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The Task-Dependent Efficacy of
Shared-Control Haptic Guidance Paradigms
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Abstract—Shared-control haptic guidance is a common form of robot-mediated training used to teach novice subjects to perform
dynamic tasks. Shared-control guidance is distinct from more traditional guidance controllers, such as virtual fixtures, in that it provides
novices with real-time visual and haptic feedback from a real or virtual expert. Previous studies have shown varying levels of training
efficacy using shared-control guidance paradigms; it is hypothesized that these mixed results are due to interactions between specific
guidance implementations (“paradigms”) and tasks. This work proposes a novel guidance paradigm taxonomy intended to help classify
and compare the multitude of implementations in the literature, as well as a revised proxy rendering model to allow for the
implementation of more complex guidance paradigms. The efficacies of four common paradigms are compared in a controlled study
with 50 healthy subjects and two dynamic tasks. The results show that guidance paradigms must be matched to a task’s dynamic
characteristics to elicit effective training and low workload. Based on these results, we provide suggestions for the future development

of improved haptic guidance paradigms.

Index Terms—Shared control, haptic rendering, haptic guidance, robot-mediated training.

1 INTRODUCTION

YNAMIC tasks are part of our everyday lives. Shooting a

basketball, driving a car, or simply taking a sip of
water are all characteristically dynamic tasks that require
sensory feedback (especially haptic feedback), online move-
ment planning, and adaptation to changing task conditions.
Most importantly, these tasks often have optimal solutions
that either maximize a “positive” metric, such as likelihood
of making a basket, or minimize a “negative” metric, such
as the amount of effort required. These optimal solutions
are learned through a combination of practice and training,
either by direct intervention from a coach or through
focused observation of other people performing the task.
Similarly, there are less common but more consequential
dynamic tasks requiring extensive training, such as per-
forming a laparoscopic surgery, flying an airplane, or
teleoperating a remotely operated vehicle.

Training for these tasks can be either human-mediated or
robot-mediated. Human-mediated training would entail an
expert guiding a novice subject through a task via direct
physical contact. Robot-mediated training would entail an
expert sharing control of a task with a novice in a virtual
environment, as shown in Fig. 1. The potential advantages of
robot-mediated training and shared-control guidance are
discussed in Section 2.

While the question of how to apportion control of the
system between expert and novice has been studied to some
extent in the literature, the question of how to provide
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feedback to the novice has been studied comparatively little.
Haptic feedback from the expert and virtual environment
can enhance a novice’s sense of presence and cooperation
[2], [3], but the efficacy of haptic “guidance” at improving
training outcomes has not been thoroughly demonstrated.

Most guidance schemes used for robot-mediated training
have been developed in an ad hoc fashion to work with a
specific device or task, making it difficult to compare the
multitude of guidance schemes present in the literature.
We propose that the various extant guidance schemes can
be distilled into a set of essential and representative
characteristics, and that these characteristics can be used
to develop a taxonomy for classifying guidance paradigms,
as discussed in Section 3. The traditionally used proxy
rendering model cannot easily implement more modern
and complex guidance paradigms, and thus an improved
shared-control proxy model is proposed in Section 4.

We hypothesize that in order for a guidance paradigm
to elicit effective training, it must be properly matched to
the task at hand. To this end, we compared the efficacies
of four guidance paradigms at training 50 healthy subjects
to perform two dynamic tasks in a controlled study in
Section 5. The results presented in Section 6 demonstrate
that the efficacies of the paradigms indeed depend on the
task, and the implications of these findings are discussed
in Section 7.

2 RoBOT-MEDIATED TRAINING

The defining characteristic of robot-mediated training is
that guidance is administered physically to a novice subject
via a haptic interface. Thus, a coach might still retain high-
level control over the course of training or even participate
teleoperatively, but all physical interactions with the novice
are mediated by the haptic interface and related control
systems (the “robot”).

Published by the IEEE CS, RAS, & CES
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Fig. 1. A subject performing a target-hitting dynamic task with the
assistance of a virtual expert.

Robot-mediated training offers many potential advan-
tages over traditional “human-mediated” training. If enough
autonomy can be given to the robot or a “virtual expert,” one
human expert could potentially train a large number of
novices simultaneously, increasing the reach of training. The
virtual environment can also be quickly changed or reset in
order to facilitate training and help keep the novice’s
attention through long training sessions. More importantly,
a robot can offer objective measures of performance much
more frequently than a human expert [4]. Winstein [5] and
others have shown that providing accurate and timely
feedback to a novice can directly improve training outcomes,
and such measures can be used by a real or virtual expert to
tune or adapt other aspects of the training as the novice
improves over time. For instance, Li et al. [6] and Huegel and
O’Malley [7] used these measures to progressively decrease
the amount of guidance provided to novices as their
performances improved.

2.1 Virtual Fixtures and Shared-Control Guidance
Guidance during robot-mediated training is often provided
via simple perceptual overlays such as virtual fixtures.
Virtual fixtures, as proposed by Rosenberg [8], are simply
perceptual overlays that passively prevent subjects from
entering forbidden regions of a work environment, and are
most often used to constrain a novice’s motions to an
optimal trajectory.

Shared-control guidance is a more recently developed
form of guidance that improves upon virtual fixtures by
allowing a novice to share control of a system with a real or
virtual expert. O’'Malley et al. [9] showed that such shared-
control systems were as effective as virtual fixtures at
facilitating skill transfer. Traditionally, such as in fly-by-wire
aircraft control systems, conflicting control inputs by multi-
ple agents, such as a novice and an expert, are reconciled by
simply averaging the inputs, which is not necessarily the best
cooperation paradigm [10]. Reed and Peshkin [11] make the
following point:

Averaging the input command is a simple strategy but not

necessarily the best combination since each individual’s
motion will be diluted. Imagine the effect if one pilot attempts

to avoid an obstacle by turning to the left while the other to
the right: the average effect is straight into the obstacle.

Nudebhi et al. [12] proposed a similar shared-control scheme
for telesurgical training that calculated a control output
based on the weighted average of the control inputs of two
operators.

Other implementations share characteristics of both
virtual fixtures and shared-control guidance, such as the
“record-and-replay” strategy used by Gillespie et al. [13] to
train novices to balance an inverted pendulum.

Such “assistive” forms of guidance are based on a number
of intuitions about how people learn to perform visuo-motor
tasks. Unfortunately, there is little evidence to back up some
of these intuitions or to suggest how they can best be applied
to enhance the efficacy of assistive strategies.

2.2 Problems with Traditional Guidance

A common assumption is that physically guiding a novice
through the successful completion of a task will help the
novice to internalize and encode that pattern, and thus help
the novice to repeat the pattern on his or her own in the
future. This assumption is only weakly supported by the
literature in the context of rehabilitation [14], [15], [16], and
has been refuted in many cases in the context of training
healthy individuals [17], [18], [19]. Schmidt and Bjork [20]
showed that guidance in many sorts of training (not just in
visuo-motor tasks) can actually impair learning and reten-
tion, especially if provided too frequently or in a form that
is too easy to use. This discrepancy between the expected
and actual results of guidance-based training has come to
be known as the “guidance hypothesis.”

The probable flaw in the assumption that assistive
guidance improves training is that while the proprioceptive
sensory pathways are active in the presence of guidance,
the motor pathways are comparatively less active. Israel
et al. [21] showed that when physically guided through a
task, novices tend to become “passive participants” and
exert less energy (reflecting less motor pathway activity)
than when they perform the task on their own. Shadmehr
and Mussa-Ivaldi [22] showed that the CNS relies on
encoding and storing control loops between proprioceptive
input and motor output in order to perform dynamic tasks,
and thus if this control loop is weak or absent in the
presence of guidance, the CNS will not be able to encode
and retain the loop as it would during practice.

Another problem with assistive guidance is that novices
make fewer errors than they would during practice because
they are passive and constrained to an optimal trajectory.
Thoroughman and Shadmehr [23] and others have shown
that error drives the learning of dynamic tasks and building
of internal models, and thus assistive guidance is likely to
impair learning by preventing the commission of error.

Finally, we hypothesize that a significant problem with
traditional assistive guidance is that it corrupts the inherent
dynamics of a task as perceived by the novice. Most
guidance methods are impedance-based, meaning that they
apply a force in order to control the novice’s position. Thus,
a movement made during practice will result in force-
feedback based on the inherent task dynamics, while an
identical movement during training will result in force-
feedback based on some combination of the task dynamics
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Fig. 2. Gillespie et al.’s Virtual Teacher paradigms [13]. From left to right:
indirect-contact, double-contact, and single-contact paradigms.

and guidance forces. In the same way that simply averaging
the command inputs of a novice and expert may have an
undesirable effect on a system, averaging the task dynamics
and guidance forces may have an undesirable effect on a
novice’s training. If novices spend a bulk of their time in
training, then in effect they will be learning the wrong task,
as found by Crespo and Reinkensmeyer [24], who say that
“subjects who trained with guidance reacted as if the
assistance provided on assisted trials was a perturbation
rather than following its example.”

2.3 Biomimetic Forms of Guidance

Gillespie et al. [13] proposed the use of a virtual teacher, a
more active form of guidance than virtual fixtures, which
instructs novice subjects to perform dynamic tasks by giving
them shared control of a task with a virtual expert. The
model of a virtual teacher proposed by Gillespie et al.
replicates real-world teaching methods in order to facilitate
skill transfer and reconcile the problem of guidance force
corrupting task dynamics. He presents the example of a
tennis expert teaching a novice how to swing a racket using
hands-on demonstration.

There are three ways that this demonstration could
occur, as shown in Fig. 2. In an “indirect contact” paradigm,
the expert and the novice grasp the racket in different
locations and perform the swing together. In a “double
contact” paradigm, the novice grasps the racket while the
expert grasps the novice’s hand and guides the novice
through the swing. In a “single contact” paradigm, the
expert grasps the racket and the novice grasps the expert’s
hand. In the indirect and single contact paradigms, the task
forces (those generated by the dynamics of the tennis
racket) are simply summed with the guidance forces (those
generated by the expert exerting control over the racket). In
the double contact paradigm, the forces are separated
spatially, with task forces being applied to the novice’s
palm and guidance forces to the back of his or her hand.
Gillespie et al. [13] hypothesized that this double contact
paradigm would be the most effective at eliciting skill
transfer, because it passes the greatest amount of haptic
information to the novice and allows the novice to easily
discriminate between guidance and task forces. However,
they were not able to conclusively determine whether the
double contact paradigm was better than the others.

3 GuIDANCE PARADIGM TAXONOMY

We propose that all guidance paradigms currently imple-
mented in the literature in human-human, human-robot,
and human-robot-human training architectures can be

classified using a consolidated and unified set of descriptors
as described in this section. By abstracting the principles of
existing guidance paradigms from their specific implemen-
tations, we can develop a set of representative paradigms
from the taxonomy and then compare the effectiveness of
each of those paradigms while holding constant the
specifics of the implementation (such as the choice of
haptic device and dynamic task).

This taxonomy (first proposed by Powell and O'Malley [1])
classifies paradigms along three dimensions or factors. The
principal factor differentiating guidance paradigms is
whether they assist or resist the novice subject in completing
the task. Guidance schemes can thus be classified as either
“assistive” or “resistive.” The second factor is how paradigms
reconcile the copresentation of task and guidance forces. As
mentioned in Section 1, task and guidance forces should be
interpreted by the novice in fundamentally different ways. If
the novice cannot clearly distinguish between the two, the
guidance forces will alter the perceived dynamics of the task
and potentially impair training. Most existing guidance
schemes confound task and guidance forces in just such a
way by combining them using a simple weighted average
function so that both forces can be displayed simultaneously
via a single haptic device in manner that we will refer to as
“gross” guidance. Finally, many guidance schemes will
adjust the relative weights (gains) of these forces over time
inresponse to anovice’s performance improvement. We refer
to such schemes as “progressive.”

In the following sections, we pick five representative
guidance paradigms from this taxonomy and discuss their
existing implementations as described in literature.

3.1 Gross Assistance (GA)

Classic virtual fixtures are the archetypal example of gross
assistance. By their nature, virtual fixtures have to be
relatively stiff in order to keep novices from entering
forbidden regions of the workspace, and thus guidance
forces generated by collisions with virtual fixtures will
dominate any extant task forces. Simple spring-damper
couplings or attractor potential models used to “pull”
novices toward a target are also typically implemented as
GA, and can interfere with the perceived dynamics of tasks
in a more subtle way than virtual fixtures. Shared-control
guidance schemes such as the indirect-contact and single-
contact virtual teacher paradigms also qualify as GA.

Gross assistance has been shown to be generally
ineffective at improving training outcomes compared to
practice without guidance [16]. Reinkensmeyer [14] showed
in simulation that “continual guidance” (GA) is “never
beneficial compared to no assistance.” Marchal-Crespo and
Reinkensmeyer [25] showed that “fixed guidance” (GA)
produced only “slightly better immediate retention than did
training without guidance,” but did not show that this
improvement was statistically significant. “Triggered” as-
sistance is a type of GA that requires the novice to exert a
certain amount of control effort before assistance is
provided, and has not been shown to be conclusively better
than standard GA. O’Malley et al. [26] implemented a force-
based triggered mode on the MIME/RiceWrist exoskeleton,
while Kahn et al. [27] implemented a displacement-based
triggered mode on the ARM Guide, but neither showed any
significant improvement over practice for the rehabilitation
of stroke patients.



POWELL AND O'MALLEY: THE TASK-DEPENDENT EFFICACY OF SHARED-CONTROL HAPTIC GUIDANCE PARADIGMS 211

Generally speaking, most of the assistive paradigms
discussed in Section 2 that can be classified as GA were
shown to be ineffective compared to practice without
guidance. This negative outcome is partially predicted and
explained by the “guidance hypothesis” proposed by
Salmoni et al. [28], which states that subjects will tend to
become reliant on guidance when it is present in order to
improve performance instead of relying on “other cues in the
task that are important for motor learning.” Li et al. [29] also
found evidence of subjects becoming reliant on GA guidance
forces. Furthermore, we predict that even for tasks where
guidance forces do not dominate the inherent task dynamics
and subjects are not passive, GA may still impair training as
described in Section 2.

One possible exception to the generally negative efficacy
of GA is for tasks that are extraordinarily difficult and for
novices in the very early stages of training for a new task.
Marchal-Crespo and Reinkensmeyer [25] showed that there
was a significant improvement of the GA groups over the
practice groups in the very first stages of training, but that
this improvement quickly diminished and became insignif-
icant as training continued.

Progressive gross assistance (PGA) capitalizes on the
early-stage benefit of GA by systematically decreasing the
guidance gains over time as a novice’s performance im-
proves, allowing the novice to make more errors in later
stages of training and further refine his or her motor control.
Guidance may be decreased either on a predetermined
schedule or “adaptively” in response to a subject’s perfor-
mance. Many of the same studies in Section 2 showing that
GA was ineffectual also showed that PGA was superior to
both GA and practice [16].

However, PGA has some potential downfalls. First, PGA
requires gain-reduction algorithms that may depend on
accurate and objective performance metrics. Choosing the
correct algorithm and performance metrics is highly task-
dependent and potentially difficult. As with traditional GA,
PGA confounds guidance and task forces during the
majority of training, and may in fact exacerbate impairment
by subtly changing guidance gains (and thus the task
dynamics as well) over time. For these reasons, we chose
not to evaluate PGA in this study.

3.2 Temporally Separated Assistance (TSA)
Temporally separated assistance separates guidance and task
forces temporally, displaying each type alternately in quick
succession via a single haptic device. In other words, novices
are “nudged” toward the virtual expert by brief pulses of
guidance provided on the order of 1 Hz. In this way, the
guidance exerts “cognitive dominance” over the novice,
while allowing the novice to retain “physical dominance,”
commit errors, and actively generate movement plans in
order to better learn the task dynamics. With this advantage,
we hypothesize that TSA can achieve the same level of
performance as PGA without being subject to the complex-
ities of adaptive algorithms. Additionally, compared to
progressive paradigms that provide all of the guidance
during training “up front,” TSA provides guidance consis-
tently and predictably throughout training, hopefully im-
proving training outcomes.

In a pilot study, Endo et al. [30] showed that TSA was
effective at training subjects to grip a virtual object using

proper grasping forces and fingertip placements. However,
they did not study its effectiveness at training for dynamic
tasks. Ahn and Hogan [31] also implemented TSA in order
to study entrainment of human gait, and found that the
presence of properly designed TSA could encourage subjects
to adopt certain gait patterns. However, they did not study
TSA in the context of training.

3.3 Spatially Separated Assistance (SSA)

Whereas TSA separates the presentation of task and
guidance forces temporally in order to present them via a
single haptic channel, spatially separated assistance makes
use of two haptic channels in order to present task and
guidance forces simultaneously via the separate channels.
The first and perhaps best example of SSA is the double-
contact paradigm proposed by Gillespie et al. [13], which
makes use of a specialized haptic device in order to present
guidance from a virtual expert via one haptic channel
(through the back of a novice’s hand) and forces arising
from the task dynamics via a second channel (through the
novice’s palm). Gillespie et al. [13] could not conclusively
show that SSA was superior to practice.

Similarly, Wulf et al. [32] showed that a weak form of SSA
was superior to practice without physical guidance at
training novices to perform a simulated skiing task. This
might be considered a “weak” form of SSA because haptic
feedback was provided via actual mechanical fixtures rather
than electromechanical systems and a virtual expert.
However, this guidance paradigm still qualifies as SSA
because guidance was provided via a spatially distinct
channel (i.e., the poles) from the primary interface with the
simulator (i.e., the skis).

While replicating a real-world teacher is an elegant and
intuitive approach to implementing SSA, the utility of the
double-contact paradigm is limited to cases where the
physical constraints of the task being taught allow for this
specific type of spatial separation of forces. Presenting
forces in this manner effectively requires haptic devices
with up to twice as many degrees of actuation and
significantly higher complexity. In some cases, presenting
forces in this manner may simply not be possible given the
physical constraints of the task.

Providing guidance and task feedback via separate but
identical haptic devices might be a more feasible solution, and
is tested in this study. Numerous studies indicate that taking
advantage of bimanual (mirror) symmetry can improve
rehabilitation from hemiparesis following stroke [33], [34].
Additionally, studies have shown that in healthy indivi-
duals, there is a transference of skills between bimanual and
unimanual tasks [35]. Finally, Tcheang et al. [36] showed that
forces applied to one arm will not interfere learning of force
fields by the other arm. These studies support our imple-
mentation of SSA as described in Section 5.4.

3.4 Gross Resistance

Gross resistance (GR) can take a number of different forms,
but is generally characterized by increasing the difficulty of a
task or resisting a novice’s optimal completion of a task in
some way. The theory behind GR is simply based on over-
training: after training extensively in the presence of artificial
resistance, novices will find it relatively easy to execute the
same task in the absence of the resistance. There are three
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common implementations of GR: as a constant force-field or
viscous force opposing movement, as a force that augments
errors, or as forces producing random disturbances.

Constant (Coulomb) or velocity-dependent (viscous)
forces opposing the direction of movement have been
shown to improve training outcomes particularly in the
field of rehabilitation. For instance, Lambercy et al. [37]
designed a haptic knob offering varying levels of resistive
force in order to help stroke patients regain grasp strength
and coordination. A metareview by Morris et al. [38] showed
that resistance training (though not necessarily robot-
mediated) can help reduce musculoskeletal impairment in
stroke patients.

Error augmentation has also been shown to improve
training by taking advantage of the CNS’ error-driven
learning process. Emken and Reinkensmeyer [39] showed
that amplifying the task dynamics and in turn producing
larger movement errors improved the adaptation of healthy
novices to a viscous force-field. In rehabilitation, Patton
et al. [40] showed that force-fields that amplified movement
errors made by stroke patients in a reaching task improved
training outcomes over practice.

Finally, Lee and Choi [41] showed that training in the
presence of random noise-based disturbance was superior
to PGA and practice at training healthy novices to perform a
path-following task. Such noise-based GR has not been
discussed elsewhere in the literature and is a prime
candidate for further evaluation.

4 SHARED-CONTROL PROXY MODEL

A number of factors make stable rendering of the interaction
between a haptic interface and virtual environment a
nontrivial task. Foremost among these are the physical
limitations of even the most modern haptic devices, which
tend to be relatively compliant compared to the virtual
objects that they interact with. In order to maintain a one-to-
one relationship between the position of the haptic device in
real space and in the virtual environment, the device would
have to penetrate unrealistically far into the virtual object.
Thus, direct calculation of interaction forces based on a
physics model is generally not possible, as the forces would
tend to saturate quickly enough to lead to explosive
instability, and some other general haptic rendering algo-
rithm is required.

Zilles and Salisbury [42] proposed a “constraint-based
god-object” rendering algorithm (commonly referred to as a
“proxy model”) for calculating and displaying interactions
between a haptic interface and a virtual environment. In this
traditional proxy model, a massless “god-object,” “avatar,”
or “proxy” represents the human in the virtual environment,
and must obey all of the physical constraints of the virtual
environment (i.e., walls, friction, etc...). The proxy is then
connected to the haptic device by a virtual spring and
damper coupling. This coupling allows the haptic device to
penetrate virtual surfaces without necessarily leading to
instability or requiring a specialized physical model.

If a perceptual overlay or virtual expert is added to the
environment, one canimagine that two qualitatively different
types of forces exist in the system: “guidance” forces, which
arise from interactions with the perceptual overlay or virtual

Step 1: Compute proxy location e
Xp = f(xea Xns OC)
o= f(ke: km be: bn)
Step 2: Compute guidance force
kg = f(x,,, xn)
Step 3: Compute task force
Fr = f(xpy Xy kins bm)

Xm
Step 4: Compute total force displayed to novice
let = f(FG: FT)

Fig. 3. Shared-control proxy model algorithm. Variables z., ,, z,, and
x,, represent the positions of the expert, novice subject, proxy, and
mass.

expert, and “task” forces, which arise from interactions with
the virtual environment. This distinction is important
because guidance forces should be used to shape the novice’s
actions, whereas task forces should be incorporated into the
novice’s internal model of the environment. The problem
with the traditional proxy model is that it cannot discriminate
between guidance and task forces in shared-control systems,
and thus the forces are confounded when displayed to the
novice. This precludes the use of the more advanced
separation guidance paradigms described in Section 3.

Our shared-control proxy model (first proposed by
Powell and O’Malley [1]) overcomes this deficiency by
adding a second proxy and replacing the traditional spring-
damper couplings with a series of “biased” spring and
damper couplings. Whereas traditional couplings can only
exert equal and opposite forces on attached nodes, biased
couplings can exert opposite but arbitrarily scaled forces on
each node and are only realizable in a virtual environment, as
they essentially break Newton’s Third Law. These couplings
link the novice, expert, “shared proxy,” and “avatar proxy”
as illustrated in Fig. 3, where arrows indicate the general
directions of force transfer.

Although modeled as a system of springs and dampers,
it is easiest to understand the operation of the shared-
control proxy model by thinking about it algorithmically:

1. Compute the proxy position based on the positions
of the novice and expert. The proxy represents the
average input of the novice and expert, weighted
according to a control authority « (as proposed by
Nudehi et al. [12]); thus, the proxy always lies on a
line connecting the novice and expert.

2. Compute the guidance force based on the displace-
ment between the proxy and the novice; the larger
this displacement, the farther the novice is straying
from the expert’s position.

3. Compute the task force based on the displacement
between the proxy and the mass, which interacts
with the environment. Thus, as the proxy penetrates
a virtual surface, this displacement and task force
will grow.

4. Compute the output force to the novice based on a
combination of the guidance and task forces. For
this study, the output was calculated as shown in
Table 1.

Kucukyilmaz et al. [43] and Oguz et al. [44] proposed a

similar rendering method designed to facilitate role-ex-
change in shared-control systems. Their role-exchange
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TABLE 1
Force Outputs during Training

Guidance  Force output (Joystick 1)

Control FT( )

GA Fr(t) +Folt) _

TSA T()+sm(r—)FG() szmodtl <fo;
F, (1) if £ mod #; > 1.

SSA Fr(1)

GR Fr(t) + Fpn (1)

The task force Fr and guidance force Fy are calculated using the
shared-control proxy model (Section 4). Fpy is given by a Perlin noise
function. t, = 100 ms and t; = 500 ms.

model provides only task forces to a user, while our shared-
control proxy model provides task forces and guidance
forces separately, allowing them to be modulated using
either SSA or TSA. This is made possible through the use of
variable-ratio virtual couplings, as opposed to the simple
spring-damper couplings in the role-exchange model.

5 METHODS

We evaluated the effectiveness of four prototypical gui-
dance schemes at training 50 novice subjects to perform two
dynamic tasks in a controlled study. Subjects controlled the
position of an on-screen pointer using a 2-DOF haptic
joystick (Immersion, Inc.’s, IE2000), where the subject’s
ulnar/radial deviation and pronation/supination are
mapped to cursor position. The maximum force output of
the joystick was 5 N. Subjects trained with the assistance of
a virtual expert using the shared-control proxy model
shown in Fig. 3, which allowed for the discrimination of
task and guidance forces. The physics and haptics were
rendered in C++ and updated at the servo rate of 1,000 Hz,
the visual display was rendered by OpenGL at 60 Hz, and
experimental data was recorded at 100 Hz.

5.1 Experimental Design

Subjects performed the two tasks on two consecutive days,
with a single session and type of task per day (the order of task
presentation was balanced between groups). Each 1-hour
session consisted of 106 trials grouped into a number of
blocks, as shown in Fig. 4. Subjects were allowed a 1-minute
familiarization trial with an easier version of the task prior to
each session, as well as a 5>-minute break midway through the
session. This experimental design prevented subject fatigue
while minimizing scheduling burdens.

The bulk of each session consisted of 20-second-long
“evaluation” and “training” trials. In evaluation trials,
subjects had sole control over the system via a single joystick
and were instructed to perform the task to the best of their
ability. In training trials, subjects shared control of the system
with a virtual expert under one of the guidance paradigms
described in Section 5.4. The virtual expert followed an
optimal pre-computed trajectory that was identical between
subjects. Subjects were instructed to track the expert as
closely as possible during training and replicate its behavior
during evaluation.

Interspersing evaluation and training trials in this manner
made it possible to record how subjects’ performances
improved over time, as opposed to simpler experimental
designs with only pretraining and posttraining evaluations.

Number of 1

trials I:—rl
Familiarization
- no guidance
- modified task

Fig. 4. lllustration of session structure for each task.

E-Q

_Tral:?ér;%ce Generalization
9 - no guidance
Evaluation - modified task
- no guidance

This design also made it possible to ensure that subjects
achieved complete training, by observing that their perfor-
mances plateaued at the end of each session.

Finally, generalization trials were presented at the end of
each session in order to test the robustness of acquired motor
skills to changing task dynamics. Subjects also reported their
perceived task workload by completing the NASA TLX
questionnaire developed by Hart [45]. This questionnaire
allows subjects to rate their perceived workload on six
different subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration. It
then lets them weight the contributions of each type of
workload to the overall workload, and uses this information
to compute a weighted average of the overall workload.

5.2 Subjects

A total of 50 subjects enrolled in the primary study, and
were divided evenly between five experimental groups:
visual-only guidance, GA, TSA, SSA, and GR. Five subjects
were left-handed, 45 right-handed, 33 male, and 17 female.
All subjects controlled the task with their dominant or
preferred hand. All subjects provided their informed
consent as approved by the Rice University Institutional
Review Board, had no significant visual or motor impair-
ments and no or little prior experience with virtual dynamic
target-hitting tasks. Subjects were instructed only on their
specific guidance condition; they were not made aware of
guidance paradigms besides their own, or of whether they
were part of the control group.

5.3 Tasks
5.3.1 Target-Hitting Task

The target-hitting task used in these experiments was based
on a task originally used by O’'Malley and Gupta [46] and
O’'Malley et al. [9]. The novice’s proxy was connected to a
5 kg mass by a spring with stiffness k£ =100 N/m and
damping b = 3 Ns/m, as shown in Fig. 5. Two targets were
positioned equidistant from the center of the screen and at a
45 degree angle to the horizontal. At any given time, one
target was inactive (blue) and the other active (orange). The
active target could only be “hit” by the swinging mass, at
which point the opposite target would activate. Each task
trial was 20 seconds long, and the goal during evaluation
trials was to hit as many targets as possible. Thus, by
moving the pointer at the resonant frequency of the system
(0.71 Hz) along a straight line connecting the targets
subjects could achieve the hit-count corresponding to the
optimum trajectory (28 hits).

During training, subjects shared control of this system
with a virtual expert via the shared-control proxy model
described in Section 4. The virtual expert was represented
on-screen by an orange pointer that tracked the optimal
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Fig. 5. Visual display for target-hitting task. Subjects control a pointer
that is linked to a mass-spring-damper system and try to guide the mass
to alternating targets. In evaluation trials, a simple spring and damper
link the mass and the novice. In training trials, the shared-control proxy
model links the novice, expert, proxy, and mass.

trajectory, a sinusoidal movement along the straight-line
axis between the targets with a frequency of 0.71 Hz. Fig. 1
illustrates a subject performing this task.

During evaluation trials, subjects were instructed to hit
as many targets as possible, while in training trials they
were instructed to follow the expert as closely as possible.
Gift cards were awarded to the subjects that best achieved
these goals.

For generalization trials, the task parameters were
changed so that the mass m = 2 kg, stiffness k= 80 N/m,
and damping b = 1 Ns/m.

5.3.2 Path-Following Task

The path-following task was similar to a traditional pursuit-
rotor task in that it required novices to track a virtual expert
around the outline of a simple shape at a constant speed. The
task is based loosely on that proposed by Lee and Choi [41].
In evaluation and training trials, subjects traced the outline
of one of the three shapes shown in Fig. 6 (a circle, square, or
X). In any given block, the shapes would be presented in
equal number but a random order. In the familiarization and
generalization blocks, subjects were shown triangles and
lemniscates (respectively). In all cases, the goal was to trace
the expert as closely as possible, and thus performance was
defined as cumulative deviation from the expert’s position
(in centimeters) over the course of each trial. Gift cards were
awarded to the subjects that achieved the lowest deviation.

5.4 Haptic Guidance Paradigms

Visual guidance was always provided during training
trials. Haptic guidance was provided using one of the
guidance paradigms described below and in Table 1.

5.4.1 Visual-Only Guidance (Control)

Only task forces were displayed as a control condition.
Thus, subjects could track the expert visually on-screen but
received no haptic indication of its position.

5.4.2 Gross Assistance

Task forces and guidance forces were combined by simple
summation and presented via a single joystick. The two types
of forces were scaled so as to each have a peak magnitude of
about half of the maximum force output level of the joystick.

5.4.3 Temporally Separated Assistance

Similar to GA, task and guidance forces were combined by
summation and presented via a single joystick. However,

N

Famil. Eval. and Train.

(X

General.

Fig. 6. Shapes used in the path-following task.

guidance forces were modulated at a frequency of 2 Hz, so
that subjects experienced 100 ms pulses of guidance followed
by 400 ms of completely attenuated (zero) guidance each
period. This is the optimal frequency and ratio as experi-
mentally derived by Endo et al. [30]. Subjects described these
guidance forces as “pulsating” and interpreted them as
nudges or resistance that indicated the direction that they
should be moving. The pulses were not frequent enough or
large enough in magnitude to exert significant control over
the task.

5.4.4 Spatially Separated Assistance

Subjects used two joysticks during the experiment. Subjects
controlled the system using the primary joystick, onto which
only task forces were displayed. Guidance forces were
displayed on the secondary joystick so that its trajectory
matched that of the expert’s, also visible on-screen. Subjects
were instructed to lightly grasp this secondary joystick with
their nondominant hand and to replicate the movements
displayed there on the primary joystick. This allowed
subjects to intuitively mimic the expert’s trajectory while
still experiencing undistorted task dynamics. This paradigm
also shares with temporal separation the advantage of
forcing the subject to take control of the task and not rely
on the guidance to do any “heavy lifting.”

5.4.5 Gross Resistance

Task forces were combined with a randomly generated
disturbance force in the manner described by Lee and
Choi [41]. A Perlin noise function with a nominal range of
—1.2 to 1.2 N was randomly generated for each joystick
axis using the open-source libnoise library. At each time
step, the guidance force generated by these functions was
summed with the task force to produce the net force
displayed to the joystick.

6 REsSuLTS

Performance for almost all subjects approached an asymp-
totic “saturation” level by the end of each session, indicating
that complete training was achieved for both tasks.

Outliers were defined for each cell (each unique combina-
tion of group and trial) as points further than 1.5 interquartile
ranges from the cell mean, and were replaced with the
respective cell mean. Vertical lines on column graphs
indicate standard error.

Results are reported for mixed ANOVA omnibus and
interaction tests, as well as for family-wise error-corrected
(Tukey-Kramer (TK) adjusted) multiple comparisons. Hor-
izontal lines between groups indicate TK-adjusted signifi-
canceata = .05. The presence of an interaction effect between
group and trial number indicates that performance between
groups differs depending on trial number (level of training).
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Fig. 9. Results of mixed ANOVA fixed effect and interaction tests.

6.1 Mixed ANOVA on Evaluation Trials

The performance of each group during evaluation trials is
shown in Figs. 7a and 8a. Mixed ANOVAs were performed
on evaluation trial outcomes with hit counts (for target-
hitting) or deviation (path-following) as the dependent
variable, guidance paradigm (“group”) as a between-
subjects factor, and trial number (“trial”) as the within-
subjects factor (repeated measure). Outcomes for the
omnibus ANOVA and for pairwise multiple comparisons,
corrected using a TK adjustment, are shown for target-hitting
and path-following in Figs. 9a and 9b, respectively.

All groups exhibited a consistent learning trend. Multi-
ple comparisons based on the mixed ANOVA showed that
for target-hitting both the control and GR groups per-
formed significantly better than the TSA and SSA groups,
and that the GA group performed significantly better than
the TSA group.

6.2 Mixed ANOVA on Training Trials

Although the primary goal of this research is to improve
robot-mediated training methodologies, the guidance para-
digms being tested could also be used for online correction
of human inputs in the midst of task execution, such as
when the autopilot or stick shaker mechanism in an aircraft

group: F(4,88) = 1.42, p=.219. Interaction effect group: F(4,104) = 4.60, p = .002. Interaction
of group and trial: F(80,852) = 1.43, p = .01.

effect of group and trial: F(284,3061) = 2.31,
p <.001.

shares control with the human pilot. Thus, it is useful to
know how each guidance paradigm affects task perfor-
mance while the guidance is actually active (during
training), as shown in Figs. 7b and 8b. Fig. 9c shows that
TSA, SSA, and GR all performed significantly worse than
the control group and GA.

6.3 Mixed ANOVA on Generalization Trials

Also of interest is how motor learning effects transfer to
similar tasks with slightly modified task dynamics. The
results from the generalization trials reflect those of the
evaluation trials, in that the TSA group performed poorly in
target-hitting (Fig. 7c), while the GA and SSA groups
performed poorly in path-following (Fig. 8c). The omnibus
ANOVA was not statistically significant, however.

6.4 Workloads

Workloads were recorded on six subscales, as described in
Section 5.1; these workloads are shown in Figs. 10 and 11,
normalized about the control group for easy comparison
between groups and tasks. Note, however, that it is not
valid to compare the workload values between subscales,
since each subscale contributes to the overall workload
differently. For instance, even though the highest workload
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Fig. 10. Target-hitting task workloads, normalized to the control group.

in the target-hitting task was on the frustration subscale,
subjects indicated that their frustration contributed very
little to their overall sense of workload in the task.

In the target-hitting task, none of the guidance schemes
significantly increased effort or physical demand compared
to the control group. SSA produced notably less mental
demand and effort, while TSA produced notably higher
frustration and GA notably higher mental demand. Post-
study interviews with subjects in the GA group indicate
that they found the assistance very confusing, as described
in Section 7. GR actually decreased frustration, physical and
mental demand, and temporal demand compared to the
control group.

By contrast, in the path-following task, all of the
guidance schemes actually increased effort and decreased
subjects” perceived performance. TSA and SSA also led to
higher frustration. However, GA and GR led to notably less
temporal and mental demand, and GA also reduced the
physical demand.

The path-following task had a significantly lower work-
load than the target-hitting task in almost every respect.
Permutation tests indicate that many subscale pairwise
comparisons were statistically significant. Permutation tests
were also performed on overall workload scores, but no
pairwise comparisons survived a TK adjustment.

7 DISCUSSION

7.1 Efficacies of Guidance Paradigms

The target-hitting and path-following tasks each have unique
dynamic characteristics. The target-hitting task is temporally
demanding, has high levels of inherent task forces, and
requires novices to optimize their excitation frequency of the
system. By contrast, the path-following task is slower, lacks
inherent task forces, and places more emphasis on precise
position control. By comparing the efficacies of the guidance
paradigms between these two tasks, we can draw conclu-
sions about the interplay between task characteristics, choice
of guidance paradigm, and training efficacy.

Our results corroborate the guidance hypothesis [20],
which indicates that challenge is necessary for the learning
process, and show that this effect is exacerbated in a task

Frustration
90

Effor Physical Demand

—Control
GA

Performance Mental Demand

Temporal Demand

Fig. 11. Path-following task workloads, normalized to the control group.

dominated by guidance forces. In the path-following task,
which had no inherent task forces, subjects trained with GA
reported significantly lower physical demand but per-
formed poorly in evaluation trials. These data indicate that
novices have greater passivity in tasks dominated by
guidance forces, leading to poor learning as the guidance
hypothesis predicts.

Our results also confirm our hypothesis that even in
tasks with significant inherent forces, GA leads to confusion
by making task and guidance forces indistinguishable. In
contrast to the path-following results, GA subjects reported
extremely high mental demand in the target-hitting task
and reported that the forces during training were “confus-
ing” and “difficult to interpret.” However, in evaluation
trials, subjects trained with GA appeared to perform better
than those trained with TSA and not significantly worse
than the control group.

The poor performance of the separation paradigms is
surprising, given that they were specifically designed to
discourage dependency without interfering with inherent
task dynamics. Many subjects reported that they found the
constant “nudging” of TSA to be frustrating, which was
reflected in the workload results. Additionally, it is possible
that the poor performance of TSA in the target-hitting task
was due to the rhythmic nature of the task. While there is an
optimal excitation frequency and a clearly defined optimal
path that minimizes trajectory error, the initial conditions of
the task will produce optimal trajectories that are out of
phase with each other in time. In other words, while it is
true that following the expert precisely would elicit the
optimum hit count in the task, following the expert is not a
necessary condition for achieving the optimum hit count. It
is possible to follow the expert at a phase lag and still
achieve the optimum hit count—in fact, guidance forces
and task forces are equal and opposite when the novice is
out of phase with the expert by a certain amount, leading to
the confusion in the GA group discussed above.

This corroborates the work of Ahn and Hogan [47], who
found that TSA was only effective if the frequency and
phase shift of the guidance matched critical values unique
to the task. Specifically, they found that entrainment, or
adoption of a new gait pattern, only occurred when the
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perturbation frequency was within 7 percent of the natural
cadence, and when perturbations were provided during the
heel-strike portion of the gait cycle.

Our findings regarding GR somewhat support those of
Lee and Choi [41]. On a very similar path-following task,
they found that training with GR led to significantly better
performance than PGA. In this study, the results suggest that
GR outperformed GA in path-following, especially in the
generalization trials (Fig. 8c), although these results were not
statistically significant. In terms of workload, GR led to
higher effort and physical demand in path-following, but
smaller workloads in nearly every respect in target-hitting.

Overall, our results confirm the guidance hypothesis as
well as our own hypothesis regarding the inadequacies of
the GA paradigm, and show that the training efficacy of
guidance is highly task dependent. Our results also suggest
that factors besides just challenge level and passivity can
have a substantial effect on training efficacy, given the poor
performance of the TSA and SSA paradigms.

7.2 Effects during Training

Considering just the effect of the guidance paradigms on
performance during training, it is worthwhile to note that
the control and GA groups outperformed most other
groups, and results suggest that the GA group outper-
formed the control group. This suggests that if guidance is
being used to assist an operator in the real-time execution of
tasks, for instance to prevent the operator from entering
dangerous or forbidden regions of the workspace, then GA
is the guidance method of choice. Additionally, the positive
effect of interaction between hit count and trial number
indicates that the performance of subjects receiving gross
guidance (GA or GR) quickly plateaus, while subjects
receiving separated guidance (TSA or SSA) steadily
improve over the course of the study. This suggests that
the more complex separated guidance paradigms are less
intuitive than the simpler gross paradigms, and perhaps
require more instruction on proper utilization.

7.3 Generalizability

We believe that these results should generalize to most
types of dynamic tasks, based on the nature of the tasks in
this study and the results of the generalization trials. The
tasks are characteristically different in nature in multiple
categories: target-hitting is a semidiscrete rhythmic task
with inherent haptic feedback, whereas the path-following
task is continuous and lacks haptic task feedback. Within
each type of task, results in the generalization trials were
not significantly different from those in evaluation trials.

7.4 Future Directions

These results indicate that perhaps a new approach to
guidance is needed. For instance, instead of taking an
“objective-oriented” approach and teaching subjects to
simply follow an expert in order to complete task objectives,
it might be more beneficial to take a “skill-oriented”
approach to guidance by identifying and teaching the
specific component skills necessary to complete a task. It is
also possible that the best way to enhance training is to
increase the difficulty of a task without altering the inherent
task dynamics or interfering with task execution through

explicit guidance. For instance, decreasing the target size in
the target-hitting task or augmenting the perceived error in
the path-following task might both be effective ways of
enhancing training.

There are several take-away lessons to be applied to
future studies. First, some subjects seemed to be “natural
experts,” performing well in the initial evaluation and
improving little over the course of the study, while others
performed very poorly at entrance. Thus, it is important to
balance the distribution of subjects between groups based,
for instance, on performance during the familiarization task.

Second, it is important that the guidance paradigms be
applied to tasks of sufficient difficulty to elicit long-
duration improvement. If the task is too easy, any effects
of training may be overshadowed by the effects of subjects
reaching the performance ceiling too soon. Similarly, when
designing TSA, it is important to properly match the
frequency and phase of the guidance to the task, as
described in Section 7.

Third, in regards to workloads, many subjects reported
that they did not understand the pairwise comparisons
between subscales, and did not have a reference on which
to base their reported workload on each subscale. In the
future, more intuitive methods of assessing workload, such
as a qualitative scale (i.e., “could perform the task in my
sleep” through “task is physically impossible”), might
improve power. For instance, Tsang and Velazquez [48]
developed the Workload Profile scale, which Rubio et al.
[49] found to have higher sensitivity and diagnostic power
than NASA TLX. Variances due to self-reporting could also
be avoided by using secondary tasks to assess workload.

8 CONCLUSIONS

We have shown that properly matching a guidance paradigm
to a task’s dynamic characteristics is critical for achieving
high efficacy and low workload, and that many types of
guidance can actually impair training as compared to
practice. Previous studies have shown that subjects can
become dependent on assistive guidance, and we have
shown that this is exacerbated in a task without inherent
dynamic forces. We have also shown that assistive guidance
may impair training in more dynamic tasks by altering the
task dynamics.

The results of this study also indicate that challenge is
indeed essential to the learning process, as predicated by the
guidance hypothesis, but that increasing the challenge level
via resistive guidance does not necessarily improve training.
However, we have shown that GR, when properly matched
to a task, does not have a negative effect on training, and may
in fact have the beneficial effect of lowering workload.

To facilitate continued research, this work has made a
number of additional contributions. A guidance paradigm
taxonomy has been proposed that will allow for easier
discussion, classification, and comparison of haptic gui-
dance paradigms. The traditional shared-control proxy
model has also been improved in order to accommodate a
number of more complex guidance paradigms, and a novel
paradigm (SSA) has been developed based on this model.
Although these paradigms were not shown to be superior in
the context of training, it is hypothesized that they would be
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very advantageous in the context of robot-mediated real-

time task execution, and could improve shared-control

human-machine interfaces ranging from autopilots to

robotic surgical systems.
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