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Abstract

This paper presents the design and implementation of a novel pro-
gressive haptic guidance scheme and a similar visual guidance
scheme for acquisition of a dynamic motor skill. The paper com-
pares the schemes’ performance to each other and to practice alone
without any form of guidance. The target-hitting task is represented
in a visual and haptic virtual environment and implemented in a
training protocol that lasts eleven sessions over a two-month pe-
riod. The progressive guidance controller employs as inputs two
expertise-based performance measures, trajectory error and input
frequency. The analysis of the experimental results demonstrates
that while guidance is active, haptic guidance outperforms both
visual guidance and practice alone (no guidance) until late in the
protocol when all three groups saturate at the same level of perfor-
mance. The results fail to show significant differences in training
outcomes because the performance of all participants saturates to-
ward the end of the protocol. The key implication of the exper-
imental findings is that visual and haptic guidance presented in a
progressive manner have no detrimental effects on performance.
Our results confirm that haptic guidance, based on skill component
measures, is effective early in the training protocol when partici-
pants are only beginning to understand the components of the task
but should be progressively removed to avoid possible negative de-
pendence on the guidance.

Index Terms: H.1.2 [Model and Principles]: User/Machine
Systems—human factors H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces—Haptic I/O, evaluation/methodology,
training help and documentation

1 Introduction

Haptics-enabled virtual environment (VE) technologies are used for
skill training applications in such areas as vehicle control, medical
procedures, sports training and rehabilitation [2, 6, 10, 20]. These
technologies provide reliable data acquisition, analysis, feedback,
and evaluation of motor skill task performance while simultane-
ously providing a comparatively low-cost and low-risk training
platform. Virtual environments used for training intend to reduce
risk, improve and accelerate skill acquisition over traditional train-
ing schemes, and transfer what is learned in the simulation environ-
ment to the equivalent or targeted real world task. Virtual training
environments (VTEs) are implemented either to provide an envi-
ronment for practice that is as similar as possible to the real task
or to act as an assistant by augmenting the feedback in some way
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during training. Commercial examples of these augmented sys-
tems include heads up displays (HUDs) for pilots and simulators
for surgery residents [17, 24].

Haptic feedback can play an important role both in improving the
fidelity of the training environment and in providing augmentation
during training. Various haptics-enabled virtual training schemes
have been proposed. One scheme is to first present the performance
of an expert (human or robotic) to a trainee via visual and hap-
tic feedback and then allow the trainee to practice the task unas-
sisted [11] [23]. A second approach requires the trainee to per-
form the task with enforced restrictions or reductions of the de-
grees of freedom of the task as proposed by Bernstein and more
recently implemented as virtual fixtures by Rosenberg et al. and
Abbott et al. [1, 5, 21]. A third approach, shared control, modifies
the dynamics of the system so as to encourage the correct behav-
ior from the trainee [7, 10, 18]. A comparative study of these last
two approaches was performed by Srimathveeravalli et al. showing
slightly better performance from the shared control approach over
the virtual fixture approach [22]. Despite the current use of VTE’s,
the measurable benefits of haptically augmented VTE’s over real
or virtual practice in dynamic task training have not been clearly
demonstrated.

When guidance is provided on the same sensory channel as the
skill training that is sought – in this case the haptic channel – de-
pendence or interference can occur. The trainee actually learns the
dynamics of the augmented system rather than the targeted system.
In early attempts to use haptics for training, such as the record and
play strategies, the dynamics of an expert performing the task are
recorded and are then played back to the novice to assist learning.
The record and replay training scheme does not account for dif-
ferences due to user-specific dynamics and restricts the novice to
the expert performance without consideration of possible alternate
strategies for completing the task. Results from studies on record
and replay effectiveness for motor skill training are highly incon-
clusive [8, 9, 11, 25]. In an attempt to overcome the deficiencies
of the record and replay model, Bayart et al. proposed a four-step
scheme similar to the stages in learning to ride a bicycle [3]. In Ba-
yart’s implementation the stages were fixed and had to be switched
manually, thereby preventing a truly progressive scheme. Ideally
the progressive model should adapt to the current performance of
the participant and gradually diminish as performance improves
and vice versa. Bell et al. showed benefits from a performance-
based progressive guidance scheme for self-learning of a radar-
tracking task but they limited the length of ”training” to one ses-
sion [4]. In a robot-assisted rehabilitation simulation, Reinkens-
meyer et al. measured adaptation to a dynamic environment via tra-
jectory error [19]. The control gains of the guidance robot were
then adjusted at each trial based on the error. The simulation results
suggest that providing guidance only when needed is more effective
than a fixed amount of assistance. To test Reinkensmeyer’s hypoth-
esis, Li et al. first compared a fixed-gain shared control scheme
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to practice alone (no guidance) in a dynamic target-hitting task
(similar to the one implemented in our study) and showed that the
fixed-gain scheme had negative efficacy both during and after guid-
ance [16]. Then, Li et al. compared a progressive shared control
scheme to the same fixed-gain scheme and showed significant im-
provement over fixed-gain guidance, but no significant differences
from practice alone with either the guidance active or inactive [15].
They alluded to the need to design the guidance scheme based on
the significant components of the task.

In this paper, we design, implement, and demonstrate progres-
sive haptic and visual guidance schemes for training in a non-trivial
dynamic task where the amount of guidance is controlled by de-
creasing gain algorithms that utilize measures of performance in
skill components as inputs. We explore the role of guidance and the
sensory channel on which it is displayed. This progressive guidance
scheme was proposed in our prior work where we recognized that
the guidance must be based on measures of performance that are de-
rived from the key skill components required for success in the task
[13]. In that paper we analyzed performance data obtained from
Li’s VTE and found two primary skill components and concluded
that two measures, trajectory error and input frequency, could be
used as inputs for a guidance controller for the task at hand [13].

This paper is organized as follows: Section 2 presents the meth-
ods used including the apparatus and VTE, task description, ex-
periment design, guidance schemes to be implemented, participant
description and data analysis. Section 3 presents the results while
Section 4 discusses the findings and contributions. Section 5 draws
the conclusions of this experiment.

2 Methods

A training experiment was conducted over two months to investi-
gate and compare the proposed haptic and visual guidance schemes
to practice alone (no guidance). The participant training was per-
formed in a VTE dynamic task as shown in Fig. 1. The duration of
the training experiment was eleven sessions.

2.1 Apparatus and Virtual Environment

The experimental setup, illustrated in Fig. 1, is comprised of a nine-
teen inch LCD video display and a two degree of freedom (DOF)
force feedback joystick (Immersion IE2000). The visual feedback
control loop rate operates at 58Hz while the haptic feedback is con-
trolled and displayed at 1 kHz on a 2GHz computer. The states of
the dynamic system are recorded to a data file at 50Hz. The cho-
sen virtual environment is a second order system modeled as two
point masses connected by a spring and damper in parallel. This
two-mass system has four degrees of freedom, namely the planar
motion of each of the point masses, m1 and m2. Therefore, it is
under-actuated since the only control inputs are the planar motions
of m1, corresponding to the joystick position. All participants re-
ceive visual feedback of the targets and moving masses via the LCD
display. Additionally, all participants receive haptic feedback from
the VTE in the form of the force interactions of the dynamic system
described by the following equations of motion:

Fsx = m2ẍ+bsẋ+ ksx (1)

Fsy = m2ÿ+bsẏ+ ksy (2)

where Fsx and Fsx are the forces generated by the system dynam-
ics, bs is the damping, and ks is the spring constant of the modeled
second-order system (m2 =5 Kg, bs =1 Ns/m, and ks = 80 N/m)
The total force computed and delivered to the motor controllers for
display on the haptic device is computed by the following sum:

FD = ∑(Fh +Fs) (3)

where Fh is the force applied by the participant’s hand and Fs are
the forces generated by the system dynamics. The experimental

setup includes physical blinders around the test site to mitigate vi-
sual distractions. During all trials, all participants wear noise can-
celling headphones playing pink noise loud enough to mitigate in-
terference from audio cues such as the physical environment and
movement sounds of the joystick during the execution of the exper-
imental task.

Figure 1: A participant is sitting at the virtual training environment.
The interface includes a visual feedback display and a haptic joystick
for force feedback, both of which provide feedback of the system
dynamics to all trainees regardless of guidance scheme.

2.2 Task Description

The task, illustrated in Fig. 2, was to manipulate the motion of the
point mass m1 via the 2-DOF haptic joystick, and thus indirectly,
through the system dynamics, control the object (m2) to hit as many
of the diagonally placed targets as possible during each 20-second
long trial. The targets were located 10 cm apart on the visual dis-
play representing 76 degrees of joystick rotation. Once a target was
acquired, the current target became inactive and the opposite tar-
get became active and so forth. All participants, regardless of the
guidance received, experienced the visual and haptic feedback of
the dynamics of the system in the VTE.

2.3 Experiment Design

In order to compare the effects of training with haptic or visual
guidance to practice alone (no guidance) the experiment design
consisted of one evaluation session, followed by nine training ses-
sions (two or three sessions per week), and one retention session
after 30 days for a total of eleven sessions as shown in Fig. 3. The
nine training sessions were spaced two to five days apart. The re-
tention session was at least 30 days but no more than 45 days after
the last training session. Sessions were one of the factors of the ex-
periment. Each training session contained three subsessions: first,
a pre-guidance baseline with five trials; second, a guidance subses-
sion with fifteen trials; and third, a post-guidance baseline again
with five trials. Each trial lasted 20 seconds for a total duration
of approximately nine minutes baseline and guidance training time
per session. Participants were specifically instructed to acquire as
many targets as possible in each 20 second trial. Each trial began
with the two point masses 0.1 mm apart at the center of the screen
and ended at precisely 20 seconds from the start signal. Between
each subsession participants filled out a small on-line questionnaire
that took approximately three minutes to complete. At the end of
each training session, all participants filled out a paper question-
naire self-evaluating the daily performance. Thus the total time re-
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Figure 2: Target hitting task: the participant controls the location
of m1 (force feedback joystick) in order to cause m2 (object) to hit
the active target. Inset shows the virtual underactuated system.
Trajectory error is defined as the deviation of m1 (object) from the
target axis (adapted from [15]).

Figure 3: Training experiment design: consists of eleven sessions
including one evaluation session and one retention session as shown.
During guidance subsessions, the haptic and visual groups received
the corresponding progressively diminishing guidance. During pre-
and post-guidance subsessions no group received guidance. Rest
periods between sessions are indicated with braces.

quired was 16 to 20 minutes per participant per session for a total
of under four hours over the two-month period.

The objective of the task was for the participant to hit as many
targets as possible in each 20 second trial. A hit was registered
whenever the center position of the object (m2) was detected to be
within 4 mm of the active target center. We define hit count (nhit ),
the objective measure of performance, as the number of target hits
occuring in each trial.

2.4 Guidance Schemes

In prior work, we showed that there exist two skill components re-
quired for success in this task [13]. First, the participant should
excite the system close to its resonant frequency in order to gener-
ate rhythmic oscillations of the object (m2). Second, the participant
should not deviate from the target axis so as to ensure that the object
(m2) passes through the targets. The task design does not require
the object (m2) to stop at the target location but rather just to pass
through the target. In addition to the measure of hit count presented
to the participants as the objective of the task, we proposed two
measures of performance of the two primary skill components and
suggested that they could be used as inputs to a progressive guid-
ance controller [13].

Thus we defined trajectory error (etra j) as the absolute magni-
tude of the deviation (y direction as shown in Fig. 2) of the input
joystick position (m1) at each sampled instant (50Hz sample rate)
summed for the entire trial (n), and is expressed in units of millime-
ters. Mathematically,

etra j =
n

∑
i=1

abs(yi) (4)

where yi is the deviation of one sample.
Based on the observation of the importance of input excitation

frequency for this task, input frequency ( finput ) is a measure of the
rhythmic performance in a trial. To compute finput we take the
fast Fourier transform (FFT) of the position data of the joystick
(m1). The FFT power spectrum is a convenient way to determine
the amplitude and frequency of the motion that is being applied to
a system and was used in a similar way by Huang et al. in similar
tasks to quantify performance [12]. For clarification, even though
the FFT plot is called a “power spectrum,” in this particular case it
has units of mm2. To simplify the understanding of the measure,
our definition includes a normalizing coefficient. The equation for
the second performance measure finput is given in units of (Hz/Hz)
as follows:

finput =
1
fr
× f (arg(max(FFT ))) (5)

where fr is the resonant frequency of the system. Therefore, ex-
citing the system at the resonant frequency will give a value of
finput = 1(Hz/Hz) regardless of the system frequency. In this ex-
periment the system parameters are maintained constant so fr is a
constant.

While the participants are explicitly told that hit count, nhit , is
the objective measure of performance, etra j and finput measure the
participants’ performance in the two key skill components of the
task. In our analysis in prior work, we showed that these two mea-
sures correlate well with hit count but not with each other suggest-
ing independence [13]. This fact drove the design of the guidance
scheme for this work to represent the two measures independently
and orthogonally.

After completing the initial evaluation session, participants are
ranked by nhit . The ranked participants are then randomly assigned
to one of three groups: haptic guidance, visual guidance or practice
alone. The mean scores of the groups are compared to ensure that
the groups are balanced at the beginning of the training protocol.
The haptic and visual guidance groups receive a form of guidance
during the guidance subsession of each of the nine training sessions.
One group receives the guidance haptically while the other receives
it visually. The guidance for both is in the form of two orthogonal
regions as shown in Fig. 4 as we previously proposed to demon-
strate the best performance in the two skill components [14]. The
first region (shown in dark gray in Fig. 4) indicates the maximum
allowable deviation from the target axis that will still result in a tar-
get acquisition, thereby reducing etra j. The location of this region
is fixed. The second region (shown in light gray in Fig. 4) oscil-
lates at the resonant frequency of the dynamic system and with an
amplitude that, if tracked, will ensure sufficient output amplitude to
acquire the targets.

For the visual guidance scheme, the two regions are represented
by colored regions whose intensities diminish independently as per-
formance improves in each of the two measures. The regions even-
tually fade to the background color. Similarly, in the haptic scheme,
we represent the edges of the regions with stiff virtual walls for the
trajectory error guidance and a PD tracking controller for the in-
put frequency guidance as shown in Fig. 5. The minimum force
required to penetrate the walls is progressively reduced as perfor-
mance improves thus gradually shifting primary control from the
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Figure 4: Guidance schemes designed from measures of performance
in the dynamic task show both input deviation and frequency task
components to the trainees. In addition to a practice alone (no
guidance) control group, one group receives progressive guidance
only through the visual display while a third group receives equivalent
progressive guidance only through the haptic joystick display.

robot to the trainee as the training protocol progresses. Both the
visual and haptic guidance schemes employ exponentially dimin-
ishing gains that are controlled by the two measures etra j and finput
of participant performance in each successive trial. The gains are
updated and the corresponding levels of guidance for the two com-
ponents are presented to the participant in the next trial. In the case
of haptic guidance, the calculated guidance forces are combined
with the system dynamic forces before being presented to the user
at the joystick interface on the haptic channel.

Thus the total force delivered to the motor controllers for display
on the haptic device is computed by the following sum:

FD = ∑(Fh +Fw +Fc +Fs) (6)

where Fh is the force applied by the participant’s hand, Fw is the
force created by the virtual wall guidance, Fc is the force created
by the PD tracking guidance, and Fs are the forces generated by the
system dynamics. The wall force is computed with the following
conditionals: if the joystick position is in free space:

Fw = 0 (7)

if the joystick position is inside the wall:

Fw = kw (8)

where kw is the maximum gain for the wall. Finally, if the joystick
is on the wall face within ±0.05mm of the wall centerline, then the
following bi-cubic equation is used to compute the wall force:

Fw = kw(2t3
w−3t2

w) (9)

The progression of the guidance diminishes according to the fol-
lowing logic: when three successive trials show improvement in
performance in one of the two measures, the corresponding gain

Figure 5: Block diagram of the haptics-enabled virtual training envi-
ronment with haptic guidance augmentation. The guidance is in the
form of virtual walls to mitigate deviation from the target axis and in
the form of a PD tracking controller to encourage excitation at the
resonant frequency of the system.

decreases. In contrast, when three trials show degrading perfor-
mance, the gain increases. Fluctuating performance trends cause
the gain to remain unchanged. The measures are sensitive enough
so as to present an imperceptible amount of change in the guidance
at each step yet disappear within three sessions in the presence of
excellent performance. Figure 6 shows two typical participant’s ex-
ponentially diminishing gains with some occasions where the gains
remained the same or increased.

0

0.2

0.4

0.6

0.8

1

1.2

Session

G
ui

da
nc

e 
G

ai
n

H1 - Finput  Gain
H1 - Etraj   Gain
V1 - Finput   Gain
V1 - Etraj   Gain

1          2          3           4          5           6          7           8          9        10

Figure 6: Guidance gains, based on the performance measures etra j
and finput , diminish throughout training in the dynamic task for both
haptic (H1) and visual (V1) guidance trainees.

2.5 Participants

The experiment involved 24 healthy participants, (7 female and 14
male; 22 right-handed and 2 left-handed; Ages 18 to 51) primarily
undergraduate students with no previous experience with haptic de-
vices. A university approved IRB form was used to obtain informed
written consent from all participants.

2.6 Data Analysis

For all participants, values for nhit for each subsession are recorded:
five trials for pre and post guidance subsessions and fifteen trials
for the guidance subsession. Thus each of the 24 participants has
five data points (or fifteen during guidance) for each of the eleven
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(a) Hit count During Guidance Subsession (b) Hit count During Post-Guidance Subsession

Figure 7: On the left side is the guidance subsession and on the right side is the post guidance subsession. Hit count (nhit) demonstrates
increasing trends across sessions regardless of guidance mode. The guidance subsession shows the faster rate toward saturation of the haptic
guidance group.

sessions of training resulting in a total of 1320 observations for pre-
guidance and post-guidance subsessions (5 trials, 11 sessions, and
24 participants) or 3960 observations for the guidance subsessions
(15 trials, 11 sessions, and 24 participants). The data were also
averaged by guidance mode to be fit with exponential curves using
MATLABT M and the best fit curves were determined from the R2

values.
Sessions are a within-subjects factor (also called repeated mea-

sures because the measure is repeatedly taken on each participant)
since the same subjects were used for all 11 sessions. Guidance
mode had three levels namely haptic guidance, visual guidance,
and practice alone and is a between-subjects factor since eight dif-
ferent subjects were used for each one of the guidance modes for a
total of 24 participants in the experiment. Thus the experiment is a
factorial design with session (11) and guidance mode (3) factors.

An ANOVA cannot be used, since the data fails to have a normal
distribution of the residuals. Instead, a Chi-squared automatic in-
teraction detector (CHAID) analysis decision tree highlights signif-
icant main effects of session and guidance mode on the dependent
performance variable of hit count.

3 Results

The data analysis and results are obtained from the two-month
human-user study. A total of 24 participants completed the proto-
col. Figure 7 shows the performance of the modes (haptic guidance,
visual guidance and practice alone) for both the guidance subses-
sion and the post-guidance baseline subession. The pre-guidance
subsessions are not included in the analysis as that data, similar
to the post-guidance baseline data, failed to show significant dif-
ferences in performance between the three guidance modes during
those subsessions. The scores of the fifteen guidance trial scores (or
five during post-guidance) for the eight participants of each mode
are averaged to obtain one mean score in terms of hit count per
each subsession. The data points plotted in Fig. 7 represent the
mean of the subsession scores of each guidance mode with error
bars indicating the standard error of the mean. The nhit scores for
all participants show increasing trends across all sessions as train-
ing progressed with saturation at about 22 hits per trial.

In order to visualize trends that suggest skill acquisition, power

functions are fit to the data according to the following equation:

y =−ae−bx + c (10)

where a, b, and c are the parameters of the equation and have good-
ness of fit values in excess of R2 = 0.95 except for the haptic guid-
ance group in the guidance subsession in which nhit had a goodness
of fit of R2 = 0.86. The fit curves are also plotted in Fig. 7 along
with the mean subsession scores and associated error bars. A sum-
mary of the curve fitting results, including estimated parameters
and goodness of fit for each of the three groups of participants are
shown in Table 1. During both guidance and post guidance sub-
sessions, all guidance modes reached saturation in terms of the hit
count.

During the guidance subsession, the haptic group reached satu-
ration at a significantly faster rate than the other two groups (param-
eter b) as shown in Fig. 7(a). In other words, during the guidance
subsession, the haptic guidance mode increases in performance at
a faster rate. This performance rate increase, however, is not ob-
served during the postguidance baseline as demonstrated by the
data shown in Fig. 7(b).

Figure 8 shows the Chi-squared automatic interaction detector
(CHAID) analysis decision tree of the data collected during the
guidance subsession. The tree demonstrates the significant effect
of session across the eleven sessions. As expected, the initial eval-
uation session data fails to show significant differences due to the
fact that the groups are balanced at that point and guidance has yet
to be activated for any participants. The CHAID analysis demon-
strates that the haptic guidance mode is significantly different from
visual guidance and practice alone (no guidance) during sessions
2 through 8. For sessions 9 through 11 the data again fails to
reveal significant differences. The analysis fails to show signif-
icant differences between visual guidance and practice alone. A
similar CHAID analysis was conducted on the post-guidance sub-
session data. While the post-guidance data showed significant ef-
fects of session, the analysis failed to show significant effects of
guidance mode. The analysis of the experimental results via the
CHAID test demonstrate that during the guidance subsession, the
haptic guidance significantly outperforms both the visual guidance
and practice alone (no guidance) in terms of hit count until Ses-
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Table 1: Summary of the curve fitting procedures for the hit count measure of each group

Goodness of fit Goodness of fit
Guidance Post-Guidance

Guidance Group R2 Fit Parameters R2 Fit Parameters
Haptic Guidance 0.95 a = 29.0, b = 0.85, c = 21.3 0.96 a =−17.12, b = 0.310, c = 21.05

Non Guidance 0.96 a = 18.36, b = 0.201, c = 23.4 0.97 a =−16.0, b = 0.278, c = 20.94

Visual Guidance 0.99 a = 19.39, b = 0.220, c = 23.4 0.99 a =−18.9, b = 0.343, c = 22.0

Node 1
Mean             8.217
Std. Dev.         3.758
n                           24
%                           9.1

Node 0
Mean             17.610
Std. Dev.         5.542
n                          264
%                          100

Session
Adj. P-value-0.000, F-62.260, df1=4, df2=259

Node 2
Mean             13.899
Std. Dev.         5.209
n                           48
%                        18.2

Node 3
Mean             17.665
Std. Dev.         4.492
n                           48
%                        18.2

Node 4
Mean             19.728
Std. Dev.         3.559
n                           72
%                        27.3

Node 5
Mean             21.062
Std. Dev.         3.073
n                           72
%                        27.3

<= 1.000 (1.000, 3.000] (3.000, 5.000] (5.000, 8.000] >8.000

Group
Adj. P-value=0.001, F=14.359, df1=1, df2=46

Group
Adj. P-value=0.005, F=10.419, df1=1, df2=46

Group
Adj. P-value=0.002, F=12.192, df1=1, df2=70

Node 6
Mean             17.454
Std. Dev.         5.359
n                            16
%                          6.1

Node 7
Mean             12.121
Std. Dev.         4.179
n                            32
%                        12.1

Haptic Haptic HapticVisual and No-Guidance Visual and No-Guidance Visual and No-Guidance

Node 8
Mean             20.367
Std. Dev.         3.521
n                            16
%                          6.1

Node 9
Mean             16.315
Std. Dev.         4.352
n                            32
%                        12.1

Node 10
Mean             21.653
Std. Dev.         2.301
n                             24
%                           9.1

Node 11
Mean             18.765
Std. Dev.         3.702
n                             48
%                        18.2

Figure 8: The CHAID analysis decision tree of the guidance subsession demonstrates the significant effects of Session (second row of the tree)
and of Guidance Mode groups (third row of the tree). The analysis shows that the haptic guidance group is significantly different from the
visual guidance and practice alone (no guidance) groups in sessions 2 through 8.

sion 9. During the post-guidance subsession baseline trials the data
fail to show significant differences between the visual, haptic, and
practice groups in all sessions.

4 Discussion

This paper presents the implementation of a novel progressive guid-
ance scheme designed to improve the effectiveness of a virtual
training environment (VTE) used for motor skill acquisition. The
scheme integrates the measurements of key skills as input gains.
Depending on the participants performance from trial to trial, the
guidance gains progressively diminish, thereby reducing the level
of guidance. The results of this methodology confirm prior work
that suggested that providing guidance only when needed is more
effective than fixed amounts of assistance throughout the training
protocol ( [15], [7]).

The CHAID analysis shows, as expected, that session is a sig-
nificant factor thus demonstrating that skill acquisition is occurring
from session to session. The trends are approximated well by ex-
ponential curves, indicating skill acquisition learning rates. During
the guidance subsessions, the haptic guidance mode has the great-
est rate of b = −1.33 (parameter b of the curve fit) compared to
b = 0.15, and b = 0.08 for visual and no guidance respectively. This
higher rate of haptic guidance does not hold during post-guidance
subsessions. Rather the data fails to show significant difference

between the three groups. Nevertheless, in a similar experiment,
Li et al. suggested interference of fixed-gain haptic guidance since
its “learning rate” was significantly lower than for practice alone.
Thus, the noteworthy result of the present experiment is that even
in post-guidance subsessions, the data fails to show that the pro-
gressive haptic guidance scheme is detrimental to performance.

Arguably, strong performance by the haptic guidance group early
in training is to be expected since the guidance drives the participant
along the desired trajectory at the desired excitation frequency. If
participants rely solely on this guidance, their performance will be
good but the guidance gains will decrease rapidly to the point that
the magnitude of the guidance is not sufficient to drive the passive
participant to complete the task. The participant must take control
of the joystick and manipulate the virtual system to carry out the
task. Toward the end of training, as the participants performance
improves and the guidance diminishes, the participant’s opportunity
to rely on the guidance is eliminated. The post-guidance data fails
to show significantly worse performance of the haptic guidance also
indicating that the haptic guidance scheme used here may make
it difficult for participants to rely on the existence of guidance as
occurred with fixed gain guidance.

The CHAID decision tree also exposes significant differences
between guidance modes within the sessions. The results show that
from sessions 2 through 7, the haptic guidance mode is significantly
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different from visual guidance and practice alone. These data sug-
gest that the proposed haptic guidance can be applied early in train-
ing without affecting the training outcome. Interestingly, the per-
formance gains obtained by the haptic guidance are not obtained by
visual guidance. These results suggest that haptic guidance, based
on key skill measurements, is effective early in the training protocol
when participants are beginning to understand the skills required
for the task but should be progressively removed to avoid possible
dependence. Finally, the resolution of the experiment design may
have been too coarse to capture the changes in performance occur-
ring in the first three sessions. An experiment with finer resolution
may be required.

5 Conclusions

Novel haptic interface designs attempt to reproduce real-world
tasks as accurately as possible or to provide virtual environment
augmentation that will assist or guide the trainee in some way dur-
ing skill acquisition. This paper presents the implementation of
a progressive haptic guidance scheme designed to improve the ef-
ficiency of an augmented virtual training environment to be used
for skill acquisition. The modification of a previously-developed
virtual environment target-hitting task accommodates the guidance
controller for investigation. The research compares the effective-
ness of this scheme to a visual guidance that presents the same in-
formation in an exclusively visual way rather than using haptics.
The research also compares these two schemes to practice alone
(no guidance). The training protocol lasts eleven sessions over a
two-month period. During each session, target hit count, trajectory
error, and input frequency quantify performance. The latter two
measures indicate the level of proficiency in the two key skills; by
feeding these values into the controller, it updates the level of guid-
ance offered to the participant. The analysis of the experimental
results extend prior 1-session performance enhancement studies to
a multi-session protocol. The analysis of the experimental results
demonstrates that during the time the guidance is active, the hap-
tic guidance significantly outperforms visual guidance and practice
alone (no guidance) until late in the protocol when all three groups
of participants saturate and converge at approximately the same
level of performance. After each guidance subsession, all partici-
pants complete a short baseline test with no guidance. During these
baseline subsessions the data failed to show significant differences
between any of the groups. These data suggest that though the level
of proficiency acquired during haptic guidance does not transfer to
the unassisted condition at least it is not detrimental as previously
reported. Our results confirm that haptic guidance based on skill
component measures is effective early in the training protocol when
participants are only beginning to understand the components of the
task but should be progressively removed to avoid possible negative
dependence on the guidance. These findings may be applied to an
array of virtual environments used for surgical task training, vehicle
control, sports training, physical therapy and rehabilitation.
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