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Abstract—Communication is an important part of our daily interactions; however, communication can be hindered, either through
visual or auditory impairment, or because usual communication channels are overloaded. When standard communication channels are
not available, our sense of touch offers an alternative sensory modality for transmitting messages. Multi-sensory haptic cues that
combine multiple types of haptic sensations have shown promise for applications, such as haptic communication, that require large
discrete cue sets while maintaining a small, wearable form factor. This paper presents language transmission using a multi-sensory
haptic device that occupies a small footprint on the upper arm. In our approach, phonemes are encoded as multi-sensory haptic cues
consisting of vibration, radial squeeze, and lateral skin stretch components. Participants learned to identify haptically transmitted
phonemes and words after training across a four day training period. A subset of our participants continued their training to extend
word recognition free response. Participants were able to identify words after four days using multiple choice with an accuracy of 89%
and after eight days using free response with an accuracy of 70%. These results show promise for the use of multi-sensory haptics for
haptic communication, demonstrating high word recognition performance with a small, wearable device.

Index Terms—wearable haptics, language communication, multi-sensory haptics, tactile device, phoneme coding.
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1 INTRODUCTION

Communication is an important part of our daily expe-
riences as we interact with others. Our visual and auditory
senses are the primary means by which we communicate;
however, there are circumstances when these typical com-
munication channels are unavailable, either through satu-
ration or impairment. Communication saturation can occur
when visual and auditory channels must be entirely focused
on a demanding task, such as a surgeon operating on a
patient, or a pilot attending to a complex array of visual
displays in a cockpit. Visual or auditory impairment can
also impede communication with the environment, requir-
ing more information to be taken in through remaining
available communication methods, or causing an individual
to miss portions of information entirely. In cases where the
standard auditory and visual communication channels are
not available, haptics, or the sense of touch, can provide
a means for communication through the skin, the largest
organ in the human body.

Haptic communication has roots as far back as the 1890s
[1] when the Tadoma method was developed for deaf-
blind individuals to understanding spoken language. The
technique involves users putting their hand on a speaking
person’s neck and face, to feel the movements made dur-
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“Can you pick up dinner?”

/K//A//N/ /Y//OO/ /P//I//K/

/U//P/ /D//I//N//ER/

Fig. 1. The Multi-sensory Interface of Stretch, Squeeze, and Integrated
Vibration Elements (MISSIVE) is a wearable communication device
which can present phonemes in the English language through multi-
sensory haptic cues, allowing communication to a user without sacrific-
ing visual or auditory communication channels.

ing speech and interpret those movements as words. The
Tadoma method demonstrated the potential of the sense of
touch to serve as an alternative communication channel to
auditory and visual means [2].

Researchers have developed a number of prototype com-
munication systems [3], [4], [5] that are intended to present
sounds or words using the sense of touch, without requiring
the “listener” to place their hands on the speaker, while
still maintaining an efficient and effective method of trans-
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mitting those messages. As mobile devices and wearable
technologies become commonplace, there has been height-
ened interest in developing wearable haptic devices to enable
communication [6], [7], [8], [9]. In addition to developing
the hardware itself, it is also necessary to consider the
means by which words and messages will be encoded and
transmitted.

We posit that a wearable haptic device for communica-
tion should have the following features.

1) Convey an unconstrained vocabulary (e.g. not lim-
ited to a pre-defined list of words or phrases).
To be able to communicate language in any capac-
ity, we must break language down to its building
blocks so that these components can be used to
create complete phrases. This limits the options to
letters (the most common building blocks of writ-
ten communication), phonemes (discrete building
blocks of aural communication), or continuous-time
features (continuous building blocks of aural com-
munication). Each of these options enables limitless
communication via the English language.

2) Transmit messages at a rate that is comparable to
spoken language.
The speed of communication is an important factor
in making a device usable in an everyday setting.
To achieve communication rates comparable to spo-
ken language, it is important to both convey large
amounts of information in each haptic cue, and to
provide haptic cues quickly. To achieve fast com-
munication rates, research indicates that the infor-
mation per cue should be maximized [10]. Trans-
mission speed of each haptic unit will also play a
part in efficiency of communication. To provide high
information transfer rates, we must design cues that
balance the amount of information contained in
each cue and the speed at which the cues can be
transmitted.

3) Fit comfortably and occupy a small surface area
(so as to not limit activities of daily living).
We must be able to present our information-rich
haptic cues in a small form factor, to limit the
intrusiveness of the device. Recently, multi-sensory
haptic devices have been developed that simulta-
neously stimulate the different types of available
mechanoreceptors in the skin. Multi-sensory haptic
devices that stimulate multiple mechanoreceptors
simultaneously have the potential to occupy smaller
form factors than single modality (e.g. all vibration)
haptic devices.

4) Require less than eight hours of training to learn
how to interpret the haptic cues as words.
For a haptic communication device to become
adopted, it must also be learnable in a reasonable
amount of time. End-users will have varying levels
of willingness to learn to use a new device, so the
training time to achieve proficiency should aim to
be as low as possible.

This paper is organized as follows. Section 2 provides
related work in the field of haptic communication, address-
ing the state of the art in encoding language as haptic

cues, and recent advances in the design of wearable haptic
devices. Section 3 describes an experimental evaluation
of MISSIVE (Multi-sensory Interface of Squeeze, Stretch,
and Integrated Vibration Elements) and our method for
encoding phonemes as multi-sensory haptic cues. Section 4
presents results from the user study, and Section 5 analyzes
these results and discusses the implications.

2 RELATED WORK

There are two fundamental areas of prior work that are
relevant when developing a wearable haptic system that can
convey words to a user. In this section, we summarize the
state of the art for encoding language in ways that facili-
tate haptic transmission, followed by a review of wearable
hardware systems that have been proposed for this task.

2.1 Language Encoding

There are two common methods for encoding language for
use in a haptic communication device. One method uses
continuous-time features, where features of an acoustic signal
are represented using a haptic device. The other common
method is to leverage the already-available discrete language
components in written or spoken language, and map those to
discrete haptic cues. Discrete language components include
letters, the most basic building block of written language,
and phonemes, the most basic building block of spoken
language.

2.1.1 Continuous-Time Features
One of the earliest approaches to communicating speech
through haptics used a class of devices called vocoders,
which transform speech into its respective audio frequency
components, then transmit these components through a
haptic display mapped to each component. Because the
continuous time information from the sound waves is
mapped to a continuous haptic display, the approach is
viable for transmitting an unconstrained vocabulary to the
user. Haptic communication devices that use continuous-
time features generally use continuous cues that represent
some relationship to the desired acoustic feature set. A
common way to use continuous-time features in a discrete
display is to decompose the audio signal into frequency
bands, and represent each of those bands through a different
discrete cue on the haptic device. The relative magnitudes
of the frequency bands are then displayed as continuously
varying amplitudes of the discrete cues. Researchers using
this approach have explored transmitting haptic cues to
different locations on the skin, varying the distribution of
frequency bands, and changing the acoustic features that
are conveyed through the cues.

An early example of this approach was proposed by
Gault et al. in 1928, who developed a device consisting
of five vibrators that would be probed by each of the
five fingers on a user’s hand [11]. The system filtered the
incoming audio signal into five frequency bands (0-250 Hz,
250-500 Hz, 500-1000 Hz, 1000-2000 Hz, and 2000+ Hz),
amplified the signal, and displayed each of the bands to
a different finger. More recently, a device was developed
that provides vibration to the thumb, index, and middle
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fingers of a user’s hand [3], [12]. This device, like the prior
system, separated the incoming acoustic signal into five
frequency bands, but the band regions differed from those
used by Gault. Here, both the index and middle fingers were
presented with the amplitude envelopes of two frequency
bands, and the thumb received a filtered signal from the
lowest frequency band. Experimental results indicated that
users could accurately discriminate pairs of closely related
phonemes, but this research did not evaluate users’ ability to
identify a comprehensive set of phonemes or words. Novich
et al. developed a frequency-based haptic vest that used 27
Eccentric Rotating Mass (ERM) motors on the back. They
presented different acoustic frequency bands to different
motors [13], and taught users to identify words. The system
required extensive training (300 training trials per day for an
average of 11 days of training) and was only demonstrated
in a small pilot study (N=2). The average word identification
accuracy only reached approximately 60% when presented
with four choices from an unseen set of words.

The continuous-time feature approach to encoding lan-
guage can often take significant amounts of training to
achieve satisfactory performance [14]. For example, while
one study achieved 90% accuracy in word recognition, 70-
80 hours of training was required to reach that level [15].
Further, the comprehension capabilities with training words
generally does not translate well to unseen words [13],
[14]. As a result, researchers have sought other methods for
mapping language to haptics.

2.1.2 Discrete Language Components

Discrete components of language provide building blocks
that, when assembled, create words and phrases that can
be perceived by the recipient. In this approach to haptic
language encoding, discrete haptic cues are created for
each building block. Example building blocks can be letters
(26 for the English language) or phonemes (35 to 44 for
spoken English, depending on criteria [16]), which can be
strung together to create an unconstrained vocabulary. In
this section, a cue will refer to the haptic representation of a
single language component (e.g. letter or phoneme).

Letters. There are several ways in which letters can be
represented, including encoding letters directly to discrete
haptic cues [7], [17], or using pre-defined sets of symbols
that represent letters, such as Morse code [4] or Braille [5].
The concept of encoding letters with unique haptic patterns
was explored as early as 1957 when Geldard used a system
called vibratese, where letters and numbers were encoded
to five vibrotactors on the chest [17], with cues varying
in intensity and duration. Experiments were effective in
demonstrating the potential to train users to perceive the
letters, and participants were able to understand with “sat-
isfactorily high” accuracy after 12 hours of training although
the specific accuracy was not specified.

Another approach to directly encode letters used six
vibration motors placed in a glove on the back of a user’s
hand, where letters were rendered by actuating specific
motors in a specified temporal scheme [7]. Results showed
94% accuracy in letter identification, with training spread
between five roughly one-hour sessions. Further testing
was performed to show that these cues and associations

could even be learned passively while participants were
performing other tasks with low cognitive loads [18].

Haptic Morse code was explored using an electrody-
namic minishaker that represented dots or dashes by the
duration of a fingertip displacement [4]. This representation
has the advantage that participants must only understand
a small subset of haptic stimulations—dot and dash—and
only remember how those cues correspond to letters or
numbers. Morse code has been well-demonstrated as a
reliable method of encoding messages; however, because the
presentation is temporal in nature, the time required per cue
is typically slower than when providing a letter or phoneme
directly.

Phonemes. One of the more recent developments in
haptic communication research has been in the use of
phonemes, the phonetic building blocks of spoken language,
as the building block for haptic communication. Typically,
there are fewer phonemes per word than there are letters
per word, meaning fewer haptic cues would be required to
render a word. For example, the word zoo has three letters,
but only two phonemes: /z/ and /u/, requiring three haptic
cues to present each letter, but only two haptic cues to
present each phoneme.

In one approach, researchers developed a 24-vibrotactor
sleeve, placed around the user’s forearm, that conveys 39
sensations mapped to 39 phonemes in the English language
[9]. The system uses spatiotemporal vibration cues, pro-
viding sequential vibrations around the user’s arm in a
predefined order. Several participants learned to identify a
subset of 10 phonemes and 51 words with 60 minutes of
training with a 97.5% success rate, and one user was able
to recognize the full set of 39 phonemes with 94% accuracy
after a total of 80 minutes of training. The researchers did
not explore the ability of participants to perceive strings of
all 39 phonemes as words in this experiment.

Because so many phonemes must be learned when using
this method of encoding, some exploratory studies have fo-
cused on training. For example, groups have experimented
with small sets of phonemes (up to 13) combined into words
and conveyed using a 6-vibrotactator sleeve [6], [19]. After
training for 65 minutes, two-thirds of participants were able
to select words from a list of 100 possibilities with over
90% accuracy using multiple choice, but testing was not
expanded to further numbers of phonemes.

There are drawbacks to using phonemes as the building
block when encoding words as haptic cues. The phonemic
composition of words is determined by pronunciation and
therefore is affected by accents and other regional pronun-
ciation differences. For example, many people merge two
vowel sounds in some contexts, such as the pin-pen merger
[20], which is prevalent in the southern United States. Many
people are also not experienced with consciously thinking
about language in terms of phonemes, so they must learn
how to think in terms of phonemes first, and then under-
stand how the cues correspond to those phonemes. It would
also be difficult to render stressing of specific syllables using
haptics, requiring an additional cue component to represent
the concept of stress if desired.
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2.2 Wearable Devices

Recent research has studied how to make haptic language
communication devices more wearable and therefore viable
and practical for everyday use. Areas that have been consid-
ered include the forearm [6], [9], [19], [21], [22], upper arm
[23], and the back [8]. The use of these areas of the body,
while well-suited for wearable devices that will not interfere
with everyday activities, introduces trade-offs in terms of
perceptual performance, since the density of mechanorecep-
tors in the skin of the back and arm is not as great as in
glaborous skin such as that on the fingertips or face.

The vibrotactile systems described in Section 2.1 often
rely on arrays of vibrotactors to generate the discrete haptic
cues that correspond to each frequency band, letter, or
phoneme. For letters and phonemes in particular, large
numbers of cues are necessary for encoding. Vibrotactile ar-
rays contained many tactors covering significant portions of
the body. Further, to realize large numbers of distinct haptic
cues, researchers often vary frequency, amplitude, pattern,
and duration to generate distinct cues that can be reliably
perceived. For example, cue amplitude and frequency can
vary temporally, and multiple tactors can be actuated in
sequence to create cues with sequential cue components
[6], [8], [9], [19], [21]. While this is an effective method for
creating large cue sets, such an approach typically means
that cue-length increases in duration, limiting the rate at
which messages can be conveyed via vibrotactor arrays
alone.

Multi-sensory haptic systems [24], [25], [26], [27], which
render different types of haptic cues (vibration, squeeze,
skin stretch, and more), offer the ability to generate large
sets of haptic cues without covering the skin area necessary
for single haptic systems, such as vibrotactor arrays. In
addition, because different mechanoreceptors are targeted,
haptic cue components can be presented simultaneously,
reducing cue presentation time compared to vibration-
only systems that utilize temporal presentations to pro-
vide enough information per cue [10]. In an experiment
comparing cue identification accuracy with a multi-sensory
device (MISSIVE) and a comparably-sized vibrotactile only
device, performance was was superior in the multi-sensory
device [23], motivating their use for haptic communication
systems.

3 METHODS

An experiment was performed where participants learned
to identify words conveyed through the MISSIVE. The
phonemes in the English language were mapped to multi-
sensory haptic cues of the MISSIVE, and a training protocol
was developed to teach participants to recognize phonemes
and words using the MISSIVE.

3.1 Hardware

The MISSIVE, shown in Fig. 2, consists of three actuation
mechanisms: radial squeeze, lateral skin stretch, and vibration
[23]. These three actuation types are housed in two bands,
referred to as the distal band and the proximal band, which
are positioned in the middle of the user’s upper arm.

Fig. 2. The MISSIVE is shown on the left. Multi-sensory haptic cue timing
for skin stretch, squeeze, and vibration components is shown on the
right. The squeeze and stretch components can either be on or off,
and the vibration component is specified by pulse type of short, long,
or double, and location of top, right, bottom, or left.

3.1.1 Vibration Element
The distal band houses the vibration element for the MIS-
SIVE, consisting of a Velcro band wrapped around four
vibrotactors (C2 Tactors, Engineering Acoustics Inc.). These
vibrotactors are enclosed in a 3D-printed case that allows
them to slide along the length of the band to adjust for
different user arm sizes. The vibrotactors are evenly spaced
around the top, left, bottom, and right of the user’s arm,
with roughly 8.3 cm inter-actuator spacing for an averaged
sized upper-arm [28].

3.1.2 Radial Squeeze Element
The proximal band houses both the radial squeeze and
lateral skin stretch actuation elements on a 3D-printed base
which is held around the arm with a velcro strap. The radial
squeeze element is driven by a servomotor (HS-485HB,
Hitec RCD USA, Inc.) mounted on the 3D-printed structure.
This servomotor is connected to a shaft that contains another
Velcro band that is wrapped around the user’s arm. When
the servomotor actuates, it decreases the radius of the band
wrapped around the user’s arm, causing a squeezing action,
before returning to its starting position.

3.1.3 Lateral Skin Stretch Element
The skin stretch element is driven by a servomotor (HS-
5070MH, Hitec RCD USA, Inc.) mounted on the 3D-printed
structure and connected to a 3D-printed, semi-circular shaft
with a rubber edge that makes contact with the skin. When
the servomotor actuates, the skin in contact with the rubber
portion of the shaft is stretched to one side, and then is
returned to its original position. This element is based on
the Haptic Rocker design by Battaglia et al. [29], [30].

3.2 Haptic Cue Set

The MISSIVE was used to provide discrete multi-sensory
haptic cues corresponding to phonemes. The modes of ac-
tuation for each component were determined based on pilot
tests performed by the researchers. A component refers to a
particular actuation type: vibration, lateral skin stretch, or
squeeze. A multi-sensory haptic cue refers to a combination
of commanded actions to one or more components. The
specific actuation strategies for each component are detailed
below, and the timing of each component to create a single
multi-sensory haptic cue is shown in Fig. 2.
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3.2.1 Vibration
The vibration component was realized using one of four
vibrotactors on the distal band on the user’s arm (top, right,
bottom, or left location, based on the orientation of a user’s
arm holding a computer mouse in their right hand). One of
three different vibration patterns were used, either a short
pulse (50 msec), a long pulse (150 msec), or a double pulse
(one 50 msec pulse, a 75 msec pause, then another 50 msec
pulse), as shown in Fig. 2. The pulses were all displayed at
265 Hz, the resonant frequency of the tactor, at maximum
amplitude.

3.2.2 Lateral Skin Stretch
The lateral skin stretch component was a binary cue (ac-
tuation or absent). If the cue actuated, the rocker was
commanded to rotate to the left for 75 ms, and then was
commanded back to its original position, taking 150 ms and
rotating approximately 30 degrees.

3.2.3 Radial Squeeze
The radial squeeze component was also a binary cue, ei-
ther actuating or not. If the cue actuated, the motor was
commanded to tighten the band for 175 ms, then was
commanded back to its original position, taking 350 ms.

3.3 Mapping Multi-sensory Haptic Cues to Phonemes
An optimization algorithm was used to determine the map-
ping between multi-sensory haptic cues and phonemes.
First, pilot testing data were used to identify common confu-
sion patterns between multi-sensory haptic cues. Then, the
optimization algorithm was used to map phonemes to cues
such that if one of the common multi-sensory haptic cue
identification errors occurred, the corresponding phoneme
confusion would not produce a word that could logically
replace it in context.

The mapping was generated by optimizing the cost
function defined in (1). The cue-phoneme mapping problem
may be cast as follows. Let N represent the set of phonemes
and M represent the set of cues, with |M | ≥ |N |; notice that
in our situation |N | = 39 and |M | = 48. There are two input
functions required to compute the expected cost of a given
mapping. D : M ×M → R+ represents the probability of
confusing one multi-sensory haptic cue for another, and was
determined empirically using pilot studies (as in [23]) to
determine cue confusion over the full multi-sensory haptic
cue set. F : N × N → R+ represents the cost of confusing
one phoneme for another.

The mapping was constrained to assign all consonants
to cues with squeeze off and assigning all vowels to cues
with squeeze on. This constraint is intended to aid with
memory recall, as it reduces the number of search items that
the participant needs to consider. For example, based on the
presence or absence of the squeeze, cue, the user need only
identify one of the set of vowel phonemes, or one of the set
of consonant phonemes.

The term, F , was estimated based on the principle that
translation errors where the user determines that the per-
ceived word is nonsense are preferable to errors where the
user is unaware that an error has occurred and therefore
perceives the wrong word. The cost of the phoneme pair

(i, j) is therefore a function of the number of instances
where mistaking phoneme i for phoneme j within a par-
ticular word results in a new valid word that is the same
part of speech as the original word. Higher weights were
assigned to words that are more frequently used1. The part
of speech was taken into consideration because confusion
between words with different parts of speech would most
likely result in nonsense at the sentence level. For example,
if the word cat was understood as cas, due to the confusion
between the multi-sensory haptic cues corresponding to the
phonemes /t/ and /s/, the algorithm would assume the
user could identify that there was an error. In contrast, if the
word cat was confused with cab, the algorithm would penal-
ize the confusion between /t/ and /b/ heavily because the
replacement of one noun with another noun may confuse
the user, even with context.

Using F and D, we define the total expected cost of a
mapping as:

C(ϕ) =
∑

(i,j)∈N

F (i, j)D(ϕ(i), ϕ(j)) (1)

A visual representation of the cue-phoneme mapping
used in the experiment is shown in Fig. 3.

In (1), the function ϕ : N → M denotes a particular
mapping of phonemes to cues, where ϕ(i) represents the
cue mapped to phoneme i. Our objective therefore was
to find the mapping ϕ∗ = argminϕC(ϕ). This problem
is a variant of the Quadratic Assignment Problem (QAP),
a long-standing combinatorial optimization problem. The
QAP has been shown to be NP hard, and therefore in
practice approximate solutions are found using local search
algorithms [31]. The approximated optimal mapping for this
problem was determined using the genetic algorithm2 [32].

3.4 Experimental Protocol
After mapping all 39 phonemes optimally to a subset of
the 48 possible multi-sensory haptic cues, we conducted
an experiment to evaluate participants’ ability to learn 23
phonemes and, subsequently, words that could be con-
structed with these phonemes. The phoneme set was se-
lected by choosing phonemes used in a set of 50 words
which would be useful in a messaging context. Using the
23 phonemes present in that word set, the word set was
expanded to 150 words.

The 23 selected phonemes were divided into four sets
(A, B, C, and D) based on location of active vibrotactor
component in the corresponding multi-sensory haptic cue
(top, left, bottom, and right). Participants were introduced
to one or two sets of phonemes each day. All participants
completed the same protocol for Days 1 through 4, while a
subset of five participants continued to an extended version
of the protocol, which included an extra four days, to see
if their ability to recognize words could be transferred to a
free response paradigm.

1. The following databases were used: COCA
(https://corpus.byu.edu/coca/) for word frequency, WordNet
(https://wordnet.princeton.edu/) for part of speech, and CMUdict
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) for word
pronunciation.

2. The source code for the genetic algorithm code was generated by
Yarpiz (www.yarpiz.com)
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Training time only included exercises where partici-
pants received correct answer feedback. The term test was
reserved for exercises in which participants did not re-
ceive correct answer feedback. Pink noise was played in
headphones throughout the experiment so that participants
could not hear the sound of the device actuating. Expla-
nations of the different training exercises are detailed in
Section 3.4.2. A detailed diagram of the protocol schedule,
including the progression of haptic phoneme cue sets during
training, is shown in Fig. 4.

3.4.1 Participants
Sixteen Rice University undergraduate and graduate stu-
dents (7 female, average age 23.4, range 19-30) participated
in the experiment. All participants gave informed consent
and received a gift card for each day that they participated
in the experiment. A subset of eleven participants completed
only the first four days of the training protocol, referred to
as training part 1. The other of five participants completed
both training part 1, and a subsequent four days, referred to
as training part 2, for a total of eight days of training.

3.4.2 Training and Testing Exercises
Cue Familiarization. All participants began the protocol
with ten minutes to familiarize themselves with how the
multi-sensory haptic cues felt. During this time, participants
could click on a cue, shown in a spatial representation of
the cues similar to Fig. 3, then click a button to render the
cue on their arm. Participants could continue to explore the
multi-sensory haptic cues until they had fully familiarized

themselves with the different cue types and interactions.
While participants were instructed to focus on the multi-
sensory haptic cues, the phoneme text representation was
shown on the screen and an audio clip corresponding to that
phoneme was played. Once participants were comfortable
with the cue presentations, they could proceed to a self-
test exercise. This self-test entailed the rendering of random
multi-sensory haptic cues followed by a prompt to identify
the three cue components. Correct answer feedback was
provided to participants.

Learn Set A/B/C/D. Participants learned each set of
phonemes based on vibrotactor location as shown in Fig. 3.
Because sets were based on vibrotactor location, participants
experienced variation in all available types of cue compo-
nents except for vibration location during each training set.
Participants began learning each new set by viewing the
interface with all sections grayed out except the one that
they were currently learning. In this exercise, participants
had five minutes to memorize the association between the
phonemes and the cues. During this exercise, participants
completed two different phases. In the first phase, when
participants chose a phoneme, the corresponding cue was
played on the MISSIVE and the sound corresponding to the
phoneme was played in the participant’s headphones. When
the participant was confident that they had memorized the
phonemes, they would move onto the second phase, where
they could use any remaining time to test themselves by
rendering a random phoneme from that set, and responding
with what phoneme they thought it was. After responding,
the correct cue played again on the user’s arm, and the
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EXERCISE CUE SETS TIME

Day 1 (23 mins training)

Learn Haptic Cues (All) 10 mins

Learn New Phonemes A B C D 5 mins

Intro to Words A B C D 3 mins

Cumulative Assessment A B C D 5 mins

Post-Test A B C D (5 mins)

Day 2 (37 mins training)

Pre-Test A B C D (14 trials)

Review Day 1 A B C D 5 mins

Learn New Phonemes A B C D 5 mins

Intro to Words A B C D 5 mins

Learn New Phonemes A B C D 5 mins

Intro to Words A B C D 5 mins

Cumulative Review A B C D 7 mins

Cumulative Assessment A B C D 5 mins

Post-Test A B C D (5 mins)

Day 3 (30 mins training)

Pre-Test A B C D (34 trials)

Review Day 2 A B C D 10 mins

Learn New Phonemes A B C D 5 mins

Intro to Words A B C D 5 mins

Cumulative Assessment A B C D 10 mins

Post-Test A B C D (5 mins)

Day 4 (10 mins training)

Pre-Test A B C D (46 trials)

Review Day 3 A B C D 10 mins

Final Test A B C D (50 trials)

Days 5-8: Free Response (15 mins training)

Pre-Test A B C D (46 trials)

Review A B C D 5 mins

Cumulative Assessment* A B C D 10 mins

Final Test* A B C D (75 trials)

Fig. 4. Protocol for the study. Total training times for each day are shown
in parenthesis next to the day and this includes all time in the white
squares, indicating there is correct answer feedback. The exercises with
* indicate that the response to words presented are using free response
rather than multiple choice.

correct phoneme was shown on the screen, along with the
sound made by the phoneme in the user’s headphones.
Phonemes in the second phase were presented in such a way
that subjects would receive one of each available phoneme
before repeating any of the phonemes so that they practiced
on a uniform distribution of phonemes.

Review. When Reviewing, participants had time to re-
view the phonemes that they had learned so far and were
shown what phonemes they missed in the Pre-Test for the
day to help guide practice. This section was similar to
the Learn Set A/B/C/D section in that participants could
choose to play a desired cue on MISSIVE, or self-test them-
selves with random phonemes, except that all phonemes
that participants had learned so far were available.

Introduction to Words Set A/B/C/D. In the Introduction
to Words exercise, participants began to make the connec-
tion between phonemes and words. For a given word, each

phoneme in the word was presented in an isolated manner,
with the participant choosing a phoneme from a multiple
choice list before proceeding to the next one. Once all of
the phonemes for a word had been played, the participants
were shown a multiple choice list of twelve words from
which to choose their response. In this exercise, correct
answer feedback was provided for both phonemes and
words. Words could be comprised of phonemes from the
current set or from prior sets, but every word presented had
at least one phoneme from the current set to reinforce the
learning of the new phonemes.

Cumulative Assessment. In the Cumulative Assessment
section, participants were given phonemes sequentially to
make up a word, as in the Introduction to Words section, but
the participant did not identify each phoneme individually.
After all of the phonemes of a given word had been played,
the participant selected the word from a twelve-word multi-
ple choice list, and they were provided with correct answer
feedback.

Pre-Test. In the Pre-Test, participants were presented
with a multi-sensory haptic cue and asked to select the
corresponding phoneme from a multiple choice list of all
of the phonemes they had learned so far. Two of every
phoneme that the participant had learned so far were played
and participants did not receive correct answer feedback.

Post-Test. The Post-Test measured word identification in
the same way as the Cumulative Assessment section, but
participants did not receive correct answer feedback.

Final Test. The Final Test section was the same in struc-
ture to the Post-Test section, except that in the Final Test,
the participants responded to a predetermined subset of 50
words for consistency in data analysis. The number of words
tested in this section was determined by pilot testing so that
a comprehensive set of words could be tested, and the total
time of the day would remain under an hour.

Free Response sections. The free response section was
only presented in training part 2. Each free-response section
was structured similarly to the corresponding section in
Days 1 through 4, but rather than selecting from a set of
multiple choice options to identify words, participants had
to type in their answers and click a submit button. For these
participants, the trial count for the Final Tests was increased
from 50 to 75 during free response evaluations so that every
word would be presented twice during Days 5 through 8.

3.5 Data Analysis

Phoneme recognition was assessed using data collected
from the Pre-Tests that participants took each day. Word
recognition was assessed based on the Post-Tests that par-
ticipants took, and was further separated by whether the
response type was multiple choice or free response.

3.5.1 Phoneme Recognition
Phoneme accuracy was calculated from the Day 4 Pre-Test,
once all of the phonemes had been introduced, as well as on
Day 8, the last day of training part 2.

A confusion matrix was created from the pretest on
Day 4 to aid in identifying trends in the mistakes that
participants were making. The confusion matrix also allows
phoneme recognition accuracies to be broken down for
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each subgroup of consonants and vowels. In addition, the
frequency that vowels were confused for consonants and
that consonants were confused for vowels was calculated.

In some cases, participants proceeded to the next stage
without completing all trials for the Pre-Test. When this oc-
curred, the skipped phonemes were excluded from analysis
of performance. This occurred in 36 out of 736 phoneme
presentations on Day 4 assessments, and only one time out
of 230 phoneme presentations on Day 8 assessments.

3.5.2 Word Recognition
Individual and average word recognition accuracies were
calculated for the post-tests in training part 1. Individual
and average word recognition accuracies were calculated
for the Free Response Final Tests in training part 2. When
comparing the free response accuracy from training part 1
with results from training part 2, only results from partic-
ipants who participated in both parts were used to ensure
consistency in analysis. For all Free Response Final Tests,
the incorrect responses were checked and marked correct if
they responded with a homonym of the correct answer.

Transitioning from multiple choice to free response as-
sessments allowed further investigation as to how the par-
ticipants were interpreting phonemes and words. To under-
stand trends, the percentage of incorrect responses that were
incorrect by only one phoneme were calculated. A response
was considered to be incorrect by only one phoneme if it met
one of two criteria: (1) The user response contained the same
number of phonemes as the rendered word and differed by
only one phoneme. For example, if the rendered word was
talk but the user responded with took. (2) The presented and
responded word differed in length by one phoneme, but all
of the phonemes in the shorter word appear in the longer
word in the correct order. For example, if the rendered word
was baby but the user responded with babe.

4 RESULTS

An experiment was performed in which sixteen participants
underwent 100 minutes of training and were evaluated on
their ability to recognize 23 phonemes presented as multi-
sensory haptic cues via the multi-sensory device, the MIS-
SIVE. Participants achieved an average phoneme identifica-
tion accuracy of 61.4%, and an average word identification
accuracy of 89.4% when presented with twelve multiple
choice options. Five participants continued their training for
an additional four days, and achieved an average phoneme
identification accuracy of 85.2% and an average word iden-
tification accuracy of 70.9% when providing free responses
instead of multiple choice.

4.1 Phoneme Identification Accuracy (Days 1-4)
Pre-Test phoneme identification accuracies for days 1
through 4 are presented in the left pannel of Fig. 6. Phoneme
identification accuracy for participants on Day 4 (the last
day of training part 1) was 61.4%. The subset of partici-
pants who completed training part 1 and training part 2
achieved an accuracy of 75.5%. Vowels and consonants were
separately analyzed, showing that the accuracy for correctly
identifying consonants was 82.3%, while the accuracy in cor-
rectly identifying vowels was 38.4%. The confusion matrix

(Fig. 5) shows that participants identified presented vowels
as consonants only 5.7% of the time, meaning that partici-
pants correctly identified presence of the squeeze cue 94.3%
of the time. Similarly, participants identified presented con-
sonants as vowels only 3.8% of the time, meaning that
participants correctly identified the absence of the squeeze
cue 96.2% of the time.

4.2 Phoneme Identification Accuracy (Days 5-8)

Phoneme identification accuracy for only those participants
who continued to training part 2 rose by an average of 9.7%
(from 75.5% to 85.2%). This group’s accuracy in identifying
vowels rose by 19.5%, from 54.1% to 73.6%, and their ac-
curacy in identifying consonants remained high at 95.8%, a
0.8% increase from Day 4.

4.3 Word Identification Accuracy (Multiple Choice)

Post-test word identification accuracy for Days 1 through 4
is shown in Fig. 7. Throughout Days 1, 2, and 3, participants
recorded 80.4%, 70.9%, and 90.3% accuracy, respectively in
the 5-minute timed post-tests, corresponding to sets of 7,
17, and 23 phonemes, respectively, comprising the post-
test word sets. On Day 4, participants correctly identified
on average 89.4% of a 50-word set that comprised all 23
phonemes. The subset of participants who completed train-
ing part 1 and training part 2 achieved an average of 93.6%.

4.4 Word Identification Accuracy (Free Response)

Average word identification accuracy for only those partici-
pants who continued to training part 2 dropped from 93.6%
on Day 4 (multiple choice) to an average of 66.8% on Day
5 (free response). Over the course of the training part 2,
participants steadily increased their accuracy to reach 70.2%
on Day 8. On the final day of testing, 67.3% of incorrect
responses differed from the presented word by only one
phoneme. Of these, 93.2% were attributable to an incorrect
identification of a vowel phoneme, while the rest were the
result of incorrect identification of a consonant phoneme.

5 DISCUSSION

For a haptic communication device to be useful and realistic
for everyday use, it should be able to convey unconstrained
vocabulary, transmit messages at comparable rates to spo-
ken language, not interfere with activities of daily living,
and require less than eight hours of training. The MISSIVE
can convey an unconstrained vocabulary because it uses
phonemes as its building block. By using multi-sensory
haptic cues, the device fits on a small portion of the upper-
arm, which keeps it form impeding activities of daily living.
In 100 minutes of training, users were able to achieve 61.4%
accuracy in identifying 23 phonemes and 89.4% accuracy
in identifying 50 words using multiple choice. Through a
further 60 minutes of training, five participants were able to
achieve 85.2% accuracy in identifying phonemes and 70.9%
accuracy in identifying words using free response. With
this only taking 160 minutes of training, users should be
able to significantly improve within a reasonable total of
eight hours of training. In this experiment, we did not test
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AW AY E EE IY O OH OO OW U UUH B DTH F H K M N R S T W Y

AW 33 10 7 10 3 3 13 7 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0

AY 7 47 13 3 3 7 0 17 3 7 3 0 0 0 0 0 0 0 0 0 0 0 0

E 3 0 17 7 6 3 13 20 3 7 7 0 0 0 3 0 0 0 0 0 0 7 0

EE 13 0 17 47 16 0 3 7 0 7 0 0 0 3 0 0 0 0 0 0 0 3 0

IY 3 17 7 0 38 3 7 3 13 0 3 0 3 10 0 0 0 0 0 0 0 0 0

O 0 0 10 0 3 53 7 3 0 13 10 0 0 0 0 0 0 0 0 0 0 3 3

OH 7 3 10 17 6 3 23 0 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0

OO 7 7 10 3 3 3 10 33 10 7 0 0 3 0 3 0 0 0 0 0 0 0 0

OW 10 3 0 3 13 3 7 0 48 3 7 0 0 0 0 0 0 0 0 0 0 0 0

U 17 0 0 0 0 0 3 0 6 40 23 0 0 0 0 0 0 0 0 0 0 0 0

UUH 0 0 3 3 3 10 10 0 0 7 43 0 0 0 3 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 7 0 0 3 0

DTH 0 10 0 0 3 0 3 0 0 0 0 0 67 3 0 0 0 3 0 0 0 0 10

F 0 0 3 3 0 0 0 0 0 0 0 0 10 77 0 3 0 0 0 13 0 7 6

H 0 0 0 0 0 3 0 0 0 0 0 0 0 3 74 0 0 0 0 0 0 10 0

K 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 83 0 0 0 0 3 7 3

M 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 90 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 6

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 7 0 88 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 3 0 0 0 97 0 0

W 0 0 3 0 3 7 0 0 0 3 3 0 7 0 13 0 0 0 0 0 0 60 0

Y 0 3 0 3 0 0 0 10 0 0 0 0 7 0 0 0 0 0 0 0 0 0 71
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Fig. 5. Confusion matrix showing percent accuracy in identifying phonemes on Day 4 for all with correct answers on the main diagonal. The actual
phoneme presented is shown at the top, and the phoneme that the user chose is shown on the left. Thick outlines show the separation between the
vowels and consonants.
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Fig. 6. Pre Test accuracies for all participants shown for each day during
training part 1 (left) and training part 2 (right). Averages are shown in
green, and error bars represent standard error.

transmission speeds, but this could be observed in future
experiments.

The form factor of the MISSIVE is smaller compared to
devices of similar capability which use the whole forearm
[9], [19], the torso [13], or the valuable space of the hand
[7] to display an array of vibrotactors. A recent study
has shown subjects can identify 100 words made of 13
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Fig. 7. Post Test accuracies for all participants shown for each day
during training part 1 (left) and training part 2 (right). Averages are
shown in green, and error bars represent the standard error. The right
plot corresponds to the free response answering mechanism versus the
multiple choice mechanism in the left plot.

phonemes in 65 minutes of training, but subjects had the
ability to replay haptic cues for 30 seconds [19]. A similar
study showed that subjects were able to achieve above 90%
accuracy in identifying 39 phonemes, with most subjects
moving on to test their ability to identify 50 and 100 word
lists using multiple choice. Of those who tested 100 words,
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accuracy ranged from 50% to 95% on the last day [33]. All
subjects from our study learned to understand 150 words
with the MISSIVE and scored comparable accuracies to
previous studies in a similar amount of training time, while
utilizing a device with a smaller form factor.

5.1 Vowel Identification Accuracy
Participants were noticeably better at identifying consonants
(82.3% correct) than vowels (38.4% correct) after four days
of training (see Section 4.1). Participants who continued
to training part 2 improved their phoneme identification
accuracy. Still, for 93.2% of words that were incorrectly iden-
tified, the error was attributable to incorrect identification
of a vowel. It is clear that vowel identification remained
challenging, despite further training. We suspect two factors
may be contributing to the difficulty in accurate vowel
identification, namely errors in multi-sensory haptic cue
perception, and errors in phoneme interpretation.

First, vowel identification performance could be lower
than consonant identification performance because vowels
were mapped to multi-sensory haptic cues comprised of
three components (vibration, stretch, and squeeze), whereas
consonants were mapped to two-component cues (vibration
and stretch only). Our prior work has identified that multi-
sensory cues comprising vibration, stretch, and squeeze
can lead to mis-identification of the multi-sensory haptic
cue components [23], [34], showing how errors in vowel
identification could be attributable to errors in multi-sensory
haptic cue perception.

Second, the lower accuracy could be due to the increased
difficulty of understanding the representation of vowels
as phonemes. Since participants did not have any specific
training for translating between sounds and phonemes, par-
ticipants were not necessarily experienced with interpreting
sounds and words in this manner. Vowel phonemes can in
general correspond to many different word spellings, and
similar letter combinations in different words can corre-
spond to different vowel phoneme. For example, the sounds
produced by the phoneme /AY/, as in Ate, can correspond
to the spellings “a”, “ai”, “ay”, “a e”, “ei”, “er”, “et”, “ey”,
or “ea”, and the phoneme /U/, as in Up, can correspond to
spellings with “a”, “o”, “oo”, “ou”, or “u”. In contrast, most
consonant phonemes have a direct one-to-one mapping to a
letter of the alphabet, and generally have a small number of
letter combinations to which they correspond. For example,
the sound produced by the phoneme /b/ can only corre-
spond to a spelling using the letters “b” or “bb”, and the
phoneme /p/ can only correspond to a spelling using the
letters “p” or “pp”. Because phonemes were presented one
at a time in sequence to the participants, and because most
people are used to thinking of words in terms of spelling
rather than phonemes, participants tended to relate the
phonemes that they were feeling with sequences of letters
(as if spelling out words), instead of sequences of sounds,
resulting in vowel identification errors.

5.2 Training Effects
With only 100 minutes of training, phoneme identification
accuracies reached an average of only about 60%. For those
participants who continued to training part 2, performance

improved by 9.7%, from 75.5% to 85.2% during training
part 2, and importantly, the accuracy in vowel identification
improved from 54.1% to 73.6%. This increase shows that
while the vowels were indeed more difficult to perceive
compared to consonants, participants were able to improve
their perception of vowels through additional training. Still,
73.6% accuracy in identifying vowels is lower than we
would like to see for effective haptic transmission of words.
Further training should likely show higher accuracies, and
future research should determine the amount of training
necessary to achieve consistent and high accuracy word
identification using the MISSIVE.

In our training, we did not test with full sentences. It will
be an important next step to combine strings of words into
sentences to see what effects this has on comprehension. A
sequence of words will need to be separated by a pause or
some signal representing a space between words. While we
did not test this, one study successfully used a gap between
words of 270 ms when displaying two words in a sequence
using letters (spaced as little as 100 ms apart) on the hand
[7]. While this number would likely vary with phonemes on
the MISSIVE, it provides some guidance as to how quickly
people can receive and comprehend strings of haptic cues.

5.3 Word Identification Accuracy

Despite participants’ relatively low accuracy in identifying
phonemes (61.4% on Day 4), word identification accuracy
was quite high, always greater than 70% during training
days. For the 50 word un-timed final test on Day 4, partici-
pants were able to correctly identify 89.4% of the presented
words. Still, in subjective responses on surveys, participants
indicated that they continued to have trouble with the vow-
els, but were confident in their consonant responses. It is
likely that participants relied on the multiple choice options
to identify the word that matched the set of consonants
that they understood from the cue presentations, making
up for their somewhat poorer performance at identifying
vowels. This subjective feedback supports the conclusion
that participants will likely need longer than 100 minutes of
training to become proficient in identifying arbitrary words
with the MISSIVE, and that training should involve free
responses instead of multiple choice responses that can lead
to higher performance even without full command over the
entire set of trained phonemes.

Word identification accuracy during post-tests decreased
from Day 4 to Day 5 when participants switched from
multiple choice to free response, from an average of 93.6%
accuracy on Day 4 using multiple choice to 67.2% accu-
racy on Day 5 using free response. Without the multiple
choices to rely on, participants had to correctly identify each
phoneme in the presented words, and correctly combine
them into the correct word. Participants improved each
day to a final word identification accuracy of 70.7% on
Day 8, but this was not notably different from Day 5.
Interestingly, even though on word identification accuracy
did not improve, participants improved their phoneme
identification accuracy, specifically in vowel identification.
It is clear that having multiple choice answers displayed to
participants reduced most mistakes that participants made
when compared to the free response portion of assessment.
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Recall that 67.3% of mistakes in word identification were
attributable to the mis-identification of only one phoneme.
This implies that given some context or constraints on a
given word being transmitted, users may be able to still
correctly identify words they are unsure of.

5.4 Phonemes as a Building Block
In our training protocol, we did not include time to teach
participants the concept of phonemes or how they are com-
bined to make words. It seems that this led to participants
having trouble correctly connecting phonemes to make
words, and common error patterns were observed in free-
response word identification assessments. Here, participants
seemed to confuse the sound of the phonemes with the
letters that were used to represent them. For example, on
Day 8 of the protocol, when the word phone was presented,
four of the five participants responded with a word that
began with the letter “f”. This is telling—even with initial
training on the method of combining phonemes into words,
participants still seemed to default to letter or spelling-
based representations of words. The dialects used and the
ways that participants interpret words can also have an
impact on word identification success. All pronunciations
were taken from the CMUdict database, and some words
had pronunciations that differed compared to the partic-
ipants’ common usage. Therefore, some of the the 67.2%
of word identification mistakes attributable to one incorrect
phoneme identification could be due to misinterpretations
of the phonemes, or how certain participants tend to pro-
nounce words. For example, on the last day of training
part 2, every participant responded with the word “were”
to the phoneme representation /w/ /e/ /r/, instead of
the word based on the the CMUdict database which was
“where”. This underlying confusion highlights a potential
drawback of using phonemes as building blocks, instead
of other options such as letters. While there exist some
discrepancies in spellings between different regions and
dialects, there are far fewer of these than pronunciation
differences, which can differ wildly for people speaking the
same language. Future work should investigate the trade-
offs between the use of phonemes or letters as building
blocks for haptic communication. Phonemes offer a higher
density of information per cue, but spelling out words with
letters may prove more intuitive for users. It is also worth
noting that subjects learned a subset of 23 of 39 possible
phonemes. Further testing would have to be performed to
see the effects of learning all 39 phonemes.

6 CONCLUSIONS

Haptics offers a novel mechanism for communication, and
new compact actuators and wearable sensors offer the po-
tential for wearable, private communication devices. In this
paper, we presented design criteria that should be consid-
ered when developing a device and system for haptic trans-
mission of the English language. These criteria emphasize
the need to convey unconstrained language at reasonable
speeds, while maintaining a desirable form factor and learn-
ability.

We mapped phonemes in the English language to 350
ms multi-sensory haptic cues comprised of vibration, skin

stretch, and squeeze, and were displayed to users via
the MISSIVE device. After four days and 100 minutes of
training, participants were able to identify phonemes with
61.4% accuracy and words with 89.4% accuracy using mul-
tiple choice. Five participants continued through another 60
minutes of training and were able to identify phonemes
with 85.2% accuracy and scored an average of 70.2% ac-
curacy in identifying words using free response. Analysis
of the phoneme responses showed that participants were
less adept at identifying vowel phonemes compared to
the consonant phonemes, and that participants likely had
trouble combining several phonemes into words. Still, the
demonstrated accuracy in identifying phonemes and words
encourages further exploration into the use of multi-sensory
haptic devices for transmission of words to users.
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