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Improving short-term retention
after robotic training by leveraging
fixed-gain controllers

Dylan P Losey1 , Laura H Blumenschein2, Janelle P Clark1 and Marcia K O’Malley1

Abstract

Introduction: When developing control strategies for robotic rehabilitation, it is important that end-users who train

with those strategies retain what they learn. Within the current state-of-the-art, however, it remains unclear what types

of robotic controllers are best suited for promoting retention. In this work, we experimentally compare short-term

retention in able-bodied end-users after training with two common types of robotic control strategies: fixed- and

variable-gain controllers.

Methods: Our approach is based on recent motor learning research, where reward signals are employed to reinforce

the learning process. We extend this approach to now include robotic controllers, so that participants are trained with a

robotic control strategy and auditory reward-based reinforcement on tasks of different difficulty. We then explore

retention after the robotic feedback is removed.

Results: Overall, our results indicate that fixed-gain control strategies better stabilize able-bodied users’ motor adap-

tation than either a no controller baseline or variable-gain strategy. When breaking these results down by task difficulty,

we find that assistive and resistive fixed-gain controllers lead to better short-term retention on less challenging tasks but

have opposite effects on the learning and forgetting rates.

Conclusions: This suggests that we can improve short-term retention after robotic training with consistent controllers

that match the task difficulty.
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Introduction

Robotic rehabilitation can be an effective therapy for
end-users that are suffering from long-term motor
impairments following stroke or spinal cord injuries.1

During robotic rehabilitation, a robot physically inter-
acts with the human to encourage the correct perform-
ance of repetitive movements. After the robot is
removed, users should not revert to their impaired
behavior: instead, these users should remember how
they moved with the robot, and then replicate these
correct motions during their everyday life.
Accordingly, when developing devices and methodolo-
gies for robotic rehabilitation, we want to ensure that
the robot not only helps the user to learn the correct
motion but also to retain what they have learned after
the robot is removed.

Promoting long-term retention requires that
rehabilitation robots carefully select their behavior
when interacting with humans. In other words,
we must program rehabilitation robots with the right
control strategy. Within the current state-of-the-art,
control strategies for robotic rehabilitation can be
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divided into three main categories2–4: control strategies
that constantly assist the user, control strategies that
constantly resist the user, and control strategies that
adapt their amount of assistance or resistance based
on the user’s performance. Strategies that constantly
assist or resist are fixed-gain controllers, because here
the robot’s feedback strategy is static, and does not
change between tasks. By contrast, variable-gain con-
trollers—such as assist-as-needed control—adapt the
robot’s feedback strategy over time in response to the
end-user’s behavior.

To illustrate the difference between fixed-gain and
variable-gain control strategies for robotic rehabilita-
tion, consider a simple robotic controller that behaves
like a spring. When the human makes mistakes and
deviates from the desired trajectory, this controller
applies a force in proportion to the user’s error: if the
controller’s spring constant is positive, the robot helps
by pulling the human back towards the desired trajec-
tory, and if the spring constant is negative, the robot
resists by pushing the human farther away from their
goal. Here, fixed-gain assistance corresponds to a posi-
tive spring constant while fixed-gain resistance corres-
ponds to a negative spring constant. Importantly, for
these fixed-gain controllers, the robot maintains the
same spring constant across tasks, regardless of the
user’s performance. Alternatively, the robot may start
the training with a positive spring constant to help
users move correctly, and then—as the human
improves—the robot can gradually decrease the
spring constant to incrementally increase task difficulty.
Changing the spring constant between tasks is an exam-
ple of variable-gain control, where the robot adapts its
strategy online to match the user’s capabilities.

Although prior research has introduced several
instances of fixed and variable gain controllers for
robotic rehabilitation, it is not yet clear which control-
ler type(s) are suitable for encouraging long-term reten-
tion. In this paper, we take a first step towards
addressing this issue by experimentally comparing
how these different control strategies stabilize motor
adaptation in the short-term, immediately after the
robot is removed. We find that effective controller stra-
tegies should be challenging but consistent:

Robotic controllers that match the task difficulty but

provide fixed responses lead to humans with better

short-term retention of their motor adaptation

Overall, our work suggests that rehabilitation robots
should select a control strategy appropriate for the
user’s skill and the task’s difficulty, and then maintain
that same fixed-gain controller throughout the training
process. More specifically, we make the following con-
tributions (Note: Parts of this work have been

published at the Conference on Biomedical Robotics
and Biomechatronics5):

Extending reward-based reinforcement with robotic

controllers: Recent experiments on motor learn-
ing6–8 indicate that reinforcing the user’s adapted
behavior through rewards can improve their short-
term retention. We extend these prior works to now
include robotic controllers during training, so that
the user receives kinesthetic feedback (from the
robot’s control strategy) in addition to auditory
feedback (rewarding the user when they complete
the task successfully). We apply this multimodal
approach for robotic rehabilitation.

Conducting user studies with fixed and variable-gain

controllers:We introduce a visuomotor offset between
the robot’s actual position and the robot’s displayed
position and teach this offset to participants using no
robotic controller, a fixed-gain controller, or a vari-
able-gain controller. We then compare how well par-
ticipants retain the visuomotor offset immediately
after all robotic feedback is removed. In our first
study, we find that variable-gain control does not
result in significantly different behavior than using
no controller. In the second study, we investigate
whether variable or fixed-gain control better stabilizes
the participants’ motor adaptation.

Comparing control strategies across tasks of different

difficulty: To assess how the task difficulty affects
our results, we consider two different adaptation
settings: one task where the target position remains
constant and a second task where the target position
changes at each iteration. We expect that the control
strategy should be tuned to match the task difficulty.
For the easier task, participants should better retain
their motor adaptation after training with a challen-
ging fixed controller (i.e., fixed-gain resistance), and,
for the harder tasks, participants should benefit
from an assistive fixed control strategy (i.e., fixed-
gain assistance).

In summary, we experimentally compare control
strategies for robotic rehabilitation and focus on
short-term retention of the human’s learned behavior.
This paper is a first step towards developing effective
control strategies for long-term retention following
robotic therapy.

Related work

Control strategies for robotic rehabilitation

Several control strategies have been proposed for
upper-limb robotic rehabilitation.2,9 Here, we discuss
three common types: fixed-gain assistance, fixed-gain
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resistance, and assist-as-needed control. Assist-
as-needed control is an instance of a variable-gain con-
troller (see Figure 1).

Fixed-gain assistance. These controllers guide and sup-
port the human throughout the task. Fixed-gain assist-
ance can be implemented via impedance control with
positive gains, so that—whenever the human makes a
mistake, and deviates from the correct trajectory—the
robot applies forces and torques to guide them back
towards the right motion.10–12 Other works introduce
a virtual tunnel around the correct path, enabling the
human to complete the task with their own preferred
timing13; if the human leaves the virtual tunnel, how-
ever, the robot begins to assist the user.14

Fixed-gain resistance. These controllers are instances of
error augmentation, where the robot challenges the
end-user by making their motion harder to complete.
One method is to actively resist the human’s affected
limb as a function of the movement velocity,15–17 so
that the human must complete the task within a force
field that exaggerates their mistakes. We note that both
fixed-gain assistance and resistance lie along the same
continuum, so that many of the approaches used for
assistance can also be tuned to provide resistance, and
vice-versa.18,19

Assist-as-needed. In contrast to the prior strategies,
assist-as-needed automatically modulates the robot’s
interactions to correspond with the human’s capabil-
ities. The robot trades off between maximizing human
accuracy and minimizing robot effort: ideally, the
human completes the task correctly, with as little
robot assistance as possible.20–23 Finding the right
amount of assistance has been addressed through opti-
mization,20 bounding tracking error,22 and learning
human motion patterns.23 By intervening only as neces-
sary, the robot increases the user’s involvement, which
is an important factor in facilitating recovery.3

Leveraging these strategies, we compare fixed-gain
assistance, fixed-gain resistance, and assist-as-needed

control within a new paradigm, where we explore
how the human maintains their motor adaptation
after the robot is removed.

Motor learning and robotic rehabilitation

Fundamental research on motor learning provides sev-
eral insights for robotic rehabilitation and controller
selection. Below we introduce motor learning, and
then overview how reward-based feedback and altering
task difficulty can affect the human’s short-term
retention.

Motor learning. Research on motor learning studies how
humans make accurate movements: by using sensory
feedback and prior experience, humans develop adap-
tive models of their body and the environment.24

Understanding motor learning is important for neuror-
ehabilitation in general and robotic rehabilitation spe-
cifically,25,26 since improved models of the recovery
process can be applied to develop better training meth-
odologies. We are particularly interested in methods to
enhance the retention of motor learning.

Reward-based reinforcement. Some recent motor learning
research suggests that a supervised approach—where
the user receives a reward signal after they successfully
perform the task—improves the retention of motor
learning.6–8 Shmuelof et al.8 show that adapted behav-
ior can be stabilized by training with binary reward
feedback which notifies the user if they have succeeded.
Galea et al.6 separately consider punishment and
reward: negative feedback causes the user to learn
faster, but positive feedback results in better retention
after the feedback is withdrawn. We apply these
experimental designs to robotic rehabilitation27 and
explore how adding kinesthetic feedback from the
robot’s controller alters the human’s short-term reten-
tion. We recognize that—in practice—combining the
kinesthetic signal from the controller with the auditory
signal from the reward is an instance of multimodal
feedback.4

Fixed-Gain Assistance
(AC)

Fixed-Gain Resistance
(RC)

No Controller
(NC)

Assist-as-Needed
(AAN)

Figure 1. Fixed and variable-gain control strategies compared in our user studies. In the first user study, we trained participants with

either NC or AAN (variable-gain control), and in the second user study, we trained participants with either NC, AC, or RC (fixed-gain

control). The dashed line shows the desired path. Participants adapt to a visuomotor offset while receiving kinesthetic feedback from

one of the listed controllers; we then remove all robot feedback and test the participant’s short-term retention.
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Task difficulty. When applying robotic controllers to teach
human users, the task difficulty can affect the resultant
motor learning. Intuitively, the challenge should match
the current user’s capabilities18: prior work has shown
that less skilled users better adapt to the task with fixed-
gain assistance, and more skilled participants benefit
from fixed-gain resistance.28 Beyond challenge level,
the task type can also be an important factor when
determining the right controller,29 so that the same con-
trol strategy may have different effects on motor learning
when applied to new users and tasks.

Building on this prior work, we augment robotic
control strategies with binary reward-based reinforce-
ment to help humans retain what they have learned,
and we test two task difficulties within our user studies
to see how the user’s short-term retention is influenced
by the task difficulty.

Methods

Experimental overview

In this section, we describe two user studies that assess
how fixed and variable-gain robot control strategies
stabilize the participant’s motor adaptation. We
follow the experimental protocol introduced by
Shmuelof et al.,8 where reward-based reinforcement is
tested with able-bodied end-users. Within our user stu-
dies, participants physically interact with a kinesthetic
haptic device and try to complete planar reaching
motions in which they move the haptic device to the
desired goal position. These motions are challenging,
however, because we add a visuomotor offset between
the robot’s displayed position (that the user can see)
and the robot’s actual position (which is occluded).
Participants must therefore adapt their behavior to
compensate for the unknown visuomotor offset.

To adapt to this perturbation, participants train with
a robotic rehabilitation control strategy: either no con-
troller, fixed-gain assistance, fixed-gain resistance, or
assist-as-needed. After their training is completed, we
remove all robotic feedback—so that users are always
told they are performing the task correctly—and
explore whether the adapted behavior decays to the
baseline behavior, or if the participants continue to
follow the visuomotor offset. Overall, we manipulate
both the control strategy and the task difficulty and
assess how these factors relate to short-term retention
of an artificial visuomotor offset with able-bodied
end-users.

Independent variables

We varied the control strategy with four levels: no con-
troller (NC), assist-as-needed (AAN), fixed-gain

assistance (AC), and fixed-gain resistance (RC). Both
AC and RC are fixed-gain approaches, while AAN is
a variable-gain controller.

We also varied the task difficulty: in Easy tasks, the
human has the same goal position during every reach-
ing trial, while in Hard tasks, we change the goal pos-
ition between trials. The results of our experiments
demonstrate that it is more challenging to adapt to
the visuomotor offset when the target changes (i.e.,
the Hard task) as compared to a training with a sta-
tionary target (i.e., the Easy task).

Dependent measures

For every control strategy and task difficulty, we mea-
sured objective outcomes that captured each partici-
pant’s training and retention.

Error. We measured the participant’s actual hand direc-
tion at every trial and compared that to the 30� visuo-
motor offset (that we wanted the human to learn).
Ideally, the difference is zero, indicating that the
human has adapted to this offset. We computed the
root-mean-squared error (RMSE) across trials to deter-
mine the participant’s motion error. Thus, error here
refers to the RMSE between the actual and desired
hand directions.

Training. During the training portion of the user studies,
we recorded the participant’s success rate (i.e., how fre-
quently they reached the desired goal) as well as their
learning rate (i.e., how quickly they adapted to the
visuomotor offset).

Retention. In addition to the error, we also used a decay
rate to assess how rapidly participants reverted to some
steady-state behavior when feedback was removed.

It is important to separate training and retention
measures, since control strategies that lead to improved
training may not result in better retention. We assess
the error metric separately for training and retention
blocks. To avoid including transient behavior in these
measurements (where the human is still learning or
decaying), we only compute the error over the final
80 training trials and final 50 error clamp trials.
These thresholds were selected based on data from
pilot users.

Control strategy

We controlled the 3 degree-of-freedom haptic device to
track a desired path in task space.30 Let x 2 R

3 be the
robot’s current position in task space, and let xd 2 R

3

be the closest point along the straight line reaching
motion between start and goal. The robot applies
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task space forces u 2 R
3 according to the impedance

control law11

u ¼ K � xd � xð Þ, K ¼ diag Kx,Ky,Kz

� �
ð1Þ

where K 2 R
3 is a gain matrix. For the fixed-gain con-

trol strategies, K was constant throughout training,
but—for the variable-gain approach—we updated K
between iterations. Intuitively, increasing the magni-
tude of K causes the robot to provide more assistance,
while negative values of K push the human away from
the desired path. Note that we did not include a damp-
ing term in equation (1): our control law was a propor-
tional controller, which was naturally damped by
friction within the experimental setup. A damping
term could be added as needed.

The fixed- and variable-gain control strategies lever-
aged in our user studies are depicted in Figure 1.

Variable-gain control

In our first user study, we compared NC to AAN during
Easy and Hard tasks. We implemented the AAN case
by updating the gain K in equation (1) based on the
human’s capability during the previous trial. Let t 2 Z

þ

be the trial number; then, under AAN, the variable-
gain at the next iteration is

K tþ 1ð Þ ¼ K tð Þ þ � tð Þ � diag 1,1,0ð Þ ð2Þ

Here, �ðtÞ ¼ 3 N/m if the participant failed the reach
the goal (and therefore needs more assistance) and
�ðtÞ ¼ �1N/m if the participant successfully reached
the goal (and therefore can accept more challenge).
We bounded the magnitude of Kx and Ky such
that Kx,Ky 2 ½�20,þ 20� N/m, and Kz was fixed at
500N/m to ensure that participants moved in a plane.
We selected these values based on offline preliminary
experiments, where they were tuned heuristically. Note
that NC did not have any control feedback:
Kx ¼ Ky ¼ 0 N/m.

Fixed-gain control

In our second user study, we compared NC to AC and
RC during Easy and Hard tasks. We again controlled
the robot using equation (1), but here we kept K con-
stant, so that users receive consistent feedback. During
AC, the robot continually assisted the user towards the
goal: Kx ¼ Ky ¼ þ20 N/m. By contrast, during RC, the
robot exaggerated the human’s mistakes, pushing par-
ticipants away from the straight line path:
Kx ¼ Ky ¼ �20 N/m. We selected the gain values for
AC and RC to be consistent with the bounding values
of AAN from our first user study.

Experimental setup

Participants physically interacted with a haptic device
(Touch X, 3D Systems) while observing a computer
monitor. This monitor rendered a 1: 1 representation
of the participant’s reaching motion, and displayed
the robot’s offset position, as well as the start and
goal positions. Because a curtain occluded the partici-
pant’s view of the haptic device, they had to rely on the
displayed positions when making decisions. This setup
allowed us to introduce visuomotor offsets, where the
displayed robot position was a rotation of its actual
position in task space. Participants also wore head-
phones, which provided auditory reward-based
reinforcement by playing a pleasant sound when the
human reached the goal. We implemented the visual-
ization and robot controllers with MATLAB/Simulink
(MathWorks) and QUARC (Quanser). The experimen-
tal setup is shown in Figure 2.

Task and procedure

The experimental task consisted of repetitions of a
reaching motion, where the participant moved the
haptic device from a start to goal position. We refer
to each reaching motion as a trial and the set of all
trials as the task.

Reaching motion. At the beginning of each trial, the cur-
rent participant held the robot at its start position.
After a variable time interval (1.5� 0.5 s), a goal
position appeared 80mm from the start; participants
then physically guided the robot towards this
goal. If the displayed cursor intersected the goal, the

Figure 2. Experimental setup for our user studies. The par-

ticipants perform reaching motions while grasping the haptic

device, which employs a robotic control strategy (1). The screen

displays the robot’s current position, with an added visuomotor

offset (2). Participants receive auditory reinforcement that

rewards them when they complete the task correctly (3).

Losey et al. 5



trial was a success. The goal position was then erased,
and, after another variable time interval (1.5� 0.5 s),
the robot autonomously moved back to the start.
Participants performed 40 unrecorded reaching
motions before the task to become familiar with our
setup.

Overall, the experimental task consisted of four
blocks:
Baseline. A familiarization block with 20 recorded trials.
We used this block to assess the participant’s initial per-
formance without any visuomotor offset.
Training.We next introduced a 30� visuomotor rotation,
and participants adapted to this offset over a total of 140
trials. During these trials, participants received kines-
thetic feedback from the robot controller and auditory
reinforcement if they completed the trial successfully.
Within the first 60 trials, we also provided visual feed-
back (so that participants could see the current robot
position), and then we removed all visual feedback
during the last 80 trials, so that users depended on the
kinesthetic and auditory feedback to determine whether
their reaching motion was successful.
Disturbance. To perturb the adaptation to the original
offset, participants completed 30 trials with a 45� visuo-
motor offset and visual feedback.
Error clamp. We then removed the robot’s feedback and
measured if participants returned to the trained 30�

offset or if they reverted to their baseline behavior (i.e.,
no offset). The error clamp block consisted of 100 trials,
where, during each trial, the displayed robot position
reached the goal regardless of the human’s actual
motion. Leveraging error clamp trials is common in stu-
dies examining the short-term retention or decay of
learned motor behaviors.6–8,24

The task procedure is outlined in Figure 3.
Participants moved from baseline, to training, to dis-
turbance, and, finally, to error clamp blocks. Our dif-
ferent control strategies (NC, AAN, AC, or RC) and
task difficulties (Easy or Hard) were implemented
during the training block. We tested the short-term
retention during the error clamp block.
Easy and Hard tasks. In order to determine how the
task difficulty affected retention, we tested two task
types: Easy tasks and Hard tasks. The only difference
between the Easy and Hard tasks was the location of
the target during the baseline and training blocks.
Within the Easy task, the target position was constant
and did not change between trials (the target was
always located at 135�). During the Hard task, the
target position was randomly chosen at each trial (the
target was randomly assigned between 90� and 180�).
For both the Easy and Hard tasks, the target was at a
radius of 80mm from the start position. These Easy
and Hard tasks are based on related works in motor
learning.8,31

Participants

Our participant pool consisted of 66 Rice University
affiliates (aged 21.0� 3.4 years, 20 females) who pro-
vided informed written consent. Our user study was
approved by the Rice University Institutional Review
Board (IRB-FY2018-29). None of the participants had
known neurological impairments, and all identified as
right handed.

Of these 66 participants, 37 were involved in the first
user study (aged 19.8� 0.7 years, 11 females), and the
remaining 29 took part in the second user study (aged
22.6� 4.5 years, 9 females). The participants were
divided into groups based on the robot’s control strat-
egy, i.e., NC, AAN, AC, or RC. Within our first user
study, half of the participants trained on the Easy task
and half trained with the Hard task. During the second
user study, participants completed the experimental
task twice: once with the Easy task and once with the
Hard task. We counterbalanced the order of task
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kinesthetic controller and the auditory reward, and then the
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presentation (i.e., half started with the Easy task and
half started with the Hard task), and we separated the
two task sessions by a minimum of three days to miti-
gate between-task learning.

Learning and decay models

To measure the participant’s learning rate during train-
ing and decay rate during the error clamp block, we
applied models to the human’s hand direction. These
models are consistent with prior works on motor
learning.7,6,32

Learning model. Let z 2 ½0,360�Þ be the human’s estimate
of the visuomotor rotation, and let r ¼ 30� be the
actual visuomotor rotation. We model the human’s
adaptation as

z tþ 1ð Þ ¼ Az tð Þ þ B½r tð Þ � z tð Þ� ð3Þ

ŷ tð Þ ¼ �z tð Þ ð4Þ

where A 2 ½0,1� is a forgetting factor, B 2 ½�1,1� is the
learning rate, and ŷ is the predicted hand direction. We
solved for the learning rate (B) offline by finding the
model parameters that minimized the total squared
error between the predicted (ŷ) and measured (y)
hand directions.

Decay model. During the error clamp block, we similarly
fit an exponential function to the human’s hand
directions

ŷ ¼ C1 � exp ��tð Þ þ C0 ð5Þ

where C0,C1 2 R are constants and �4 0 is the decay
rate. Like before, we solved for the decay rate (�) by
finding the model parameters that minimized the total
squared error between the predicted (ŷ) and measured
(y) hand directions. We point out that this decay model
is leveraged in prior motor learning works,7,32 and equa-
tion (5) is equivalent to the learning model described by
equations (3) and (4) for the specific case where B¼ 0
and C0 ¼ 0.6 Hence, we can think of the decay model as
a setting where the human stops learning (i.e., the learn-
ing rate is zero), and we are explicitly focused on deter-
mining the forgetting factor A, which we here refer to as
the decay rate � to prevent confusion.

Data analysis

We excluded a participant’s data if they either (a)
noticed the error clamp or (b) decayed in the wrong
direction (i.e., their hand direction became increasingly
negative during the error clamp block). Only a single

participant reported noticing the presence of the error
clamp (in the second user study), and a total of six par-
ticipants had a negative decay rate (two in the first user
study and four in the second). Hence, there were 35 sub-
jects remaining in the variable-gain user study analysis
and 24 subjects in the fixed-gain user study analysis. We
performed our data analysis with SPSS (IBM).

Results

Variable-gain control

The objective results from our first user study are dis-
played in Figures 4 and 5. We interpret these results
below:

Error. We leveraged a mixed analysis of variance
(ANOVA), where controller strategy and task difficulty
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were between-subject factors, and the block (training or
error clamp) was the within-subject factor. Control strat-
egy did not have a significant main effect (Fð1,31Þ ¼ 1:8,
p¼ .19). However, there was a statistically significant
interaction between task difficulty and block
(Fð1,31Þ ¼ 15:9, p< .001). We thus reran our ANOVA
with simple main effects: participants in the Easy task
had significantly increased error during the error clamp
as compared to training (p¼ .05). The opposite trend
occurred in the Hard task, with less error during the
error clamp as compared to training (p< .01).

Success rate. Control strategy did not significantly affect
success, but within the Hard task, participants found it
more challenging to reach the target, as evidenced by
their lower success rate (Fð1,31Þ ¼ 38:4, p< .001).

Controller gain. The gain values for AAN also indicate
that the Hard task was more challenging (see Figure 5).
We observe that participants on the Easy task con-
verged towards resistive feedback—i.e., a negative
gain—while participants on the Hard task required
positive assistance (p< .001). This result is in line with
challenge point theory in motor learning literature,
where learning is best at a specific challenge level.18,28

The assistive control gains allow better learning and
retention for the Hard task because they match the
harder difficulty, while resistive control gains add
some challenge for the Easy task that may improve
learning and retention.

Learning and decay. There were no statistically significant
results for learning rate or decay rate.

Summary (NC vs. AAN). During both tasks, AAN and
NC led to similar short-term retention; although
AAN resulted in higher error across the board

(also see Table 1), this increase was not statistically
significant. Based on the results for error, success
rate, and AAN controller gain, we confirm that the
Hard task was more challenging than the Easy task.

Fixed-gain control

The results from our second user study are summarized
in Figure 6, and a side-by-side comparison of the error
between our first and second user studies is listed in
Table 1. We separately discuss these results below:

Error. We performed a mixed ANOVA, with control
strategy and presentation order as between-subject fac-
tors, and task difficulty and block as within-subject fac-
tors.We found that the control strategy had a significant
main effect (Fð2,18Þ ¼ 5:1, p< .05). For the Easy task,
there was also a significant interaction between the con-
trol strategy and the task block (Fð2,18Þ ¼ 8:2, p< .01).
Contrasts are used for the primary hypotheses of this
experiment, i.e., that AC leads to improved retention
for the Hard task and RC results in improved retention
for the Easy task. Participants who trained with AC or
RC had significantly less error than those trained with
NC during error clamp trials for the Easy task (p< .05
for both). During theHard task, neither controller led to
significantly different error than NC.

Similar to the first user study, there was also an
interaction between the task difficulty and block
(Fð1,18Þ ¼ 10:9, p< .01). For the Hard task, partici-
pants had less error during the error clamp trials than
during the training trials (p< .01).

Success rate. Control strategy did not have any effect on
success during training; however, the success rate
during the Hard task was significantly lower than
during the Easy task (Fð1,18Þ ¼ 78:7, p< .001).

Learning rate. The control strategy had a significant
effect on the participants’ learning rate (Fð2,18Þ ¼ 8:9,
p< .01). Contrasts showed that RC resulted in slower
learning than NC (p< .001) and AC (p< .01).

We additionally found that the overall learning rate
was higher for the Easy task when compared to the
Hard task (Fð1,18Þ ¼ 8:8, p< .01).

Decay rate. The control strategy also affected the decay
rate during error clamp trials (Fð2,18Þ ¼ 3:7, p< .05).
Here, contrasts determined that AC decayed faster to
the steady-state than NC (p< .05) across the board.

Summary (NC vs. AC and RC). Control strategy had a sig-
nificant effect on how participants adapted and main-
tained the visuomotor offset. During the Easy task,
subjects that trained with the RC or AC controllers
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had better short-term retention than the NC baseline.
We also found that participants learned the visuomotor
offset more slowly with RC, but—after all robotic feed-
back was removed—they more quickly reverted to their
adapted behavior after AC. As before, the Hard task
was more challenging than the Easy task: participants
had lower success and learning rates and higher train-
ing error in the Hard task.

Discussion

The results of our user studies suggest that training
able-bodied subjects with the right robot control strat-
egy improves short-term stabilization of motor adapta-
tion after the robot is removed. These control strategies
should be consistent but challenging: fixed-gain con-
trollers that match the task difficulty outperform vari-
able-gain controllers that adjust based on the user’s
capability.

For the less difficult task, subjects who trained with
fixed-gain controller (assistance or resistance) had better
performance during the retention trials than those
trained without a robotic controller. During the same
task, training with a variable-gain controller (assist-as-
needed) led to similar retention as training without a
controller. For the challenging task, the training control
strategy did not have a statistically significant effect on
short-term retention: however, when compared to train-
ing without a controller, we found that the fixed-gain
approaches led to lower error, while the variable-gain
controller increased error (see Table 1). We note
that—for each of these control strategies and task diffi-
culties—the robot also provided auditory reinforcement
throughout training, which rewarded users when they
completed the motion correctly.
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Figure 6. Results from our user study with fixed-gain control-

lers: no controller (NC), fixed-gain assistance (AC), and fixed-

gain resistance (RC). Training with either RC or AC led to better

short-term retention than NC during the Easy task. RC had a

lower learning rate across the board, and AC decayed faster to

steady-state than NC. The Hard task was more challenging, as

evidenced by the decreased success rate and learning rate, and

the increased error during training as compared to error clamp.

Table 1. Error across control strategies and task difficulties for

both of our user studies: variable-gain control and fixed-gain

control.

Variable gain Fixed gain

NC AAN NC AC RC

Easy task

Training 5.69 5.93 5.18 4.34 7.15

Error Clamp 7.29 8.14 7.72 4.98 4.07

Hard task

Training 14.44 15.15 14.12 11.92 12.89

Error Clamp 10.91 14.09 11.01 6.24 9.30

Note: We list the average root-mean-squared error (in degrees) between

the desired and actual visuomotor offset at the end of the training and

error clamp blocks. Error clamp scores display the users’ short-term reten-

tion after training with the listed controller. NC: no controller; AAN:

assist-asneeded; AC: fixed-gain assistance; RC: fixed-gain resistance.
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Overall, our findings demonstrate an interplay
between multimodal feedback, controller type, and
task difficulty during robotic training. We separately
discuss each of these issues below.

Robotic control and reward-based reinforcement

During our user studies, participants trained while
receiving kinesthetic feedback from the robotic control-
ler in addition to auditory feedback that reinforced suc-
cessful reaching movements. These experiments extend
prior works on motor learning6–8: in the previous
works, the authors compare learning with visual feed-
back plus reinforcement to learning with reinforcement
alone. Importantly, their results suggest that including
visual feedback can harm short-term retention. The
human may become overly dependent on the presence
of visual feedback, since this feedback continually
informs them about their error from the correct
motion.33 We point out that—within our user
studies—kinesthetic feedback from the robotic control-
ler is similar to this visual feedback, as it continually
provides the user with directional information about
their distance from the straight line path.

Based on our results, however, we conclude that
training with kinesthetic feedback has a different effect
on short-term retention than training with visual feed-
back. Even though the control strategies provided con-
tinual information during each reaching motion, users
trained with the best-suited controller outperformed
users trained with reinforcement alone (i.e., the no con-
troller case). Hence, not only can we combine robotic
control strategies with reward-based reinforcement, but
we can also improve short-term adaptation by leveraging
robotic controllers instead of auditory reinforcement
alone. This result is in line with works on multimodal
feedback. While auditory and visual feedback can cause
detriments to learning when combined—as they share
many cognitive pathways—kinesthetic and auditory
feedback have been effectively combined to reduce cog-
nitive workload and convey more complex feedback.4

We might expect similar results if visual feedback was
used for the reward instead of auditory, as long as the
addition does not confuse the visual information already
being received.

Fixed and variable-gain controllers

Our user studies suggest that fixed-gain robotic control-
lers are better suited for short-term retention than vari-
able-gain control. Indeed, in the Hard task, using
variable-gain control resulted in worse retention than
a no controller baseline.

In order to understand why the variable-gain
approaches were less effective, we recall that fixed-

gain controllers follow the same feedback direction at
each iteration while maintaining a constant gain, and
variable-gain controllers not only have variable control
gains, but are also capable of switching the direction of
the force feedback based on the human’s performance.
Users training with fixed-gain assistance or fixed-gain
resistance received the same feedback when they made
the same mistakes. By contrast, users training with the
variable-gain control strategy interacted with an adap-
tive robot, so that the same mistakes could result in
different kinesthetic feedback during different trials.
Overall, we suggest that this variability is one explan-
ation for why assist-as-needed control is not as well
suited for promoting short-term retention.

More specifically, learning the visuomotor offset
while simultaneously adapting to the robot’s changing
controller gains may have confused users within the
variable-gain group and distracted these users from
internalizing the visuomotor offset. For example,
users may have associated the offset with the variable
controller, so that, after we removed the kinesthetic
feedback, users also forgot the offset.34 Alternatively,
participants with variable-gain control may have been
unsure about which kinesthetic forces would result in
reward (since the strength and direction of the robot’s
force field changed over time). Especially when switch-
ing between assistance (positive) and resistance (nega-
tive) gains, any learned response to the controller force
field will likely lead to fewer rewards, not more.
Explicitly connecting actions to reward is important
for effective reward-based reinforcement,6–8 and the
variable-gain controller may have inhibited this
connection.

By contrast, the fixed-gain controllers may have
improved retention because they provided consistent
feedback, which was easily understood by the users.
As expected, the fixed-gain resistance strategy resisted
users during training and resulted in lower initial learn-
ing rates: users had to overcome this resistance before
completing the task correctly. Fixed-gain assistance
appeared to strongly reinforce the user’s adapted
behavior, where users more quickly reverted to what
they had learned after the robot was removed. We sug-
gest that fixed-gain assistance led to faster reversion
since users with this robotic assistance had less variable
movements during training.

Our findings for fixed and variable-gain controllers
are supported by some recent studies.35–37 Within these
works, variable-gain controllers do not outperform
fixed-gain controllers and fail to increase the user’s
retention.36,37 Our results complement these more
recent works and also highlight the connection between
fixed-gain control and short-term retention. We recog-
nize, however, that there are situations where variable-
gain controllers are better suited than fixed-gain
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controllers, particularly when the robot needs to main-
tain user participation over long-duration training.

Matching controllers to task difficulty

Within our user studies, the subjects trained on tasks of
two different difficulties: an Easy task and a Hard task.
We verified that training on the Hard task was more
challenging, where subjects had lower success rates and
higher error. Interestingly, we found a relationship
between task difficulty and the best control strategy.
Specifically, short-term retention improved on the
Easy task after training with either fixed-gain control-
ler, while fixed-gain resistance led to slower learning
and fixed-gain assistance led to faster decay across
the board.

Similar to previous research on robotic training,18,28

we suggest that resistive control strategies were better
suited for less challenging tasks, while assistive control
strategies appear to lead to increased retention on more
challenging tasks (also see Table 1). One key novelty
here, however, is that this pattern applies to short-term
motor adaptation, where the users are trained through
reward-based reinforcement. In practice, we recom-
mend that the designer use the subject’s baseline behav-
ior to tune the control strategy, so that—after a few
trials without any robotic intervention—the designer
can select the controller that corresponds to the user’s
ability in the presented task.

Applying our results to robotic rehabilitation

The experiments in this paper were performed on able-
bodied end-users; however, we are also interested in
how our results may translate to robotic rehabilitation,
where the users suffer from long-term motor impair-
ments. Several related works on motor learning and
retention have similarly conducted user studies on
able-bodied subjects with implications for the rehabili-
tation of impaired users.6,8,28,33,34 Although we recog-
nize that extending results from training to
rehabilitation is not always straightforward,25 we
point out that some existing studies with impaired
users appear to support some of our findings. For
instance, Frullo et al.21 recently used a variable-gain
assist-as-needed controller to perform robotic rehabili-
tation on subjects with incomplete spinal cord injuries.
Like in our experiments, their results showed that
the variable-gain controller did not lead to
improved retention when compared to the baseline. In
this work, we extend this concept to also compare the
baseline and variable-gain controller to two fixed-gain
controllers.

Replicating our experiments on subjects with
motor impairments is a topic of future work.

Another topic for future work is how retention
changes over time: here we have focused on short-
term retention, but it is also important to explore
how control strategies affect retention over longer
time durations.

Conclusion

In this paper, we presented an experimental comparison
of robotic rehabilitation control strategies on able-
bodied subjects, with a focus on short-term stabiliza-
tion of the human’s motor adaptation. We first
extended a recent reinforcement approach to include
robotic control, where the end-user trains while receiv-
ing kinesthetic feedback from the controller as well as
auditory reward signals when they complete the task
successfully. We then performed user studies to
compare the effects of fixed and variable-gain control
strategies: no controller, assist-as-needed, fixed-gain
assistance, and fixed-gain resistance. Overall, we
found that the fixed-gain control strategies led to
better short-term retention than either the variable-
gain controllers or the no controller baseline. These
improvements were broken down by task difficulty:
during the less difficult task fixed-gain assistance and
resistance resulted in better short-term retention, while
fixed-gain resistance had a lower learning rate and
fixed-gain assistance decayed more rapidly across the
board. When applied to robotic rehabilitation, our
results suggest that designers should promote short-
term retention by selecting fixed-gain robotic control-
lers that match the user’s perceived difficulty. This work
is only a first step towards developing effective control
strategies for long-term retention following robotic
therapy: future works should explore how our results
transfer to subjects with motor impairments, as well as
retention over longer time durations.
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