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Abstract—A goal of wearable haptic devices has been to enable
haptic communication, where individuals learn to map information
typically processed visually or aurally to haptic cues via a process of
cross-modal associative learning. Neural correlates have been used
to evaluate haptic perception and may provide a more objective
approach to assess association performance than more commonly
used behavioral measures of performance. In this article, we ex-
amine Representational Similarity Analysis (RSA) of electroen-
cephalography (EEG) as a framework to evaluate how the neural
representation of multifeatured haptic cues changes with associa-
tion training. We focus on the first phase of cross-modal associative
learning, perception of multimodal cues. A participant learned to
map phonemes to multimodal haptic cues, and EEG data were
acquired before and after training to create neural representational
spaces that were compared to theoretical models. Our perceptual
model showed better correlations to the neural representational
space before training, while the feature-based model showed better
correlations with the post-training data. These results suggest that
training may lead to a sharpening of the sensory response to haptic
cues. Our results show promise that an EEG-RSA approach can
capture a shift in the representational space of cues, as a means to
track haptic learning.

Index Terms—Wearable haptics, multimodal haptics, haptic
learning, EEG, Representational Similarity Analysis, neural
correlates.

I. INTRODUCTION

W EARABLE haptic devices show promise for enabling
novel haptic communication methods, giving a user the

Manuscript received 1 December 2022; revised 19 June 2023; accepted
3 August 2023. Date of publication 9 August 2023; date of current version
19 September 2023. This work was supported in part by the National Sci-
ence Foundation (NSF) under Grants 1752751, 1830146, 1828869, 1947663,
and 2019959, and in part by the National Institutes of Health (N I H) under
Grant R01NS097462. This paper was recommended for publication by Associate
Editor G. Salvietti and Editor-in-Chief D. Prattichizzo upon evaluation of the
reviewers’ comments. (Corresponding author: Alix S. Macklin.)

This work involved human subjects or animals in its research. Approval of
all ethical and experimental procedures and protocols was granted by Rice
University Institutional Review Board under Application No. IRB-FY2020-169,
and performed in line with the Belmont Report.

Alix S. Macklin and Marcia K. O’Malley are with the Mechatronics and Haptic
Interfaces Lab, Department of Mechanical Engineering and the Department of
Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA
(e-mail: am150@rice.edu; omalleym@rice.edu).

Jeffrey M. Yau is with the Baylor College of Medicine, Houston, TX 77030
USA (e-mail: jeffrey.yau@bcm.edu).

Simon Fischer-Baum is with the Department of Psychological Sciences,
Rice University, Houston, TX 77005 USA (e-mail: Simon.J.Fischer-Baum@
rice.edu).

Digital Object Identifier 10.1109/TOH.2023.3303838

Fig. 1. We examine EEG-RSA as a framework to evaluate how the neural rep-
resentation of multifeatured, haptic cues changes with association training. By
developing two hypothetical models, first we evaluate if the neural representation
of haptic cues before training is more correlated to perceptual confusion between
the cues. Then, we evaluate if the neural representation of haptic cues after
training is more reflective of the unique haptic features of the cues themselves.

ability to receive information through the sense of touch [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. A central objective
of designers of wearable haptic communication systems is to
encode information, which is typically processed visually or
aurally, as tactile stimulation patterns presented to the skin [1],
[7], [12], [13]. Wearable haptic systems have been used to
transmit guidance and instructions from virtual agents that con-
vey navigation information [14], [15], performance feedback
to trainees using surgical simulators [13], motion guidance for
individuals undergoing physical therapy [12], [16], as well as
discrete forms of language [1], [3], [4], [5], [6], [7], [17]. Two
aspects are critical to successfully transmit information to a
user with tactile displays. Individuals must reliably perceive
the tactile cues themselves, as well as learn and retain the
mappings between information typically processed by the visual
or auditory senses to that of tactile cues. This relies on a process
known as cross-modal association (or cross-modal associative
learning) [18], [19]. In this article, we focus on the first phase
of successful cross-modal associative learning, accurate haptic
perception of the multimodal cues.

A major challenge when developing these devices is how the
learning of haptic cues is assessed. Typically, protocols for asso-
ciative learning on haptic-communication devices include test-
ing phases where subjects respond via closed-set (i.e. multiple
choice) or open-set responses (i.e. free response) [1], [2], [5], [7],
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[20]. Notably, the majority of these testing protocols reported in
the literature are limited to closed-set options [1]. Association
results are then summarized as recognition rates or percent
accuracies, often presented in confusion matrices [1], [7]. How-
ever, behavioral observations such as multiple-choice responses
can be relatively subjective, hard to reproduce, confounded by
experimental environments such as social pressure [21], and
confounded by strategic guesses [22]. Therefore, these kinds of
behavioral results may only provide limited insights into what
individuals are actually learning throughout haptic training.
Careful investigation of how haptic training changes the neural
correlates of the response to haptic cues may provide deeper
insights into what has been learned [21], [23], [24], [25], [26],
[27], [28], [29], [30]. Therefore, our ultimate goal is to develop
quantitative methods for analyzing neural correlates to help
track, and promote, the learning of haptic cue sets that are used
to encode information.

This article explores one quantitative approach to investigat-
ing the neural changes that occur in response to haptic learning,
an analysis framework known as Representational Similarity
Analysis (RSA). RSA provides insight into the structure of
neural representations through investigation of the similarity
structure of a set of neural responses [31], [32], [33], [34],
[35]. These techniques can be used with a variety of brain
imaging techniques, including non-invasive recordings such as
electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI). In brief, pair-wise distances of the brain’s
response to unique stimuli are computed in order to estimate a
representational space of how dissimilar each stimulus is from
every other one [31], [32], [34], [35], [36], [37], what is referred
to as a Representational Dissimilarity Matrix (RDM) [34], [35].
The structure of these RDMs can then be interrogated, for
example by comparing the empirical RDMs calculated from
neural recordings to different theoretical models of what in-
formation is being processed about the stimuli [36] or to data
collected with the same stimuli in a different task [38], which
can also be structured as RDMs. Using this approach, we can
form hypotheses of what individuals are learning, or becoming
sensitive to, during the course of haptic learning, which should
be reflected as a change in how the RDMs are structured after
training. This may be a particularly useful technique to better
understand how haptic cue sets are represented in the brain, and
how they are changed by the learning environment.

RSA has recently been applied to studies of haptic per-
ception [39], [40], [41], [42], [43]. For example, Perini et al.
used an fMRI-RSA approach to better understand how haptic
object size is represented in the brain [39]. They had individuals
grasp objects of various sizes and found specific brain regions
where more similar neural activity patterns corresponded to the
grasping of more similar object sizes [39]. Tame et al. used
fMRI-RSA to investigate the representation of tactile space on
the hand [40], showing that the neural representation of the
skin space matched a perceptual model derived from behavioral
results where individuals were tasked to respond to air puff
stimulation in the form of a 3 × 3 grid [40]. Malone et al. used
an fMRI-RSA approach to investigate the neural mechanisms of
vibrotactile categorization after individuals were trained to sort
vibrotactile cues into different groups [42]. They showed that

different neural representations of cues, specifically reflecting
perceptual or categorical selectivity, occur in different regions
of the brain [42].

In each case, these studies show the effectiveness of RSA in
developing theories of the nature of haptic processing. These
approaches have all been based on fMRI analyses. Restricting
RSA to fMRI may limit adoption of this method in the haptics
community due to the inherent cost and accessibility of scan-
ners, and fMRI scanner compatibility with haptic devices [21],
[44]. EEG data, which is less expensive to collect and more
compatible with haptic devices, might be a preferred imaging
modality. Furthermore, few of these studies have focused on
how haptic learning changes haptic representation. One group
has extended the RSA approach to both haptic learning and to
EEG data, investigating the neural basis of vibrotactile speech
learning on a sensory substitution vocoder device using both
fMRI and EEG data [45]; however, their investigations, like
most others that employ RSA [39], [40], [41], are limited to
perception and learning of haptic cues based only on a single
modality, such as vibration. Haptic researchers are increasingly
employing multimodal wearable haptic devices to transmit hap-
tic information to users [1], [46], [47], [48], [49], [50], [51],
as discrete haptic cues generated by unimodal devices can be
particularly difficult to learn [1].

In this article, we present methods for using an EEG-RSA
approach to quantify changes in perceptual sensitivity of cues
conveyed via a wearable, multimodal haptic device. We use
an EEG-RSA framework to evaluate changes in the neural
representation of haptic cues after association training, where the
subject learned to map discrete phonemes to multimodal haptic
cues. We introduce the general methodology and demonstrate
the feasibility of our approach in a use-case scenario to evaluate
how the sensitivity to haptic cues may change after association
training. Our EEG-RSA approach provides a framework and
foundation for applying these techniques to better understand
the neural mechanisms of haptic association learning.

II. METHODS

Generally speaking, Representational Similarity Analysis
(RSA) is a method that enables researchers to relate brain-
activity measurements, behavioral measurements, and/or theo-
retical models. It reduces neural activity patterns to representa-
tional dissimilarity matrices (RDMs), such that we can represent
the extent to which neural activity patterns of one condition or
stimulus are correlated to every other one in an experiment. We
can also compare these neural matrices to conceptual models of
haptic cue representation, also structured as RDMs.

We apply RSA to a haptic association task where a single
subject first learned to identify multimodal haptic cues, and then
learned to associate those haptic cues to phonemes. Our analysis
is focused on the first component of successful cross-modal
association, accurate perception of the haptic cues. We first
developed two theoretical models of the haptic cues, constructed
to capture how the cues may be represented at the cortical
level both before and after training. Then we used these models
in an EEG-RSA framework to evaluate how the sensitivity to
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Fig. 2. (Left) The MISSIVE with actuation components that correspond to
unique MISSIVE features, shown in the middle, highlighted. (Middle) MISSIVE
cue features and corresponding timings. (Right) The four locations on the arm
where vibration can occur.

multimodal haptic cues changes with training, as depicted in
Fig. 1.

In the following sub-sections we lay out the methods and
framework for our RSA approach. First, we present the multi-
modal haptic cues that can be generated by our wearable haptic
device. Then, we describe how the two theoretical models, the
Perceptual and Feature-Based Model, were determined. Third,
we present our use-case experiment where a single participant
learned to map these multimodal cues to phonemes while EEG
data were acquired. Finally, we describe the correlation analyses
and significance testing that we use to evaluate the models when
applying RSA to our EEG data set.

A. Haptic Cue Delivery Via a Wearable Device

A wearable haptic device, the MISSIVE (Multi-sensory Inter-
face of Squeeze, Stretch, and Integrated Vibration Elements) [1],
[46], was the multimodal haptic device considered in our use-
case analysis (see Fig. 2 (left)). The MISSIVE is worn on the
upper arm and is comprised of three actuation mechanisms: ra-
dial squeeze, lateral skin stretch, and vibration [1]. The vibration
element of the MISSIVE is comprised of four vibrotactors, such
that vibration can occur at one of four locations, presented at
the top, left, bottom, or right of the user’s arm. One of three
vibration patterns can be rendered, a short pulse (50 ms), long
pulse (150 ms), or double pulse (one 50 ms pulse, 75 ms pause,
and another 50 ms pulse). The lateral skin stretch cue has a
duration of 150 ms. The radial squeeze cue has a duration of
350 ms. These unique modes of actuation combine to make up
unique haptic cues, transmitting the different actuation modes
simultaneously and/or in succession [1]. Nine haptic cues de-
livered on this device, shown in Fig. 3, were considered for our
use-case analysis (see Section II-D for more details).

B. Perceptual Model

The first model we developed was designed to estimate the
expected similarity structure of MISSIVE cues prior to training.
We estimated this model empirically, relying on behavioral data
from a previous study conducted in our lab by Sullivan et al. [46].
In this study, 13 participants who had never used the MISSIVE
device before were presented with a randomized sequence of 32
MISSIVE cues repeated 5 times each and were asked to report
on the 32 cues that were presented. These data allow for the

Fig. 3. Nine haptic cues, delivered via the MISSIVE, considered throughout
the use-case experimental analysis. Corresponding features and timing profiles
are shown for each cue.

construction of a confusion matrix of the percentage of times
each cue is confused for every other cue. The confusion matrix
is a type of RDM, under the assumption that items that are more
dissimilar are less likely to be confused, and serves as the basis
for our first model, the Perceptual Model. We hypothesized that
the neural representation of cues before training should reflect
a model capturing perceptual confusion between cues that is
experienced by a naïve population.

Before we outline the formulation of the Perceptual Model,
it is important to remark on several differences between the
cues used in Sullivan et al.’s study and those used in this study.
First, Sullivan et al. included a larger set of 32 MISSIVE cues,
while our study focuses only on nine cues. This difference is
accounted for in the generation of our model space, described
below. Second, Sullivan et al. used slightly different cues with
only short and long pulse vibrations, and not the double pulse
vibrations that we consider. To accommodate this second dif-
ference, we assume that the short pulse vibration is comparable
to the double pulse feature considered in our haptic cue set.
With this assumption, the nine cues considered for our use-case
scenario were a subset of the 32 cues used in the behavioral
experiment previously conducted by Sullivan et al. [46].

To generate the RDM of the Perceptual Model space for
our nine cues, we applied a normalization procedure to Sul-
livan et al.’s perceptual results. Specifically, each cell in our
resulting 9x9 RDM was calculated to be the proportion of times
each cue in Sullivan et al.’s study was perceived as every other
cue, out of behavioral responses that were one of our nine cues
of interest, resulting in a normalized version of the confusion
matrix previously explained. Fig. 4 illustrates this normalization
process for the perceived responses to Cue 1. The distribution
on the top left shows the number of times the cue was perceived
as one of the 32 cues in Sullivan’s study, where the total number
of responses add up to 65 (13 participants x 5 presentations
of each cue). The distribution to the right shows the normalized
distribution used for our model, where perceived responses were
only considered if they were one of the nine haptic cues of
interest. In this way, only 25 total perceptual responses were used
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Fig. 4. Normalized distributions of perceptual responses to the nine haptic
cues of interest, based on results from a previous behavioral study considering
32 MISSIVE cues. (Top) The left shows the distribution of perceived responses
to Cue 1, where subjects could respond out of 32 cues, and the right shows
the normalized distribution where perceived responses were only included in
the distribution if they were out of one of the nine cues of interest. (Bottom)
Normalized distributions of perceived responses to each of the nine haptic cues.

to determine the confusion ratios for Cue 1. Fig. 4 also shows
the normalized distributions for each of the nine cues, including
the total number of responses from which the confusion ratios
were determined.

The resulting RDM was asymmetric, as the ratio that a
rendered cue, e.g., Cue 1, is perceived as another cue, e.g.,
Cue 2, may not be equal to the ratio Cue 2 is perceived as
Cue 1. However, we assumed a ground truth where over a
significant number of trials these ratios would eventually even
out. After determining the normalized confusion ratios, the
resulting matrix was averaged across the diagonal to give an
ideal, symmetric matrix, as shown in Fig. 5. We predict that
the neural representation of the haptic cues before association
training should be more correlated with this Perceptual Model
than the neural representation of the cues after training. This
rationale is based on evidence that novice users are likely to
make perceptual errors when discerning between haptic stimulus
cues [46], [52], [53], [54], [55], [56]. Furthermore, non-invasive
neural measurements have been shown to reflect behavioral error
and perceptual uncertainty [57], [58], [59]. Therefore, we would
expect the neural representation of haptic cues, prior to any
training, to reflect a model space representative of perceptual
confusion between cues that is based on behavioral responses
from an inexperienced population.

Fig. 5. Perceptual Model. Each cell holds the proportion (e.g. confusion ratio)
that the presentation of each of the nine cues is perceived as every other cue of
interest.

Fig. 6. Feature-Based Model. Each cell holds the number of different features
between each cue pair, giving a value for how similar each haptic cue is from
every other one.

C. Feature-Based Model

The goal of our second model was to capture how sensitivity
to MISSIVE cues may be represented in the brain after training.
This theoretical model was developed with the idea that exposure
on the MISSIVE device should lead to individuals becoming
more sensitive to the unique features of cues presented on the
multimodal display. We hypothesized that the neural represen-
tation after training should reflect how similar each of the nine
haptic cues are to each other in terms of the features of the cues
themselves.

The Feature-Based Model was generated by counting the
number of features (up to 4) that distinguished two cues from
each other, such that comparison between each stimulus pair
was given a rank from 0 to −4 in terms of how many different
features each cue had compared to every other one (e.g. haptic
cue differed by a vibration component or differed by squeeze).
A value of 0 meant cues were identical to each other, and a
value of −4 meant all 4 features were different, as illustrated in
Fig. 6. We predict that the neural representation of the haptic cues
after association training should be more correlated with this
Feature-Based Model than the neural representation of the cues
before training. The rationale behind this is the idea that training
leads to a sharpening of the sensory response to haptic cues, such
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that after training the neural representation of haptic cues starts
to reflect the features of the cues themselves [42]. Therefore,
if learning on the MISSIVE device makes the individual more
sensitive to the differences between the mulitmodal haptics cues,
where this detection between cue differences may be picked up
with neural recordings, then the individual should start to better
disambiguate the patterns of the multimodal haptic cues them-
selves, such that EEG captures similarities and dissimilarities
that correlate to that of the MISSIVE feature space.

D. Use-Case Experiment

1) Participant: A single subject (N = 1) was considered for
this use-case analysis. The participant was male, left-handed,
age 24 and did not report any cognitive or sensory impairments
that would inhibit their ability to complete the experimental
tasks. The participant gave informed consent, and the protocol
was approved by the Rice University Institutional Review Board
(IRB-FY2020-169).

2) Association (Exposure) Training: The participant com-
pleted 4 days of association training based on an established
protocol [1]. In this protocol, the participant was tasked to map
23 phonemes to unique haptic cues, and subsequently learn a
set of 50 words made up of those phonemes [1]. On the first
day only, the participant was exposed to how the haptic cues felt
and asked to identify their components. In this 10 minute cue
familiarization phase, the participant could click on a spatial
representation of any multimodal haptic cue and its assigned
phoneme, such that the cue was felt on their arm. Although the
participant was instructed to focus on the multimodal haptic
cues, the phoneme text representation was shown on the screen
and an audio clip corresponding to that phoneme was played
into headphones. Once the participant felt comfortable with the
cues, they could move on to a self-test exercise, where random
multimodal cues were presented to the participant and he was
then tasked to identify which features were present. Correct
feedback was provided. The remainder of training focused on
the participant familiarizing himself with four sets of phonemes
and subsequent words made from them. Depending on the day,
the training protocol could include Pre-Tests, phases where the
participant learned sets of new phonemes, phases where the
participant was introduced to words, Review Phases, Cumulative
Assessments, and Post-Tests. Day 1 involved 23 minutes of
training, Day 2 involved 37 minutes of training, Day 3 involved
30 minutes of training, and Day 4 included 10 minutes of
training. Training time did not include the time it took for the
Pre- and Post-Tests, which added overall exposure to the haptic
cues.

3) EEG Sessions: An EEG study was designed in order
to elicit neural responses to MISSIVE haptic cues. Using the
classic oddball paradigm, frequently presented ‘standard’ cues
are infrequently interrupted by ‘deviant’ cues that differ from
the standard by some distinct characteristic [60], [61]. Four sets
of oddball runs, of 1000 trials each, were used to present haptic
cues to the participant. In each block, deviant cues made up
15% of the trials and varied from standard cues by one degree of
freedom in terms of where on the arm the vibration component

Fig. 7. (Top) Example trial showing response epoch 200 ms before and 800 ms
after the presentation of Cue 5, on Channel 1 of a 30-channel EEG recording.
(Bottom) Each trial response recorded is averaged together to compute the
overall Channel ERP, for each channel separately. These channel ERPs are then
combined to form a 30-channel ERP waveform response, in this case in response
to Cue 5.

of the MISSIVE cue was felt (Fig. 2 (Right)). Deviant cues in
each block were split evenly into two prototypes, such that each
set made up half of the total deviant cues in a given block. Each
cue of the first deviant prototype was mapped to a phoneme after
training (as were the standard cues), however the second deviant
prototype remained unmapped.

Only data from three blocks, therefore neural recordings in
response to a total of nine haptic cues, were considered for this
use case analysis, to evaluate how the participant’s sensitivity
to these cues changed after training. This set of cues can be
seen in Fig. 3, where row 1 of the figure corresponds to the
cues presented in Block 1, row 2 corresponds to Block 2, and
row 3 corresponds to Block 3. This set of cues was strategic
to consider, as the cues between blocks were characteristically
more different from one another and cues within blocks were
more similar, providing a dynamic set for RSA. Cues between
the experimental blocks varied by at least a stretch, squeeze,
vibration type and/or vibration location, whereas cues within
groups only varied by one degree of freedom, the location on the
arm the vibration was felt. Data from the fourth block were not
considered because cues in this block only comprised a single
vibrational component, and we were specifically interested in
the study of multimodal cues.

EEG sessions occurred both before and after association
training, making up the pre- and post-conditions in our use-case
analysis. The subject received passive exposure to the haptic
cues throughout the oddball blocks, and EEG data were recorded
with a 32 channel actiCAP (Brain Products GmbH, Germany),
collected at a sampling rate of 500 hz. 30 electrodes served as
the full-scalp recording channels and two channels, the Left and
Right Mastoid, served as reference electrodes.

Initial preprocessing, including eye-blink and artifact re-
moval, was completed using the EEGLAB 14.1.2b toolbox [62].
Then, 30-channel event-related potential (ERP) activity patterns
were computed in response to each of the haptic cues. This was
done by averaging the EEG-activity recorded over all the trials
at each channel, using an epoch that ranged from 200 ms before
to 800 ms after the initial MISSIVE cue onset. This process
was completed in MATLAB and is illustrated in Fig. 7. Each
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Fig. 8. RSA enables us to reduce high dimensional neural signals of unique stimuli into a 2D representational space, the brain-based similarity matrix. Brain-based
similarity matrices represent how similar the brain response to a particular stimulus is to every other stimulus considered. Populating the representational similarity
matrix at each time point allows us to determine how this space changes with time.

30-channel ERP activity pattern was stored in MATLAB as the
overall neural response to each haptic cue considered, separately
for the pre- and post-conditions.

E. Representational Similarity Analysis Framework

The following subsections outline how the brain representa-
tional spaces for the pre- and post-conditions were computed.
We also describe how these similarity spaces were compared
to each theoretical model, the Perceptual and Feature-Based
models, to assess our hypotheses.

1) Brain-Based Similarity Space: Each 30-channel ERP ac-
tivity pattern holds information regarding the similarities be-
tween each pair of haptic cues. Cues that are more similar, as
in the first two MISSIVE cues displayed on the leftmost side
of Fig. 8, should result in more similar neural activity over
time. High dimensional ERP waveforms make it difficult to
compare the overall neural response to each unique haptic cue.
Representational Similarity Analysis (RSA) gives us a way to
actually quantify this. RSA enables us to quantify how similar
the neural activity pattern across all channels recorded may
be, at each time point considered. Fig. 8 shows a conceptual
representation of this methodology, considering three example
MISSIVE cues.

As shown in Fig. 8, the presentation of each unique haptic
cue results in different overall neural activity patterns. The mock
ERP waveforms, displayed in red, green, and blue, across five
demonstrative channels, illustrate this. If we consider the neural
response pattern to each cue at a particular time point, t = T,
we can represent the activity captured across the channels as
vectors of voltage values. Then, for each time point, we can
determine how similar these vector channel activity patterns
are by correlating each of the vectors for all pairs of stimuli.
Patterns that are more similar will have a correlation value closer
to 1. Using the resulting correlation values, we can build the
fundamental RDM for the current time point, which gives a
2D representational space of how the brain represents a unique
set of stimuli at that time. This is shown on the rightmost side
of Fig. 8 by the brain-based similarity matrix. In this way,
we can reduce a high dimensional neural response space to
a visual and comprehensible 2D space (i.e., the brain-based

similarity matrix) that represents how similar the brain response
to a particular stimulus is to every other stimulus considered.
Doing this at each time point allows us to interpret how this
representational space changes dynamically over time.

This general methodology follows analysis presented in
Wang et al. [37], and was applied to our framework to determine
the brain-based representational space of the nine MISSIVE
cues, both before and after training. First, to reduce signal noise,
the 30-channel ERP waveforms were binned into 20 ms time
bins. This reduced the 30-channel ERP activity patterns for
each haptic cue to 50 time bins instead of 500 time points.
Next, brain-based similarity matrices were computed for both
the pre- and post-training conditions. The brain-based similarity
of each haptic cue to every other haptic cue was computed at
each time bin by correlating the distributed patterns across the
scalp between each pair of cues (see Fig. 8). At each time bin, we
quantified the similarity between the pattern of neural activity for
all possible pairs of the nine haptic cues by calculating Pearson’s
r value between the channel vectors. These correlation values
were then used to construct the brain-based similarity matrices,
resulting in 9x9 RDMs at each time bin. This entire framework
was implemented in MATLAB.

2) Correlation Analysis: We performed separate correlation
analyses to evaluate how the neural representation, or brain-
based similarity space, of haptic cues in each training condition
was related to 1) the Perceptual Model and 2) the Feature-
Based Model. For each analysis, the model space was related
to the brain-based representational spaces using non-parametric
Spearman’s correlation of the off-diagonal. Specifically, for both
pre- and post-training conditions, the off-diagonal of the brain-
based similarity matrix (RDM) at every time bin was Spearman
rank correlated to the off-diagonal of the model space. Each anal-
ysis resulted in two time series of Spearman correlation values
(rpre and rpost) and the corresponding p-values, indicating how
similar the neural representation of each training condition was
to the model in question, over time. To complete the analysis,
we also compared the two model spaces via Spearman’s rank
correlation of the off-diagonal.

3) Significance Testing: Our approach to significance testing
took part in two stages. First, we determined, for the pre-
and post-training EEG signals separately, whether there was a
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Fig. 9. Bootstrap permutation analysis schematic. (a) For each haptic cue, the original 30-channel EEG recordings from both conditions are pooled into one
group and then relabeled as coming from the pre- or post- condition. This is completed 1000 times, and for each permuted data set, the average ERP waveform
response is computed. (b) Brain to model correlation results versus time. This shows the observed correlation results between the Feature-Based Model and
brain-based representational space of cues before and after training, as well as a few example permutations of this result. These are determined by correlating
the Feature-Based Model to each permuted brain-based representational space. (c) Permutation test statistic (r-difference) versus time. For each brain to model
correlation, the difference between the post- and pre- correlation time series was calculated to determine the test statistic at every time bin. This was completed for
the observed and permuted data sets. Because the Feature-Based Model was considered for the comparisons shown in 9B, the r-difference value was calculated as
(rpost - rpre). (d) Histogram distribution of permuted r-difference values and significance testing. This shows the distribution of the permuted test statistics, at an
example time bin. At this time bin, the observed test statistic falls within the top 2.5% of the distribution, so results are considered to be significant with correction.

significant positive relationship between the similarity structure
in the EEG signal and the predicted similarity structure from
each model representation. This was determined at each time
bin, using a one-tailed significance test (α = 0.05) of whether
the correlation between the two similarity matrices was greater
than 0. Second, for those time points in which at least one of
the pre- or post-conditions was significantly greater than zero,
we evaluated whether there was a significant difference between
the two conditions. This was done with a bootstrap permutation
analysis without replacement, which is described in detail in the
following paragraphs. A schematic representing this analysis
can also be seen in Fig. 9.

The following steps outline how each data permutation was
determined. First, the 30-channel EEG recordings from the
original trial repeats were pooled into one group, as illustrated
in Fig. 9(a). This was completed for the data of each haptic
cue separately. Second, the EEG recordings from each trial
were randomly assigned (relabeled) as coming from the pre-
or post- condition. For the third step, this process was carried
out 1000 times to generate 1000 permutations of the original
EEG data. Fourth, for each permutation, the average ERP wave-
forms were computed, as previously explained in Section II-D3
and illustrated in Fig. 7. At the end of this step, each haptic
cue had 1000 permutations of its 30-channel ERP waveform
response for both the pre- and post- conditions, as shown in
Fig. 9(a). The fifth step, not shown in the Fig. 9 schematic,
generated the permuted brain-based representational spaces by

following the procedure outlined in II-E1 and further illustrated
in Fig. 8. Here, the respective permutations of the 30-channel
ERP waveforms, for each of the nine haptic cues, were used
to construct the associated 9x9 brain-based similarity matrices,
at every time bin considered. Finally, the Correlation Analysis
described in Section II-E2 was carried out for each permutation,
using the original Perceptual and Feature-Based models. Each
brain to model comparison resulted in 1000 correlation time
series for both the pre- and post- conditions. Fig. 9(b) shows the
observed and a few permuted results of correlations between
one of the models, in this case the Feature-Based Model, and
the brain-based representational space of cues before and after
training.

The following paragraphs outline how the test statistic and
significance were determined. At each time bin, the test statistic
of the permutation analysis was considered to be the difference
between the pre- and post-correlation results (rpre - rpost), when
considering correlations with the Perceptual Model space, and
the inverted difference between the post- and pre-correlation
results (rpost - rpre), when considering correlations with the
Feature-Based Model space. In both cases, the test statistic was
referred to as the r-difference value. The order of subtraction
was determined based on our previous hypotheses, where we
expected the pre-training condition to have greater correlation
with the Perceptual Model (rpre > 0) and we expected the post-
training condition to have greater correlation with the Feature-
Based Model (rpost > 0).
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Fig. 10. Perceptual Model correlation results showing correlations between
the Perceptual Model and brain-based representational space of cues before and
after training. The orange time series shows the pre-training correlation results
(rpre) between the brain-based RDMs of the pre-condition and the Perceptual
Model space, and the blue time series shows the post-training correlation
results (rpost) between the brain-based RDMs of the post-condition and the
Perceptual Model space. Significant correlation between the pre-training RDMs
and Perceptual Model, before correction, is marked by the red significance bar.
Significance after correction is marked by an asterisk.

For each model comparison, we computed our observed test
statistics, at every time bin, by taking the respective difference
between the true correlation results (rpre - rpost or rpost - rpre).
Then, for each permutation, the r-difference values at each time
bin were also computed. These computations are illustrated in
Fig. 9(c), where the r-difference value at a particular time bin
is highlighted. To evaluate points between the true pre- and
post-training conditions that were considered to be significantly
different from one another, the observed test statistics were
compared to the sorted, permuted r-difference values, only at
the time bins marked as significant without correction. At each
time bin considered, if the observed test statistic fell within the
top 2.5% of the distribution of permuted r-difference values for
the current time bin, the correlation results between the pre- and
post-conditions were justified as being significantly different
and the original correlation was considered to be significantly
greater than zero, with correction. This process is illustrated in
Fig. 9(d), at an example time bin, and culminates the permuta-
tion analysis. For the model-to-model comparison, a two-tailed
Spearman’s rank correlation was used to evaluate if the models
were significantly correlated at a significance level of α= 0.05.
The Spearman’s correlation r-value and associated p-value were
reported.

III. RESULTS

A. Perceptual Model Correlation

First, we evaluated how the neural representation of haptic
cues in the pre- and post-training conditions related to the
Perceptual Model. Fig. 10 shows the results for the correlations
with the Perceptual Model space, 200 ms before and 800 ms
after the time at which onset, or actuation, of every MISSIVE cue
occurred (0 ms). Significant correlation between the pre-training

Fig. 11. Feature-Based Model correlation results showing correlations be-
tween the Feature-Based Model and brain-based representational space of cues
before and after training. The pre-training correlation results (rpre) between the
brain-based RDMs of the pre-condition and the Feature-Based Model (orange)
and the post-training correlation results (rpost) between the brain-based RDMs
of the post-condition and the Feature-Based Model (blue) are presented. Signif-
icant correlations between the post-training RDMs and Feature-Based Model,
before correction, are marked by blue significance bars. Periods of significance
with correction are marked by asterisks.

RDMs and Perceptual Model, before correction, was found ap-
proximately 180 ms to 220 ms following the onset of MISSIVE
cues. No significant correlation, before correction, was found be-
tween the post-training RDMs and Perceptual Model. Following
correction via the permutation analysis, significant correlation
between the pre-training RDMs and Perceptual Model was only
found at the 9th time bin (r = 0.355, p < 0.05), approximately
180–200 ms following MISSIVE cue actuation.

B. Feature-Based Model Correlation

Next, we evaluated how the neural representation of haptic
cues in the pre- and post-training conditions related to the
Feature-Based Model. Fig. 11 shows the results for the cor-
relations with the Feature-Based Model, considered over the
same time range as the previous correlation results. Significant
correlations between the post-training RDMs and Feature-Based
Model, before correction, were found over three different time
periods. The first period occurred approximately 20–80 ms after
MISSIVE cue actuation. The next two periods of significance
occurred approximately between 300 and 480 ms following
MISSIVE cue actuation; the first of these intervals spanning
300–380 ms and the second ranging from 400–480 ms. No
significant correlation, before correction, was found between the
pre-training RDMs and Feature-Based model. Following correc-
tion via the permutation analysis, significant correlation between
the post-training RDMs and Feature-Based Model were found
over two time periods. The first was approximately 60–80 ms
following MISSIVE cue actuation, corresponding to the 3rd time
bin (r = 0.436, p < 0.01). The second was found approximately
420–480 ms following MISSIVE cue actuation, from the 21st
to 23rd time bin (r = 0.411, p < 0.01; r = 0.326, p < 0.05;
r = 0.305, p < 0.05).
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C. Perceptual to Feature-Based Model Correlation

The Perceptual and Feature-Based model spaces were found
to be significantly correlated with a Spearman’s correlation
coefficient of r = 0.65 (p < 0.0001).

IV. DISCUSSION

We evaluated an EEG-RSA framework as a method to quan-
tify how the neural representation of haptic cues changes after
cross-modal associative training, on a multimodal, haptic device
(The MISSIVE). For a use-case scenario, we developed brain-
based representational spaces capturing the similarity space
of the multimodal haptic cues both before and after training.
Then, to determine if our EEG-RSA framework may be a
reliable approach to track changes that occur in the brain, we
compared these neural representational spaces to models that
were strategically developed to capture how the individual’s
sensitivity to haptic cues may change after exposure. Since the
goal of this use-case analysis was not to track changes specific to
haptic-phoneme learning following association training, we do
not report on phoneme training performance. For our purposes,
the association task was somewhat arbitrary and simply offered
prolonged exposure to the haptic cues.

Our first hypothesis investigated if the neural representation of
haptic cues before training reflected perceptual confusion of the
cue space that a naïve population may experience. We compared
the Perceptual Model space to the neural representation of haptic
cues at every time bin, both before and after training. Results for
the Perceptual Model Correlation showed correlation between
the Perceptual Model and the neural representation of haptic
cues was statistically significant for a small time range before
training, but there was no significant correlation between the
Perceptual Model and neural representational space of cues
after training. Specifically, we found a significant correlation
between the Perceptual Model and the pre-training RDM at the
9th time bin, which is approximately 180–200 ms after the start
of MISSIVE cues. This significant result suggests that prior to
training on the MISSIVE device, the neural response reflects
perceptual confusion that a novice population may experience
with multimodal cues. Individuals interacting with multimodal
haptic cues for the first time may make common perceptual er-
rors as to what features are felt and confuse the overall cues [46],
[56]. This is even more likely when haptic features may cause
masking effects [63], adding complexity to how well subjects
can make out the distinct features of a multimodal haptic cue. It is
understandable that the neural response to MISSIVE cues in the
pre-training condition, before the subject familiarized himself
with the haptic cues via association training, reflects common
perceptual confusion between MISSIVE haptic cues.

Our second hypothesis investigated if the neural representa-
tion of haptic cues after training reflected feature differences
(e.g., vibration, squeeze, stretch) between the cues. We com-
pared the Feature-Based Model space to the neural represen-
tation of haptic cues at every time bin, both before and af-
ter training. Results for the Feature-Based Model Correlation
showed correlation between the Feature-Based Model and the
neural representation of haptic cues was statistically significant

for multiple time regions after training, but there was no signif-
icant correlation between the Feature-Based Model and neural
representational space of cues before training. Specifically, we
found a significant correlation between the Feature-Based Model
and post-training RDMs at the 3rd time bin, approximately
60–80 ms after the start of MISSIVE cues, as well as from the
21st to 23rd time bins, approximately 420–480 ms following
MISSIVE cue actuation. This result, that correlations between
the brain-based representational space and Feature-Based Model
were significant following MISSIVE training, but not prior to
training, suggests that training leads to a sharpening of the
sensory response to the multimodal haptic cues. This is captured
by the brain-based response more precisely tracking the specific
features in each haptic cue post training. If the individual was not
sensitive to the unique features, response to each cue should re-
flect neural patterns that are more similar to each other. However,
if the individual becomes more sensitive to the MISSIVE cue
features, cues that are closer to each other in terms of feature
space should be more similar than cues that are farther apart,
which our results reflect.

Significant correlations between the models and brain RDMs
indicate that the model representational structure is reflected
in the neural patterns. However, the model may not be sig-
nificantly correlated to the brain-based RDMs, which make
up the brain-based representational space, at every time point
considered. Speculatively, this could be due to more significant
regions being time-locked to specific Somatosensory Evoked
Potentials (SEPs), which can occur due to natural or mechanical
stimulation at the surface of the skin [21], [64], [65], [66].
Each MISSIVE cue includes several feature components that
perturb the surface of the skin (e.g., vibration, stretch, and
squeeze), so SEPs present in the 30-channel ERP waveforms
would subsequently influence the 9× 9 brain-based RDMs used
for the correlation analysis over time, where RDMs at time bins
that align with the timing of unique SEP components may hold
the most relevant (i.e., significant) neural information. In future
work, it may be important to characterize SEPs time-locked to
each unique MISSIVE feature, for both the pre- and post-training
conditions, such that we can gain more insight into the timings
of significant results.

Finally, we completed a model to model comparison, and
found that the Perceptual and Feature-Based models were signif-
icantly correlated based on a Spearman’s Rank correlation. This
is an interesting and promising result, as only the pre-training
neural similarity space was significantly correlated with the
Perceptual Model space and only the post-training neural simi-
larity space was significantly correlated with the Feature-Based
Model space. This double dissociation suggests that both models
capture the representational structure of the haptic cues, in terms
of the cues’ similarity to one another, however the EEG is able to
reflect small nuances of the models that capture how the neural
space may shift with training.

Our results show promise for an EEG-RSA approach to track
representational changes at the neural level that occur following
haptic association learning. Specifically, our framework showed
that we can quantify neural changes in how multimodal haptic
cues are represented with respect to other cues. The flexibility of
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this approach allowed us to test models that were strategically
hypothesized and designed to capture how the neural representa-
tional space of unique multimodal haptic cues may change after
training on the wearable device. The first model represented cues
with respect to others based on their perceptual confusability,
where perceptually more similar cues should be confused more
often, and the second model represented cues based on the
similarity of their mechanical features. By testing two different
models, we demonstrated the versatility and robustness of an
EEG-RSA approach and tracked how the sensitivity to haptic
cues changed with extended training on the multimodal device
and specifically how the representational space of the cues may
be structured. We were even able to capture that the nuanced
features of each model were uniquely reflected in the brain-based
similarity spaces, as the two models themselves were correlated,
but only the Perceptual Model was significantly correlated with
the pre-training neural space and only the Feature-Based Model
was significantly correlated with the post-training space.

Other groups have used RSA to investigate haptic per-
ception [39], [40], [41]. However, the only other group, to
our knowledge, that considered an RSA approach inline with
that of tracking neural correlates of haptic learning was Mal-
one et al. [42]. They used an fMRI-RSA approach to inves-
tigate the neural mechanisms of vibrotactile categorization on
a unimodal haptic device, and claim to be the first group to
characterize the neural mechanisms of perceptual categorization
of trained vibrotactile stimuli in humans. In their work, subjects
trained to categorize vibrotactile cues presented on the arm into
two different groups, and then fMRI responses were measured
during a categorization task with the trained stimuli. To eval-
uate the perceptual categorization space of the somatosensory
system, Malone et al. compared the neural (dis)similarity space
to two models, one that was representative of the perceptual
similarity of cues and the other that was representative of the
categories which each stimulus was trained to be in. They
found that their models captured neural representation of cues
and specifically that perceptual and categorical selectivity were
represented in different regions of the brain [42]. However,
their work, as well as the majority of RSA studies investigating
haptic perception [39], [40], [41], is limited to fMRI analysis,
and further restricted to unimodal haptic devices, often utiliz-
ing continuous-time features to transmit vibrotactile cues. Our
results show promise to extend RSA to EEG-based frameworks
while considering cue delivery on multimodal haptic devices.
This is crucial as EEG is more affordable and accessible to
the haptics community, as well as compatible with haptic de-
vices [21]. Furthermore, haptic researchers are moving away
from purely unimodal devices as multimodal devices are be-
coming much more prevalent in haptic applications [1], [46],
[47], [48], [49], [50], [51].

Beyond our promising results, our use-case analysis was
limited to the first phase of successful cross-modal associative
learning, accurate perception of the multimodal cues. In future
work, we plan to extend our approach to the second part of
cross-modal associative learning, where individuals must suc-
cessfully learn and retain mappings between visual or auditory
modalities and that of tactile cues. Our framework could be used

to assess if the brain-based similarity space is shaped by the
representational similarity space of what it is being associated
with, such as phonemes. Although our current analysis may not
provide a comparison to the phonological space, our use-case
analysis provides a good assessment of the potential feasibility
of EEG-RSA to track haptic learning. In future work, we plan
to test our EEG-RSA approach on more participants, to account
for individual variability and further verify the versatility and
robustness of our methodology. Furthermore, it should be noted
that by considering full-scalp EEG, we ignore questions related
to the topology of brain activity due to haptic stimulation.
Although these should be addressed in future work, already we
see evidence that with just four days of practice on the MIS-
SIVE device, there are changes in the overall neural structure.
Specifically, we observe changes in the neural representation
of how these cues are processed, where the individual becomes
better at distinguishing at least the somatosensory features. It
was not obvious that RSA with EEG would capture this, so it
is an exciting finding for using neural signals to track haptic
learning.

V. CONCLUSION

We conducted an exploratory study (N = 1) to evaluate
RSA as a general method to track neural correlates of haptic
learning. We aimed to address if we could track neural changes
associated with training on a multifeatured haptic device with
our framework, and restricted the scope of our analysis to the first
phase of successful cross-modal associative learning, accurate
perception of the multimodal cues. We evaluated how the sensi-
tivity to multifeatured cues changed after training. We developed
two models that were hypothesized to be representative of the
neural space both before and after training, and evaluated if the
sensory space to haptic cues changed with directed practice.
Specifically, we considered if learning on a multifeatured haptic
device made individuals more sensitive to the haptic cues. Re-
sults suggest that, prior to training, the neural representation of
haptic cues reflects perceptual responses to cues experienced
in a naïve population. Training leads to a sharpening of the
sensory response to haptic cues, such that after training the
neural representation of haptic cues starts to reflect the features
of the cues themselves. Overall, our analysis supports feasibility
of an EEG-RSA approach to investigate training for associative
learning on multimodal haptic devices.
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