary quick315
corrections without requiring too much power consumption. As a reminder, separate controllers are used316
for the elbow flexion/extension joint and for the wrist flexion/extension joint, and the gains for each of the317
two joints are created independently.318

Because the Rfes and Rm fes gains place costs on activation levels rather than FES torque outputs, in319
some cases, it was necessary to adjust these values for each participant upon initial testing with the hybrid320
controller to account for variations in torque productions for the same activation level. To account for this,321
when the hybrid controller was first tested in the experiment, these gains were increased by a factor of two322
from the original values if there was oscillatory behavior, or decreased by a factor of two if activation levels323
were lower than expected.324

The final cost function used in the MPC implementation is as follows.325

argmin
u(·)

Jtot =
N∑
i=1

Jk+i (24)

subject to ȳk+i+1 = ȳk+i + ˙̄xk+iTs,

0 ≤ αe ≤ 1, e = {1, 2}

In equation 24, k represents the current point in time, and future discretized timesteps at time k + i are Ts326
seconds apart, for N time steps. The dynamics at these future time points are approximated using Euler327
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Figure 5. Hybrid FES-Exoskeleton control block diagram, showing how the different components of the
hybrid controller work together to provide torque commands to the robot and pulse width commands to the
stimulator given a desired input trajectory.

integration as shown by the fist constraint on the optimization problem, with the bars representing that328
these are estimated values. The second constraint restricts the activation level, α, of each electrode, e, to329
fall between 0 and 1. An additional constraint could be implemented to limit the maximum allowable330
exoskeleton torque; however, in this study, the torque required from the exoskeleton always remained331
below the maximum allowable torque, which meant that this constraint did not need to be implemented.332
The result of the optimization is u(·) which represents the optimal control inputs over the time prediction333
horizon, uk+1, uk+2, ..., uk+N .334

This MPC formulation is created in C++ using the nonlinear optimization framework CasADi (Andersson335
et al., 2019). The solver for the dynamic problem is compiled into a dll file which can be loaded at336
runtime and interfaced with the Interior Point Solver, IPOPT (Wächter and Biegler, 2006), to solve the337
MPC problem. This MPC problem is solved as fast as possible in a separate thread, and each time a338
solution is found, the solution of the minimization, u(·), is sent to the main thread, where those successive339
control solutions are used until the next solution is found. From u, τexo mpc is used directly, and α1 and340
α2 are converted to pulsewidth commands to send to the stimulator using equation 4 which describes the341
recruitment curve.342

To tune the gains for the MPC algorithm, Q and R were first tuned to achieve smooth movements and low343
tracking error, with Rm values kept at 0. Following this, the Rm gains were chosen to achieve meaningful344
reduction in the exoskeleton torque, while maintaining similar tracking accuracy. As Rm gains were tuned,345
Q and R were further adjusted as necessary.346

To account for model error in the MPC formulation, a PID controller using only exoskeleton torque is347
implemented in parallel as shown in Figure 5. This has the effect of allowing the MPC portion to control348
most of the action, while still providing a high accuracy on the resulting trajectory tracking. The torque349
provided by the PID controller is defined as τexo fb, and the gains for this controller were chosen in pilot350
testing to achieve between 1° and 1.5° RMS tracking error. In the tuning of this controller, the gains were351
slowly increased, and tuned only after fully tuning the MPC system independently, so that the controller352
dynamics achieved from the MPC algorithm were the driving component. This additional controller does353
not change the output applied by the FES subsystem, but the torque applied to the exoskeleton becomes354

τexo tot = τexo mpc + τexo fb (25)

355
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To test the effectiveness of the hybrid controller design, it is compared against a purely exoskeleton356
controller, defined as the exoskeleton alone control case. In this test case, the same general structure is used357
with the MPC controller paired with a PID controller, but equation 15 becomes358

u = [τexo] (26)

which results in R and Rm being single values rather than matrices.359

2.6 Experimental Validation360

After a participant completed each of the model characterization steps and the MPC problem was361
generated, the experimental validation was conducted. Participants were assisted in completing two362
different trajectories in two different conditions, using the hybrid controller that combined the FES and363
exoskeleton action, and using the exoskeleton alone. The first trajectory is referred to as the cup trajectory,364
and it is based on a study that tracked healthy individuals’ joint-level movements to move a cup to various365
target locations with differing grasps (Valevicius et al., 2019). The movement profile for each of the366
joints was taken independently and spaced so that it spanned a useful and comfortable trajectory space367
for the exoskeleton used in this study which was 30° flexed to 90° flexed from full extension for elbow368
flexion/extension and 15° extended to 45° flexed for wrist flexion/extension. The cup trajectory is useful to369
observe how the hybrid controller behaves when following natural motions that would be expected under370
normal use. The second trajectory is referred to as the sinusoidal trajectory, and it is an artificially created371
trajectory that is the summation of multiple sinusoidal waves at different amplitudes and frequencies.372
This trajectory was created to test the controllers’ ability to generalize to different movements. The373
trajectories are relatively similar in terms of difficulty for the elbow flexion/extension joint, but the wrist374
flexion/extension joint movement is significantly easier in the cup trajectory than the sinusoidal trajectory.375
Both trajectories take 42.4 seconds to complete, which is four times the time it took an average able-bodied376
individual to complete the cup trajectory in (Valevicius et al., 2019). A four times reduction was chosen377
because the original trajectory moved through the workspace very quickly, and this reduction empirically378
felt an appropriate length to safely perform movements with a human in the robot. Visualizations of these379
trajectories are shown in the results in Figures 8 and 9.380

Each DOF was tested for ten trials on the cup trajectory, split evenly between hybrid controller and381
exoskeleton alone controller, and 10 trials on the sinusoidal trajectory, also split evenly between hybrid382
controller and exoskeleton alone controller. While each DOF was being tested, all other DOFs were kept at383
their qhold values as shown in table 1 using independent PD controllers on those joints. Collection of the384
experimental data began by running four elbow flexion/extension trials, consisting of one of each possible385
combination of trajectory and controller type. This was followed by four wrist flexion/extension trials,386
again consisting of each possible combination of trajectory and controller. This sequence was repeated387
until all 40 total trials had been collected. Throughout each of the trials, position of the active DOF, total388
exoskeleton torque commanded, and activation levels of electrodes were collected at a rate of 1 kHz using389
a Quanser Q8-USB data acquisition device.390

Three of the nine participants repeated the entire protocol (including characterization steps) at least one391
week after they completed the first set of data collection. These data were collected to provide insight into392
whether results remain similar between sessions within the same participant, rather than only comparing393
between participants.394
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2.7 Data Analysis395

The primary objective of these experiments is to understand the extent to which exoskeleton power396
consumption can be reduced in a hybrid system compared to a exoskeleton alone system. We compare397
power consumption by taking the sum of the squared total exoskeleton torque throughout the trajectory for398
each of the conditions tested as shown in equation 27, averaged across each of the five trials with that set399
of conditions. This value is labeled as τss exo for the exoskeleton alone control condition, and τss hybrid400
for the hybrid control condition. Because participants have different arm sizes, and require the robot to401
be in different configurations, it is expected that participants will require different amounts of sum of402
squared torque from the system to move through the cup and sinusoidal trajectories. To normalize the data403
to compare across subjects, the reduction in sum of squared torque in the hybrid control case compared to404
the exoskeleton alone control case is shown by equation 28. This allows us to analyze the varying power405
consumption both between exoskeleton alone and hybrid controllers, as well as how the relative controller406
performance translates between two different trajectories.407

τss =
N∑
i=1

τ2exo tot (27)

%Imp = 100(1−
τss exo − τss hybrid

τss exo
) (28)

In equation 27, N is the number of data points collected. With this representation, a value of %Imp = 0408
would represent equal amounts of torque being used in both control cases, which would indicate no409
improvement, a value of %Imp > 0 would indicate a reduction in power consumption using the hybrid410
controller with a value of %Imp = 100 indicating no exoskeleton power was consumed, and a value of411
%Imp < 0 would indicate that the hybrid controller required more exoskeleton power than the exoskeleton412
alone case. A paired t-test was performed to understand whether there was a statistically significant413
difference between in the sum of squared torque in the exoskeleton alone control case, and in the hybrid414
control case for each of the trajectories.415

The secondary objective of these experiments is to understand how the tracking accuracy compares when416
using the two options for controllers. The RMS tracking error is calculated as417

erms =

∑N
i=1

√
(yi − ri)2

N
(29)

A paired t-test was performed to understand whether there was a statistically significant difference between418
the RMS errors in the exoskeleton alone control case, and in the hybrid control case for each of the419
trajectories.420

One subject was unable to get any detectable torque output from one of the electrodes on the wrist421
flexion/extension DOF, and therefore, did not complete data collection for that DOF. Because of this, there422
are 9 sets of data analyzed for the elbow flexion/extension results, and 8 sets of data analyzed for the wrist423
flexion/extension results.424
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Figure 6. Sum of squared torque reduction results are shown for all subjects for each trajectory for the
elbow flexion/extension DOF (left) and wrist flexion/extension DOF (right). The overlaid scatterplot shows
individual subject results, with the same symbol representing a single subject across figures. Points in
green show the repeated data collection for the first three subjects, but repeated data collection does not
contribute to boxplot presentation. The purple “∗” above the plots represents a that there was a statistically
significant difference in the sum of squared torque between the hybrid and exoskeleton alone control cases.

3 RESULTS

A summary of the sum of squared torque reduction findings is presented in Figure 6 as boxplots with425
individual subject data overlaid on top. These results show a mean sum of squared torque reduction of 48.8%426
and 48.6% for the cup and sinusoidal trajectories respectively for the elbow flexion/extension joint when427
comparing the hybrid controller to the exoskeleton alone controller. These values for individual participants428
spanned from 11.8% to 71.6% for the cup trajectory, and from 8.8% to 77.2% for the sinusoidal trajectory,429
with the lowest data point being an outlier. A mean sum of squared torque reduction of 59.3% and 56.5%430
was shown for the cup and sinusoidal trajectories respectively for the wrist flexion/extension joint when431
comparing the hybrid controller to the exoskeleton alone controller. These values for individual participants432
spanned from 33.4% to 82.9% for the cup trajectory, and from 39.3% to 79.0% for the sinusoidal trajectory.433
The statistical tests showed that the sum of squared torques were significantly lower in the hybrid control434
case compared to the exoskeleton alone control case in both DOFs and in both trajectories, with p values435
being < 0.01 in both trajectories for the elbow flexion/extension joint, and p values being < 0.001 in both436
trajectories for the wrist flexion/extension joint.437

A summary of the trajectory tracking accuracy findings is presented in Figure 7 as box plots with438
individual subject data overlaid on top. For the elbow flexion/extension joint, mean RMS errors in the cup439
trajectory were 1.04° and 1.24° for the exoskeleton alone and hybrid controllers respectively. RMS errors in440
the sinusoidal trajectory were 1.10° and 1.26° for the exoskeleton alone and hybrid controllers respectively.441
These results indicate that there is a mean increase of 0.18° in RMS error when using the hybrid controller442
compared to using the exo alone controller in the elbow flexion/extension joint. This difference was shown443
to be statistically significant in the paired t-test, with p-values for each of the trajectories < 0.01.444

For the wrist flexion/extension joint, RMS errors in the cup trajectory were 1.21° and 1.12° for the445
exoskeleton alone and hybrid controllers respectively. RMS errors in the sinusoidal trajectory were 1.53°446
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Figure 7. RMS error results are shown for all subjects for each trajectory and each controller type for the
elbow flexion/extension DOF (left) and wrist flexion/extension DOF (right). The overlaid scatterplot shows
individual subject results, with the same symbol representing a single subject across figures. Points in green
show the repeated data collection for the first three subjects. The purple “∗” above the plots represents a
that there was a statistically significant difference in the RMS errors between the two control types.

and 1.48° for the exoskeleton alone and hybrid controllers respectively. These results indicate that there is a447
mean decrease of 0.07° in RMS error when using the hybrid controller compared to using the exoskeleton448
alone controller in the wrist flexion/extension joint. This difference was again shown to be statistically449
significant in the paired t-test, with p-values for each of the trajectories again remaining < 0.01.450

Figures 8 and 9 show time series representations of torque profiles for the best performing subject451
(represented by the △ symbol in Figures 6 and 7) and movement profiles averaged across all subjects. In452
the representative plots of torque profiles, the exoskeleton torque used during the hybrid trials exhibits a453
smaller magnitude than the exoskeleton torque used during exoskeleton alone trials. This result shows that454
the hybrid controller is able to replace a significant amount of the torque requirement from the exoskeleton455
with FES torque. The plots for movement profiles demonstrate how well each of the controllers are able to456
track the trajectory. In all combinations of trajectories and DOFs, the trajectories almost entirely overlap457
each other, showing similar accuracy regardless of controller.458

The reduction in maximum torque for the torque profile averaged across participants profiles across459
participants is also analyzed, for the hybrid controller compared to the exoskeleton alone controller. For460
this metric, it is interesting to observe both the change in maximum and minimum values, as many461
cable-driven systems would likely require one actuator for each agonist and antagonist pair. In the elbow462
flexion/extension DOF, the maximum torque was reduced by 44.2% and 43.7% in the cup and sinusoidal463
trajectories respectively, and the minimum torque for the mean profile was reduced by 31% and 27.1% for464
the cup and sinusoidal trajectories respectively. In the wrist flexion/extension DOF, the maximum torque465
was reduced by 67.1% and 65.3% in the cup and sinusoidal trajectories respectively, and the minimum466
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Figure 8. Elbow flexion/extension joint exoskeleton torque profile for a single subject (top), and movement
profiles averaged across subjects (bottom) are shown for the two different trajectories, cup (left) and
sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone controller, and the
yellow line represents data for the hybrid controller.

torque for the mean profile was reduced by 36.9% and 36.6% for the cup and sinusoidal trajectories467
respectively.468

4 DISCUSSION

There is a need for devices to provide assistance in completing activities of daily living for individuals with469
SCI. For this population, return of upper-limb function is among their top priorities (Anderson, 2004). Both470
FES and exoskeletons provide some framework to assist with movement, but each of of these technologies471
has fundamental limitations preventing meaningful assistance for the upper-limbs in activities of daily472
living. FES is unable to provide accurate and repeatable movements by itself, and using feedback control473
causes instability due to the inherent time delays in muscle response to stimulation. Exoskeletons are able474
to provide accurate and repeatable movements, but require bulky systems and large amounts of power to475
support upper-limb movements against gravity. In this paper, we have proposed a hybrid FES-exoskeleton476
controller that combines the two technologies, with the goal of reducing power consumption compared to477
a robot alone, and providing accurate movement, similar to that of an exoskeleton alone. This controller478
uses the model predictive control cost function to leverage the strengths of each of the subsystems, while479
minimizing the weaknesses of each.480

4.1 Torque Reduction481

An average reduction of 48.7% and 57.9% of sum of squared torque was found on the elbow482
flexion/extension and wrist flexion/extension DOFs respectively with the use of the hybrid controller483
compared to the exoskeleton alone controller. These results in the EFE joint are an improvement over484
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Figure 9. Wrist flexion/extension joint exoskeleton torque profile from a single subject (top), and
movement profiles averaged across subjects (bottom) are shown for the two different trajectories, cup (left)
and sinusoidal (right). In the plots, the blue line represents data for the exoskeleton alone controller, and
the yellow line represents data for the hybrid controller.

the 32.1% reduction found in our previous implementation using only the cup trajectory (Dunkelberger485
et al., 2022a). This improvement shows that the inclusion of the feedback controller instead of using an486
integral term, and the incorporation of a more sophisticated arm model, resulted in greater benefits in this487
hybrid control scheme, while even extending to more generalized trajectory cases. This shows promise for488
meaningful power consumption reduction for a hybrid system when comparing to an exoskeleton alone489
controller. Practically, this could mean that a portable hybrid system could be powered for roughly twice as490
long as an equivalent exoskeleton alone system, given the same battery capacity. In the future, this could491
lead to more portability and longevity in hybrid assistive devices for impaired populations.492

It is worth noting that while the participants are able-bodied and can move their arm through the desired493
trajectories without assistance, we should not expect to see a torque reduction of 100%. With FES we494
often cannot achieve the full capabilities of the user’s muscles, and in this study, many of the participants495
were not able to produce the maximum required torque solely through FES, even at maximum activation.496
Additionally, FES is known to not provide accurate or repeatable movements by itself, so at a minimum,497
the exoskeleton needs to provide corrective torques to account for these inaccuracies.498

The average reduction in minimum and maximum torques shows potential for actuator sizes to be499
reduced while still achieving the same resultant motion, which would result in less bulky assistive robotic500
systems. In the future, this could be more directly tested by artificially limiting the maximum torque of the501
exoskeleton joints to observe how the FES can make up for the lack of torque.502
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4.2 Accuracy503

FES systems by themselves do not provide reliable repeatability when trying to perform generalized504
movements. The goal of hybrid FES and exoskeleton systems is to achieve trajectory-following accuracies505
significantly better than FES systems by themselves, ideally approaching accuracies that are achievable506
using exoskeleton-alone systems. In the elbow flexion/extension joint, the hybrid algorithm had on average507
0.20° and 0.16° more RMS tracking error on the cup and sinusoidal trajectories, respectively, when508
comparing the hybrid controller to the exoskeleton alone controller. While this was a decrease in accuracy,509
this still resulted in a very similar motion over the trajectory, as shown in Figure 8. To put this in perspective,510
for a forearm length of 30 cm, the RMS error in positioning the wrist, given the error in angular tracking, is511
approximately 1 mm. For the wrist flexion/extension joint, the hybrid controller had on average 0.09° and512
0.05° less RMS tracking error on the cup and sinusoidal trajectories, respectively. Again, while there is a513
small decrease in accuracy, the resultant trajectories are very similar, as shown in Figure 9. These results514
demonstrate that the hybrid controller is able to achieve similar tracking accuracies to the exoskeleton515
alone controller in both of the individual DOFs.516

It is worth noting the difference in tracking accuracy between the cup and sinusoidal trajectories on the517
wrist flexion/extension joint. Recall that the cup trajectory requires significantly less movement, with an518
average velocity of 7.3 deg/sec compared to the sinusoidal trajectory with an average velocity of 14.3519
deg/sec. The difference in difficulty between the trajectories is likely the cause for more tracking error in520
the sinusoidal trajectory. Still, we see that the general relationship of the hybrid controller having a 0.06521
degree RMSE improvement is similar to the 0.09 degree RMSE improvement on the cup trajectory.522

A benefit of the proposed control architecture is that the feedback controller portion can be adjusted523
independently of the model predictive control portion. This means that if a specific movement needs524
high-precision, the gains of the feedback controller can be modified in a straightforward manner to increase525
accuracy, although it would result in an increase in exoskeleton torque usage. Additionally, while this526
study focused on the challenging task of tracking time-varying trajectories, it would also be an interesting527
translation to modify the implementation to achieve desired setpoint positions, where FES could be used528
for a majority of the movement generation when it is far from the target, and the exoskeleton could be used529
to fine-tune the position when it is close to the desired setpoint.530

4.3 Generalization Across Tasks531

Many of the previous applications using FES for assistance provide the stimulation using a pre-532
programmed profile for a specific movement. An important feature of the proposed hybrid controller533
is that it does not rely on knowing the desired trajectory before use, and works with any given input534
trajectory. By testing two different trajectories, we were able to observe how the different outcome metrics535
varied in different movements. Tracking performance across several tasks has been reported by a few536
studies that use both FES and exoskeletons (Memberg et al., 2014; Ajiboye et al., 2017; Rohm et al., 2013),537
but none of these studies use a controller to distribute actuation between the two systems on the same joint.538

The sum of squared torque reduction was similar between the two trajectories for both the elbow539
flexion/extension DOF and the wrist flexion/extension DOF. Along with the means and ranges being the540
same, the general spacing of the participants within the range of results remained the same between the541
two trajectories. This means that the benefits in power reduction did generalize well to these different542
trajectories, and that users could expect similar results on trajectories that require similar motions. It is543
especially interesting that a similar level of sum of squared torque reduction was found on the two different544
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Figure 10. The maximum absolute values of the GPR predictions throughout the workspace for all
participants are shown for each electrode, and for each DOF. This represents how different participants are
able to achieve different levels of torque from FES when the participant is receiving maximum stimulation.
The symbols here correspond to the same symbols from Figures 6 and 7.

trajectories for the wrist flexion/extension joint, especially because one of the trajectories was significantly545
more challenging than the other.546

While the elbow flexion/extension DOF saw similar tracking accuracies in the two different trajectories547
when comparing the two controllers, the wrist flexion/extension DOF did see a difference in trajectory548
tracking accuracy on the two different trajectories. Despite this, the relationship between the exoskeleton-549
alone tracking accuracy and the hybrid tracking accuracy remained similar in all cases, with the elbow550
flexion/extension DOF showing average increase of 19.2%, and 14.5% in RMS error on the cup and551
sinusoidal trajectories respectively, and the wrist flexion/extension DOF showing average reduction of552
7.4% and 3.3% on the cup and sinusoidal trajectories respectively.553

While not implemented in this paper, another benefit of this proposed controller is the ability to intuitively554
adjust controller behavior to generalize to different objectives of movement. If a specific task requires high555
precision in a movement, the gains of the Q matrix or feedback could be increased to favor more accurate556
movement at a cost of more torque. If there is an onset of fatigue, the weights of the Rm matrix can be557
adjusted to prefer more exoskeleton torque, and allow the muscles to recover.558

4.4 Consistency Across Participants559

While the results between trajectories were consistent within participants, there is a significant distribution560
of results between participants, especially for the sum of squared torque reduction observed for the hybrid561
controller compared to the exoskeleton alone controller. Even though all results showed improvement,562
except for the single participant who could not achieve an FES response in one of the wrist flexion/extension563
electrodes, some participants had significantly better results than others. There are many factors that can564
impact the effectiveness of FES, including electrode placement, size of muscles, body fat levels, and565
fatigue, many of which are not modifiable. These variations in ability to produce torques due to FES can566
be visualized across participants in Figure 10, where the maximum absolute value that the GPR model567
predicts that each participant can produce throughout the workspace is shown. We can see that there are568
wide variations in the predicted amount of FES torque production. As an example, one participant cannot569
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produce more than about 0.25 Nm of torque throughout the entire workspace with either the elbow flexion570
or elbow extension electrodes, but two other participants can produce more than 3 Nm in both of these571
cases. With these differences in mind, it is clear that some participants would never be able to achieve572
high reductions in power consumption with this hybrid control approach. To increase consistency between573
participants, it would be interesting to test with implanted FES systems, which are more reliable and574
targeted, and to model fatigue which can help modify the controller in real-time to account for it.575

When observing the results of the three participants who performed the same protocol twice separated by576
at least a week, we see that the results remained similar between the two time points. The difference between577
sessions in sum of squared torque reduction when comparing the hybrid controller to the exoskeleton alone578
controller remained within 17% across participants for the elbow flexion/extension DOF, and below 10%579
for the wrist flexion/extension DOF. The difference between sessions in RMS tracking error for the hybrid580
controller compared to the exoskeleton alone controller remained below 7% across participants for the581
elbow flexion/extension DOF, and below 12% on the wrist flexion/extension DOF. It is encouraging that582
even though it is difficult to generalize across participants, these preliminary repeatability results seem to583
indicate that results hold steady within users if the same implementation procedure is followed during each584
use. It is important to note here that the participants repeated the entire protocol, and it is expected that the585
model that the FES production will change from day to day (especially when using surface electrodes),586
meaning that the model will necessarily have to be tuned for each use, even for the same participant.587

One factor of this controller implementation that does not generalize across participants is that it relies on588
the relative weighting between exoskeleton torque inputs and FES activation levels. While the exoskeleton589
torque outputs are relatively consistent across participants, the activation levels do not map directly to590
torque outputs, because each participant produces a different amount of torque, given an activation level.591
In this case, the Rfes and Rm fes parameters as defined in equations 22 and 23 must be scaled for each592
participant, based on the torque outputs expected from the GPR models. However, once the parameters are593
scaled once they should only need to be modified if electrodes need to be moved, or if fatigue occurs.594

One participant had a particularly weak response to the FES, with a very low response from the elbow595
flexion/extension electrodes, and no response from the wrist flexion/extension electrodes. This difference596
compared to the remainder of participants shows the importance in characterizing each individual’s FES597
behavior to understand the potential effectiveness of using the proposed hybrid controller.598

4.5 Future Work599

An area of interest in observing the behavior of hybrid systems would be to identify how maximum600
torque allowed by the exoskeleton changes the resulting behavior in terms of torque output and tracking601
error. We observed the maximum torque used by the exoskeleton in this study, but it was not limited in any602
particular way to influence controller behavior. We should expect the controllers to behave differently if the603
maximum torques are limited at the start, as the future-looking MPC controller is able to predict a torque604
limit onset and proactively compensate for it.605

Modeling of fatigue is another area of interest when using FES, and has received much attention in606
the FES research community. While this study aimed to keep the stimulation time to a minimum to607
reduce the effects of fatigue, there were likely at least some effects of fatigue present in results. Modeling608
and compensating for fatigue would be a meaningful addition to the hybrid controller to see improved609
performance.610
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The overall results from this study show promise for power reduction while maintaining high accuracy611
when performing movements with a single-DOF through the implementation of the hybrid FES-exoskeleton612
controller. Importantly, these algorithms should translate to a multi-DOF use case with only small613
modifications. To realize truly shared control for generalized upper-limb movements, these algorithms614
should be tested in multi-DOF circumstances to understand potential benefits and complications in this615
scenario.616

5 CONCLUSION

In this paper, we presented a model-based control approach to hybrid FES-exoskeleton control. We617
experimentally demonstrated the benefits of using this model-based controller to distribute robot and FES618
contributions to control elbow and wrist movements with a hybrid FES-exoskeleton system. This control619
strategy reduced exoskeleton torque for the hybrid system with similar tracking accuracy compared to620
using the exoskeleton alone. To realize practical implementation of hybrid FES-exoskeleton systems, the621
control strategy requires translation to multi-DoF movements, achieving more consistent improvement622
across participants, and balancing control to more fully leverage the muscles’ capabilities.623
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