
2086 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Effect of Robotic Exoskeleton Motion Constraints
on Upper Limb Muscle Synergies: A Case Study

Craig G. McDonald , Member, IEEE, Benjamin J. Fregly , and Marcia K. O’Malley , Fellow, IEEE

Abstract— Evidence exists that changes in composition,
timing, and number of muscle synergies can be correlated
to functional changes resulting from neurological injury.
These changes can also serve as an indicator of level of
motor impairment. As such, synergy analysis can be used
as an assessment tool for robotic rehabilitation. However,
it is unclear whether using a rehabilitation robot to isolate
limb movements during training affects the subject’s muscle
synergies, which would affect synergy-based assessments.
In this case study, electromyographic (EMG) data were
collected to analyze muscle synergies generated during
single degree-of-freedom (DoF) elbow and wrist movements
performed by a single healthy subject in a four DoF robotic
exoskeleton. For each trial, the subject was instructed to
move a single DoF from a neutral position out to a target
and back while the remaining DoFs were held in a neutral
position by either the robot (constrained) or the subject
(unconstrained). Four factorization methods were used to
calculate muscle synergies for both types of trials: con-
catenation, averaging, single trials, and bootstrapping. The
number of synergies was chosen to achieve 90% global
variability accounted for. Our preliminary results indicate
that muscle synergy composition and timing were highly
similar for constrained and unconstrained trials, though
some differences between the four factorization methods
existed. These differences could be explained by higher
trial-to-trial EMG variability for the unconstrained trials.
These results suggest that using a robotic exoskeleton
to constrain limb movements during robotic training may
not alter a subject’s muscle synergies, at least for healthy
subjects.

Index Terms— Electromyography (EMG), rehabilitation
robotics, exoskeletons.

I. INTRODUCTION

SYNCHRONOUS muscle synergies are spatial patterns of
muscle activity that are fixed for a certain family of

biomechanically related tasks, such as arm reaching [1] or
posture correction [2]. They can be thought of as groups
of muscles activating in a fixed balance [3]. When mod-
eled mathematically, each muscle synergy is composed of a
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time-invariant synergy vector and an associated time-varying
neural command. Muscle synergies have been characterized
in the human wrist for the purpose of neurorehabilitation [4];
however, the wrist is not as well studied as the shoulder and
elbow, for which there is evidence that changes in muscle syn-
ergies can be correlated to changes resulting from neurological
injury [5] as well as the level of impairment [6].

Robotic exoskeletons are a tool for rehabilitation interven-
tions, and are often used for assessment of recovery throughout
a rehabilitation protocol [7]. We want to add synergy analy-
sis as another assessment tool in our robotic rehabilitation
protocol. Additionally, we want this assessment to take place
while the patient is in the exoskeleton, because getting in and
out of the device can be time consuming and challenging for
individuals with motor impairments. This raises the question of
how the presence of the device acting with the limb might alter
synergies. The effect of wearable robotic devices on muscle
synergies has been studied in multiple circumstances, includ-
ing point-to-point arm reaching movements moving freely ver-
sus moving inside an exoskeleton [8] and for activities of daily
living performed inside versus outside an exoskeleton [9]. All
results indicate that the shape of the muscle synergy vectors
was preserved across conditions; only the activations of the
synergies were changed.

One objective of this paper is therefore to analyze muscle
synergies for the elbow and wrist, while a subject is inside
the MAHI Exo-II (MEII) exoskeleton, and determine how
constraining the limb to certain joint-isolating movements
might alter synergies. During robotic training, patients using
the MEII perform repetitive, single degree-of-freedom (DoF)
movements with variable assistance/resistance. While doing
so, the remaining three DoFs may be held stationary by the
robot. In order to analyze the effect of those robot constraints
on muscle synergies, we have collected EMG from repeated
trials of single-DoF movements with and without active robot
constraints present. How each anatomical degree of freedom
is handled under the two conditions, referred to as con-
strained (C) and unconstrained (U), is specified in TABLE I.

The use of repeated trials of the same movement raises a
methodological question of how to properly combine repeated
trials when conducting muscle synergy analysis. Methodolog-
ical choices are known to have an effect on muscle synergy
analysis, but there is still a lack of standardization and guid-
ance [10]. We would like to study how different approaches
to analyzing data from repeated trials affects the outcomes of
muscle synergy analysis.

Recordings of EMG under different conditions and for
different trials are often pooled together before muscle
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TABLE I
ROBOT CONTROL MODES: UNCONSTRAINED (U) OR CONSTRAINED

(C). M = MOVING DOF, H = HUMAN STABILIZED STATIONARY DOF,
AND R = ROBOT STABILIZED STATIONARY DOF. MOVEMENTS

ABBREVIATED AS F/E = FLEXION/EXTENSION,
P/S = PRONATION/SUPINATION, AND

R/U = RADIAL/ULNAR DEVIATION

synergy analysis. Thus, variation in muscle activity seen
in the combined data can be explained through varia-
tions in low-dimensional synergy activations. In contrast,
d’Avella et al. argue that averaging EMG recordings from
repeated trials is necessary to boost the signal-to-noise ratio
of the EMG signal, which is stochastic in nature [11]. They
simultaneously acknowledge, however, that averaging repeated
trials also obscures information about any muscle activity that
is correcting for the random physiological variations that are
known to occur in human motor control.

The question of how to combine repeated trials from walk-
ing for muscle synergy analysis was examined more directly
by Oliveira et al. [12], who compared three approaches: fac-
torization of the trials individually (SNG), concatenated
(CNC), and averaged (AVG). Using synergy vectors iden-
tified from the three methods, they found that SVs from
concatenation (CNC) were able to reconstruct longer periods
of muscle activity with the highest accuracy. In particular, they
recommend concatenating at least 20 step cycles to accurately
capture the variation of individual muscle activities.

A secondary contribution of this paper is therefore to
explore methodological differences in synergy analysis when
data from repeated trials are available. We use the concatenated
(CNC), averaged (AVG), and individual trial (SNG) methods
of factorization, as well as a bootstrapping technique (BTS),
to explore the impact the choice of method has on our results.

This paper helps to lay the groundwork for future studies
involving muscle synergy analysis while the human is moving
inside of a robotic exoskeleton. First, we show that, for our
single subject case study, muscle synergy composition and
timing are not significantly affected when a robot is used
to constrain human movements, compared to unconstrained
movements made while a participant’s limb is in the robot.
Second, we show that the methodological choice of how to
combine repeated trials of arm movement data does have an
impact on synergy analysis results.

II. METHODS

A. Case Study Design

We designed a study to compare muscle synergies iden-
tified under two control modes: unconstrained (U) in the

stationary DoFs, and constrained (C) in the stationary DoFs.
A single participant (male, age 23) provided informed consent
according to the protocol approved by the Rice University
Institutional Review Board (FY2018-29). For each of the
two modes, we collected sufficient data to identify mus-
cle synergies underlying the 4 single-DoF movements of
the MAHI Exo-II: elbow flexion/extension (E-Flx/Ext), fore-
arm pronation/supination (F-Pro/Sup), wrist flexion/extension
(W-Flx/Ext), and wrist radial/ulnar deviation (W-Rad/Uln).
For each degree of freedom, the participant moved from a
neutral joint position to a target position at either end of the
range of motion, and then back to the neutral position. In this
way, they were duplicating typical movements that would
occur inside the exoskeleton during a training session with
a physical therapist. This combination of an outbound (OB)
and inbound (IB) movement was repeated 25 times for each of
the 2 possible targets, for each degree of freedom. The result
was 400 trials in the unconstrained mode to be compared with
400 trials in the constrained mode.

B. Hardware

The MAHI Exo-II, shown in Fig. 1, is a robotic exoskele-
ton designed for the rehabilitation of the elbow and wrist
joints [13]. It features serially connected joints for elbow flex-
ion/extension (E-Flx/Ext) and forearm pronation/supination
(F-Pro/Sup), and a parallel revolute-prismatic-spherical mech-
anism that achieves wrist flexion/extension (W-Flx/Ext) and
wrist radial/ulnar deviation (W-Rad/Uln).

In all phases of the experiment, the robot was
position-controlled with proportional derivative feedback.
When robot motion was required, the robot followed a
pre-programmed reference trajectory.

The Delsys Bagnoli EMG system provides eight channels
of surface EMG data. The variable gain for the channel
amplification was set to 1000, and analog band-pass filtering
was applied by the Bagnoli system at 20 Hz–450 Hz to remove
any movement artifacts or aliasing. All robot and EMG data
were acquired with the Quanser Q8-USB and sampled at
1kHz.

C. Experimental Protocol

1) Setup: The Delsys Bagnoli EMG electrodes were placed
according to SENIAM guidelines [14] on the following mus-
cles: biceps brachii (BB), triceps brachii (TB), pronator teres
(PT), supinator (S), flexor carpi radialis (FCR), extensor carpi
ulnaris (ECU), extensor carpi radialis longus (ECRL), and
flexor carpi ulnaris (FCU). Neoprene wrapping was used to
insulate the EMG electrodes from the metal of the exoskeleton
and the electrical interference from the motors (the neoprene
wrapping is not shown in Figure 1).

The height and shoulder abduction angle of the MAHI-Exo
II were adjusted so the subject could hold their arm in a natural
position with the elbow flexed while seated. The position of
the chair relative to the exoskeleton was adjusted to keep
both shoulders at equal heights and to keep the shoulder in
the scapular plane (∼30◦ from the frontal plane). Subjects
were instructed not to move their torsos or shoulders during
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Fig. 1. Labeling used to describe the 16 possible types of trials used in a data set, referring to outbound (OB) or inbound (IB) elbow flexion (solid) or
extension (striped), forearm pronation (solid) or supination (striped), wrist flexion (solid) or extension (striped), or wrist radial (solid) or ulnar (striped)
deviation. Pictured below is the subject’s arm inside the MEII as they move along each of the anatomical degrees of freedom. Each group of repeated
trials contains 16 of the 8-by-101 data segments, and the full data set comprises the 256 trials of collected in both the unconstrained and constrained
conditions.

Fig. 2. Example of experimental data generated as a subject performs elbow flexion-extension inside the robot. The elbow joint angular position
and velocity are plotted on the left, and the EMG activity for all 8 electrodes during that same time is shown on the right. Elbow flexion is defined
as the positive direction, and elbow horizontal is defined as the 0 rad position, so the movements depicted are: outbound elbow flexion (OB E-Flx),
inbound elbow extension (IB E-Ext), outbound elbow extension (OB E-Ext), and inbound elbow flexion (IB E-Flx).

testing but restraints were not used to enforce this. The wrist
handle location was positioned to provide a maximum range
of motion while the subject held it in a natural grip.

The MAHI Exo-II is equipped with an adjustable counter-
weight for passive gravity compensation of the elbow joint.
The elbow was set so that the subject was able to be at rest
while their elbow was flexed 90◦, which was defined to be
the neutral elbow position. The exoskeleton can be configured
for left and right handed individuals, so the dominant right
arm was used by the subject. Once inside the exoskeleton,
the participant was strapped to the robot at the upper forearm
and the hand.

D. Kinematic Data Processing

During an experimental session, robot encoders measured
joint angles while EMG electrodes recorded activity on all
8 selected muscles. A real example of the data generated over
a short window containing several trials is given in Fig. 2.

The first step of our data analysis was to segment the data
into individual trials based on the joint velocity at the moving
joint. A 4th-order low-pass Butterworth filter with a cutoff
frequency of 30Hz was first applied to the velocity signal,
as can be seen in Fig. 2. Then, a fixed velocity threshold

of 0.01rad/s was used to mark the beginning and end of
a movement. Rohrer et al. [15] used a velocity threshold of
2% of the peak speed of a given trial, but we chose a
fixed value to avoid any sensitivity to variation in velocity
peak magnitude from trial to trial. The selected threshold of
0.01rad/s was typically around 0.5%–1% of the peak velocity
of a trial. Finally, for each trial, we identified the contiguous
segment of movement above the velocity threshold with the
largest velocity integral—which was also moving in the correct
direction–as the motion segment to be analyzed.

Next, we screened for movements that were not kinemat-
ically similar to the rest, since we wanted to characterize
repeatable patterns of EMG activity. Shapes of velocity pro-
files were compared to a typical “bell curve”, or “minimum
jerk trajectory”. Highly skewed segments were trimmed so that
they were better aligned with more symmetric segments, and
trials that did not pass all shape- and magnitude-based criteria
were removed from the data set. The remaining trials were
grouped based on all factors (mode, DoF, target, direction)
and then checked for outliers in both normalized position and
non-normalized velocity. Any outliers were also removed from
the data set.

Finally, the position trajectories of the stationary DoFs were
checked for significant movement. For each trial, if the user
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moved more than 50% of the distance from neutral position
to target position in a stationary degree of freedom, then that
trial was considered to be a multi-DoF movement and was
removed from the data set.

All remaining trials were then counted in their groupings
based on the experimental factors. The smallest group was
composed of 16 trials (unconstrained mode, outbound elbow
flexion, i.e., going from elbow neutral to elbow flexed).
In order to have an equal number of trials in each group,
16 trials were selected for each group based on which had the
highest variance across the EMG signals.

E. EMG Data Processing

All EMG data were acquired at a sampling rate of 1kHz.
After data collection, the following signal processing steps
were applied to each EMG channel to convert the raw
EMG signal to a non-negative envelope: 4th-order Butterworth
band-pass filter at 20 Hz–450 Hz (for removal of movement
artifacts and aliasing), full-wave rectification (absolute value),
4th-order Butterworth low-pass filter at 8.05Hz, full-wave
rectification (absolute value).

Fig. 2 shows an example of the raw EMG recordings after
band-pass filtering in light gray, with the non-negative EMG
envelope overlaid in black. The low-pass filter cutoff frequency
of 8.05Hz was derived from the estimated average duration of
a movement cycle, using the formula fcutof f = 7/dur . This
formula has been used for synergy analysis of muscles in the
lower limb involved in walking [10]. A movement cycle was
defined here as a pair of outbound and inbound movements
and was calculated to be two times the average duration of all
movement segments.

The start and end of each trial, as determined from the
kinematic data, were used to segment the EMG envelope after
all filtering was applied. The start of each EMG segment was
shifted backward by 200ms relative to the onset of movement,
due to the physical delay between an EMG signal and the
actual joint motion that it generates [1]. The end of each EMG
segment was not shifted in order to capture all relevant EMG
activity.

Normalization of EMG data is generally required for muscle
synergy analysis. The maximum value recorded on each of
the 8 channels was found within the 16-trial data set, and
each channel was then divided by this maximum value so that
it would reach a maximum value of 1 within the data set
being analyzed. This is equivalent to the “MaxOver” method
of normalization used in [10].

Lastly, the data were resampled in time using linear inter-
polation to be 101 data points long at equal spacing. Hence,
every trial now contained samples at normalized discrete times
of 0 to 100 [10].

F. Synergy Factorization

Given a time series of EMG sample vectors �x(t) concate-
nated into a N-by-M matrix X , where M is the number of
time samples, the approximation of the data by K synergies
can be rewritten as X ≈ W H . The number of synergies, K ,
is the inner dimension of the matrix product and is less than

Fig. 3. Key: labeling key used to describe the 16 possible types of
trials used in a data set, referring to outbound (OB) or inbound (IB)
elbow flexion (solid) or extension (striped), forearm pronation (solid) or
supination (striped), wrist flexion (solid) or extension (striped), or wrist
radial (solid) or ulnar (striped) deviation. Factorization Methods: illus-
tration of the formation of the input data used in the four methods of
factorization considered here: concatenation (CNC), averaging (AVG),
single trials (SNG), and bootstrapping (BTS), respectively.

the original number of EMG channels N . The columns of
W are the synergy vectors (SVs), and the rows of H are the
time-varying neural commands (NCs).

The algorithm most commonly used for finding the elements
of W and H that best approximate X is called non-negative
matrix factorization (NNMF), and the details of its implemen-
tation are given in [16]. After factorization, the product of W
and H can be considered a reconstruction of the original data,
X , and metrics of comparison between the two can be used
to determine the quality of reconstruction.

We have chosen to compare four different methods of
factorization of this data set. All four approaches make use of
the MATLAB function nnmf to perform non-negative matrix
factorization, and only differ by the input data given to the
function.

The EMG envelopes of individual trials that are created by
our data segmenting process are each stored as an 8-by-101
matrix Xtrial , illustrated in Fig. 3. For all four methods, the tri-
als were first grouped by experimental condition, meaning
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each group of 16 trials has the same control mode, degree of
freedom, target, and direction (e.g., unconstrained, outbound
elbow flexion, abbreviated U OB E-Flx). This first step has
also been illustrated in Fig. 3. There are 32 such groups in
total, 16 for each control mode. In all four methods, we wish
to end up with SVs and NCs from the unconstrained and
constrained group that can be directly compared, and we want
all 16 groups of same-condition trials to contribute equally to
the synergy decomposition.

The first method of factorization is concatenation (CNC)
of all trials (Fig. 3). Trials from each condition are horizon-
tally concatenated, resulting in a 8-by-101·16 data matrix.
Then, for each control mode, all 16 groups are horizon-
tally concatenated, resulting in an 8-by-101·256 data matrix.
Factorization of a single XC NC for each mode results in
a single set of synergies for the unconstrained mode to be
compared to a single set of synergies for the constrained
mode.

The second method is averaging (AVG) of trials from
the same condition (Fig. 3). The EMG envelopes from each
channel are averaged for each group of trials, resulting in an
8-by-101 data matrix. Then, for each control mode, all
16 groups are horizontally concatenated, resulting in a 8-by-
101·16 data matrix. Again, factorization of a single X AV G

for each mode results in a single set of synergies for the
unconstrained mode to be compared to a single set of synergies
for the constrained mode.

The third method is repeatedly concatenating single (SNG)
trials from each condition, for all 16 trials (Fig. 3). More
specifically, for each group we assign each trial a number
1 through 16 according to the order in which they were
recorded, and then horizontally concatenate all trials of the
same number. This yields 16 data matrices Xn

S NG of size
8-by-101·16, each containing a single trial from each con-
dition. Each Xn

S NG is then factored into a set of synergies,
meaning there are 16 sets of synergies for the unconstrained
mode to be compared with 16 sets of synergies for the
constrained mode. Grouping trials based on the order in which
they were recorded could be considered a naïve way to sample
the repeated trials, given there is no meaningful relationship
between the trials that have been concatenated together for
factorization. However, it is a simple and fast way to generate
a distribution of synergies from data sets with repeated trials,
which is sometimes desirable.

The fourth and final method is using bootstrapping (BTS) to
resample the trials from each condition over many repetitions,
and then perform factorization as in the first method (CNC)
with concatenation of all trials (Fig. 3). Bootstrapping is a
strategy commonly used in statistics to obtain information
about the uncertainty of a parameter, and has been used to
resample repeated trials of EMG data for muscle synergy
analysis [17]. The purpose of this method is to obtain an
estimate of the distribution of synergies seen from a population
similar to the data sample from this single subject [18].
When applying the bootstrapping technique, it is important
that the data are always resampled at the same size as the
original sample, and that it is sampled with replacement. This
means that for each condition, one of the trials was randomly

TABLE II
PARAMETERS USED FOR MATLAB NNMF FUNCTION

chosen 16 times to yield a new set of 16 trials with possible
repetitions.

The bootstrapping procedure must be repeated many times
for the estimate to be accurate, so we chose to use 100 rep-
etitions. Each repetition yields a data matrix Xn

BT S of size
8-by-101·256 to be factored into a set of synergies, resulting
in 100 sets of synergies for the unconstrained mode to be
compared with 100 sets of synergies for the constrained
mode. Because factorization needs to be performed at every
repetition, the procedure is computationally costly, which is
why 100 repetitions were chosen instead of 1000 as in previous
analyses of muscle synergies [17].

All major results will be reported for each of the four
methods described, when appropriate.

1) Factorization Repeatability: The NNMF algorithm is not
guaranteed to find a global minimum in the residual between
W ·H and X [16]; therefore, the algorithm must be repeated a
sufficient number of times with randomized initial conditions
in order to calculate a likely global minimum.

Using nnmf function in MATLAB to perform NNMF,
the parameter settings listed in TABLE II were necessary to
obtain sufficiently repeatable results for this data set. We used
the multiplicative update (‘mult’) version of nnmf instead
of alternating least-squares (‘als’), as is recommended
by MATLAB documentation when using multiple replicates.
Values were tuned for XC NC , assuming they would also apply
to the Xn

BT S . Likewise, values were also tuned for X AV G ,
assuming those values would also apply to the Xn

S NG . Some
of the parameters given in TABLE II could be adjusted for
better repeatability, but this choice is ultimately a tradeoff
between precision and computation time. It is also noteworthy
that MATLAB documentation suggests that for most optimiza-
tion problems, setting ‘TolFun’ and ‘TolX’ any smaller
than 1 × 10−6 will not have much effect. This was not found
to be the case for synergy factorization, particularly when
working with the smaller data set, X AV G .

2) Synergy Normalization,Matching, and Sorting: There is no
one correct way to scale the factorization output, and various
methods have been used successfully [10]. We have chosen
to normalize the synergy vectors to have unit magnitude, thus
leaving the neural commands to be scaled accordingly without
other constraints. Normalizing SVs to have unit magnitude
focuses on the relative weighting of the specific muscles
within a synergy as the most important characteristic, and then
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interprets NCs as conveying the level of recruitment of an
individual synergy.

After normalization, SVs from different data sets can be
matched based on their similarity in shape, which we have cal-
culated using the cosine angle—the normalized inner-product
of two vectors. Therefore, SVs to be compared between the
unconstrained and constrained conditions were provided to
the K-means clustering algorithm to identify individual clus-
ters (synergies) based on the cosine distance metric. Checks
on the clustering algorithm’s output were added to ensure
that for each set of synergies coming from an individual
factorization, one synergy was assigned to each cluster. These
checks were passed in all data analysis, indicating that the
synergies were easily differentiated from each other. Finally,
synergies were sorted by maximum weighted muscle and
magnitude (while preserving matching) for consistency of
presentation.

3) Data Dimensionality: The dimensionality of a data set
is used in this context to refer to the minimum number
of independent variables—synergies—needed to accurately
reconstruct the original data. The 8-channel EMG data that
we collected can be factored into any number of synergies
between 1 and 8, 8 being the smaller dimension of the data
matrix X . Choosing 8 synergies simply returns the original
8 EMG channels unaltered. Therefore, it is not considered in
our analysis. Choosing a number smaller than 8 will generate
synergy vectors that are weighted combinations of the different
EMG channels, similar to a principal component analysis.

In order to choose the optimal and parsimonious number
of synergies, we examined metrics for the quality of recon-
struction at each number of synergies. The dimensionality of
the data was then estimated to be the minimum number of
synergies that met our criteria for goodness of reconstruction.
To avoid over-fitting, the data were split into “training” and
“testing” subsets when estimating the number of synergies
needed—a technique known as cross validation [19]. Factor-
ization was performed on the training data to obtain a set
of synergy vectors, which were then used to reconstruct the
testing data. The process of randomly splitting and factoring
the data was repeated 100 times, as in [20], with checks to
ensure no permutations were repeated.

Cross validation had to be carried out differently for each
of our factorization methods. For the CNC and AVG methods,
each data set was randomly split into a training set and a
testing set, with 50% of the data used for training (8 out
of 16 trials) and the remaining 50% used for testing. The
trials were split such that for each type of trial, 8 went to
the training set and 8 went to the testing set. For the SNG
method, only one trial of each type can be used at a time;
therefore, a single trial number (the n index in Fig. 3) was
randomly assigned to training and another single trial number
was randomly assigned to testing, for each iteration. Finally,
for the BTS method, trials were randomly split into 50%
training and 50% testing, as in the first two methods. Then,
the bootstrapping procedure of repeated random sampling with
replacement was applied to the training and testing data. Due
to the computational cost of this procedure, it was only done
once.

Fig. 4. Variance accounted for (VAF) as a measure of the quality of
reconstruction by synergies of the unconstrained and constrained data
sets, using cross validation, and plotted as a function of the number of
synergies used in the factorization. Results were generated for each
of the four methods of factorization: concatenation (CNC), averaging
(AVG), single trial (SNG), and bootstrapping (BTS). Individual data points
representing the means from the 100-fold cross validation are plotted
at each number of synergies, except in the case of BTS, where cross
validation was only performed once. For each data series, the global
VAF crosses the designated threshold of 90% (dotted line) after either 3
or 4 synergies are used.

After each factorization, we compute the quality of recon-
struction of the original data using the variance accounted for
(VAF). The global VAF has the simple formula 1−SSE/SST ,
where SSE is the sum of squares due to error, and SST is the
total sum of squares [21]. VAF has become a commonly used
metric for muscle synergy analysis [22], [23]; this statistic
is generally more stringent than the Pearson’s correlation
coefficient (r-squared), because it measures similarity in both
the shape and magnitude of the signals [22].

When the VAF for a certain data set are plotted versus
the number of synergies used in the reconstruction, all VAF
values begin to approach 1 as the number of synergies nears
the number of EMG channels, 8—at which point all values
must equal 1. The optimal number of synergies was chosen
to be the number at which the VAF crossed above a threshold
of 0.9, or 90%, similar to threshold criteria used in previous
studies [2], [10], [24].

Finally, the cosine similarity metric comparing two vectors
that was used in the synergy vector matching algorithm was
also used to compare synergy vectors between the uncon-
strained and constrained modes. A similarity of 1 indicates
that the vectors are identical, and a similarity of 0 means
the vectors are orthogonal. Cosine similarity was calculated
between synergies from the unconstrained and constrained
modes for each method of factorization.

III. RESULTS

A. Data Dimensionality

After cross-validation, the mean of the global VAF curve for
the unconstrained data set (shown in Fig. 4) crosses the chosen
threshold of 90% at 3 synergies, regardless of the method
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Fig. 5. CNC factorization of unconstrained and constrained data into 4 synergies, and reconstruction of the input data. From left to right: (a) synergy
vectors, (b) neural commands, (c) unconstrained reconstruction, and (d) constrained reconstruction. Neural commands and reconstruction only
show one trial from each subset for more compact visual representation.

of factorization used. Whereas the mean of the global VAF
curve for the constrained data set crosses 90% at 4 synergies
for all factorization methods except AVG (3 synergies). For
three of the methods of factorization—CNC, SNG, and BTS—
there are only minute differences in the global VAF results,
despite a different number and combination of trials being
used for each. Averaging the trials before factorization (AVG),
on the other hand, led to higher global VAF values and both
the unconstrained and constrained conditions crossing the 90%
threshold at 3 synergies.

It is easiest to directly compare muscle synergies between
two data sets when the same number of synergies have been
used in factorization. Therefore, in accordance with the VAF
curves found from the CNC, SNG, and BTS methods of
factorization, 4 synergies were extracted from the data sets
for further analysis and visualization, as it is the number at
which the VAF for both data sets has passed the threshold.

B. Synergy Factorization

Factorization of the concatenated (CNC) data into 4 syner-
gies (Fig. 5) reveals a high degree of similarity between the
unconstrained and constrained modes. The synergy vectors,
represented by the bar graph in Fig. 5(a), each have significant
contributions from only one or a few of the muscles recorded.
For each of the four synergies extracted from the unconstrained
data set (see Fig. 5(c)), there is an obvious counterpart from
the constrained data set (Fig. 5(d)) that was found through our
automated synergy matching procedure.

The first synergy is responsible for the activation of BB
(biceps brachii, elbow flexion), the second synergy is mainly
responsible for the activation of PT (pronator teres, forearm
pronation) and FCR (flexor carpi radialis, wrist flexion),
the third synergy is mainly responsible for the activation
of S (supinator, forearm supination) and ECU (extensor carpi
ulnaris, wrist etension), and the fourth synergy is responsible
for the activation of ECRL (extensor carpi radialis longus,
wrist radial deviation). Thus, the first synergy is associated
purely with elbow flexion, and the remaining three synergies
are blended in their contributions to the movements of the
wrist, but with clear preference for direction.

The neural commands shown in Figure 5(b) include only
one trial from each of the 16 subsets (see Fig. 3 Key), as all
256 trials used in this data set could not be visualized.
Light gray vertical dotted lines separate the individual trials.
The plots shown are, however, representative of the full
data set, and also show similarity between the unconstrained
and constrained data sets. There is one notable difference
found in the neural commands of the first synergy, which is
effectively the activity of the biceps, during trials of forearm
pronation/supination. Here, the biceps activity is near zero in
the constrained case because the robot is supporting the weight
of the arm, while the biceps is actively maintaining the flexed
arm position in the unconstrained case.

The plots in Figures 5(c) and 5(d) illustrate how well
the 4 synergies can reconstruct the EMG input data, with
separate plots showing the unconstrained (darker) and con-
strained (lighter) data sets. A gap between the EMG envelope
and the summed synergy contributions indicates EMG activity
that is not described by the muscle synergy factorization. For
example, it can also be seen that with just 4 synergies we
cannot describe the activity of the triceps, which is present
only during elbow extension movements. Otherwise there are
only a few small gaps between the recorded and reconstructed
signals, as is expected when the global VAF is above 90%.
The individual EMG channels are each composed of mainly
one synergy.

These factorization results can be compared with those of
the averaging (AVG) method in Fig. 6, the single trial (SNG)
method in Fig. 7, and finally the bootstrapping (BTS) method
in Fig. 8. The muscle synergies found by these other meth-
ods were mostly identical, with the third synergy being the
exception.

In Fig. 6, the results of the single AVG factorization show
that the third synergy heavily weights the supinator (S) in
the unconstrained case and the flexor carpi radialis (FCR)
in the constrained case. It can also be seen that the activity
of the supinator is absorbed into the first synergy for the
unconstrained case, unlike in the CNC results.

The SNG and BTS methods generated multiple factoriza-
tions for the two conditions being compared, and so the
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Fig. 6. AVG factorization of unconstrained and constrained data into 4 synergies, and reconstruction of the input data. From left to right: (a) synergy
vectors, (b) neural commands, (c) unconstrained reconstruction, and (d) constrained reconstruction. Since AVG yields a single set of synergies, this
visually represents all output data.

TABLE III
SYNERGY VECTOR SIMILARITY: UNCONSTRAINED VS. CONSTRAINED

synergies in Fig. 7 and Fig. 8 are shown as means and standard
deviations. Focusing on the distributions of the synergy vec-
tors, both the SNG and BTS methods reveal large variations
in the primary muscles of the second and third synergies—
muscles contributing to wrist pronation/supination and wrist
flexion/extension. The trial-to-trial variation is, however, much
more significant for the data taken in the unconstrained con-
dition.

The visual comparison of the synergy vectors in Fig. 5 – 8
is quantified in TABLE III with the cosine similarity metric.
The first, second, and fourth synergies are highly similar after
all four methods of factorization, but the third synergy (mainly
involved in wrist supination and extension) was shown to
differ, depending on the method of factorization.

IV. DISCUSSION

For this data set collected from a single subject, our estimate
of the data dimensionality using VAF showed small differences
in the number of synergies to be selected for the unconstrained
vs. constrained condition. The global VAF curves shown in
Fig. 4 were very similar across three of the methods of factor-
ization, while the averaging method (AVG) yielded a slightly
different pair of curves that pointed toward the same number of
synergies being needed for the unconstrained and constrained
conditions. This result highlights the fact that there is a more
fundamental difference between the AVG method and the other

three methods of factorization—in AVG the EMG data of
multiple trials was averaged before factorization, while in the
other methods EMG data were never averaged across trials.
Averaging EMG data across trials obscures variations in the
shape and timing of muscle activation for individual trials,
which is not necessary for the NNMF algorithm to uncover the
synergistic activation of different muscles. Therefore, we do
not recommend this method of factorization when looking to
extract synergy vectors and compare them across conditions.

Regarding the factorization results from the CNC method
in Fig. 5, all four synergy vectors extracted from the two data
sets are very similar in shape; the cosine similarity metric
reported in TABLE III confirms this. Taken by itself, this is
preliminary evidence that the active robot constraints did not
alter the muscle synergies in this task.

In contrast, the factorization results from the AVG method,
shown in Fig. 6 and TABLE III, report less similarity in
the two sets of synergies. The third synergy, originally con-
tributing to wrist supination and extension, appears to take
on a different role for the unconstrained data set. However,
the results of the SNG and BTS methods in Fig. 7 and
Fig. 8 offer a clearer explanation for this difference. The large
error bars on the weighting of certain muscles in the synergy
vectors—mostly for the unconstrained data set—indicate the
variability in synergy vector shape based on the trials included
in factorization.

The larger trial-to-trial variation in synergy vector shape
for data collected in the unconstrained case is expected, as the
user is not being aided by the robot to move on a precise
trajectory. Ultimately, the synergy vectors generated by the
CNC, SNG, and BTS methods show a close similarity between
the unconstrained and constrained data sets, TABLE III. The
AVG method distorts the information contained in the trial-
to-trial variation, making it seem that the third synergy is
very different between the two conditions, while the SNG
and BTS methods clarify that though there is variability in
the trials, synergies vectors from the two conditions are much
more similar than not.

Analyzing the factorization results across the four methods
used, the data from this single subject show that when the
robot is actively constraining the user to move a single degree
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Fig. 7. SNG factorization of unconstrained and constrained data into 4 synergies, and reconstruction of the input data. From left to right: (a) synergy
vectors, (b) neural commands, (c) unconstrained reconstruction, and (d) constrained reconstruction. Synergy vectors, neural commands, and
reconstruction have been averaged across SNG factorizations for more compact visual representation. Synergy vector error bars show ± SD across
factorizations. Neural commands show ± SD across factorizations.

Fig. 8. BTS factorization of unconstrained and constrained data into 4 synergies, and reconstruction of the input data. From left to right: (a) synergy
vectors, (b) neural commands, (c) unconstrained reconstruction, and (d) constrained reconstruction. Synergy vectors, neural commands, and
reconstruction have been averaged across BTS factorizations for more compact visual representation. Synergy vector error bars show ± SD across
factorizations. Neural commands show ± SD across factorizations.

of freedom of elbow or wrist, the variability in the muscle
synergies from trial to trial is reduced, but the underlying
muscle synergies of the task are not altered by the robot
constraints.

Finally, the CNC, SNG, and BTS methods of factorization
provided results that were consistent with each other. The CNC
method, however, could provide no information on inter-trial
variation in synergies. The BTS method was included in this
analysis as a more appropriate (and more time consuming)
way to repeatedly sample the distribution of trials and estimate
the distribution of the synergy vectors, when compared to
the SNG method. Still, the results of the SNG and BTS
methods were very similar, which supports the possible usage
of simpler methods such as SNG when approximating synergy
distributions from repeated trials.

A major limitation of this study is its inclusion of only
a single participant, which limits our ability to draw more
general conclusions from this data set. Due to the significant
computational algorithm development required for this work,
we have chosen to focus the present study on providing a

detailed explanation of the methods developed to answer the
questions being considered. This work is also limited by its
ability to only investigate a part of the robotic assistance
necessary in a rehabilitation protocol, namely, the constraint of
stationary degrees of freedom. In a typical rehabilitation set-
ting, these constraints would be combined with active robotic
assistance or resistance at the moving DoF, depending on the
patient’s ability. However, both forms of robotic interaction
affect the physical task being performed by the patient, and
it is reasonable to study them in isolation to understand how
each component of the human-robot interaction can potentially
alter muscle synergies.

V. CONCLUSION

In this paper, we explored the identification of synchronous
muscle synergies in the muscles controlling the elbow and
wrist, and the possible effects of robot-imposed task con-
straints on the “neural constraints” represented by muscle syn-
ergies. For a single subject, we collected EMG from repeated
trials of single-DoF movements with and without active robot
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constraints present, and compared the resulting synergy vec-
tors calculated from the two conditions. We also examined
how different approaches to analyzing data from repeated trials
affects the outcomes of muscle synergy analysis.

The results of this single-subject case study suggest that
active robot constraints for isolating single-DoF movements
of the elbow and wrist do not alter the muscle synergy com-
position, and that the question warrants further investigation.
We extracted 4 muscle synergies from the data collected in
the unconstrained and constrained conditions, and found the
shapes of these synergies to be very similar (>0.94 cosine
similarity) when all of the trials were concatenated (CNC).

We found that the methodological choice of how to combine
repeated trials of arm movements did have an impact on the
results in the case of averaging trials versus concatenation.
In particular, the method of averaging trials before factoriza-
tion (AVG) obscured the fact that all four synergies extracted
from the two data sets were similar in shape, despite there
being some variability in the synergy shapes introduced by the
repeated trials. The two methods introduced for producing a
distribution of synergy factorizations from the repeated trials
(SNG and BTS) allowed for more in-depth analysis of the
results. Future work involving more participants is needed to
verify this conclusion as well.

Most importantly, our results suggest that constraining the
stationary degrees of freedom during a single-DoF movement
inside the exoskeleton has little to no effect on the under-
lying muscle synergies used in the task, while simultane-
ously reducing trial-to-trial variability in the muscle synergies
extracted from the data. If these conclusions hold for a greater
number of participants, then this knowledge can be applied
to designing future experiments that investigate the robot’s
ability to change a user’s muscle synergies for the purpose of
neurorehabilitation.

REFERENCES

[1] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of
fast-reaching movements by muscle synergy combinations,” J. Neurosci.,
vol. 26, no. 30, pp. 7791–7810, 2006.

[2] S. A. Chvatal and L. H. Ting, “Common muscle synergies for balance
and walking,” Frontiers Comput. Neurosci., vol. 7, p. 48, Jan. 2013.

[3] M. C. Tresch, V. C. K. Cheung, and A. d’Avella, “Matrix factoriza-
tion algorithms for the identification of muscle synergies: Evaluation
on simulated and experimental data sets,” J. Neurophysiol., vol. 95,
pp. 2199–2212, Apr. 2006.

[4] M. Semprini, A. V. Cuppone, I. Delis, V. Squeri, S. Panzeri, and
J. Konczak, “Biofeedback signals for robotic rehabilitation: Assessment
of wrist muscle activation patterns in healthy humans,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 25, no. 7, pp. 883–892, Jul. 2017.

[5] V. C. Cheung et al., “Muscle synergy patterns as physiological markers
of motor cortical damage,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 36,
pp. 14652–14656, 2012.

[6] J. Roh, W. Z. Rymer, and R. F. Beer, “Evidence for altered upper
extremity muscle synergies in chronic stroke survivors with mild
and moderate impairment,” Frontiers Hum. Neurosci., vol. 9, p. 6,
Feb. 2015.

[7] V. D. Tran, P. Dario, and S. Mazzoleni, “Kinematic measures for
upper limb robot-assisted therapy following stroke and correlations
with clinical outcome measures: A review,” Med. Eng. Phys., vol. 53,
pp. 13–31, Mar. 2018.

[8] E. Pirondini et al., “Evaluation of the effects of the arm light exoskeleton
on movement execution and muscle activities: A pilot study on healthy
subjects,” J. NeuroEng. Rehabil., vol. 13, no. 1, p. 9, Dec. 2016.

[9] A. Chiavenna, A. Scano, M. Malosio, L. Molinari Tosatti, and
F. Molteni, “Assessing user transparency with muscle synergies during
exoskeleton-assisted movements: A pilot study on the LIGHTarm device
for neurorehabilitation,” Appl. Bionics Biomech., vol. 2018, pp. 1–10,
Jun. 2018.

[10] C. L. Banks, M. M. Pai, T. E. McGuirk, B. J. Fregly, and C. Patten,
“Methodological choices in muscle synergy analysis impact differentia-
tion of physiological characteristics following stroke,” Frontiers Comput.
Neurosci., vol. 11, p. 78, Aug. 2017.

[11] A. d’Avella, A. Portone, and F. Lacquaniti, “Superposition and
modulation of muscle synergies for reaching in response to a change
in target location,” J. Neurophysiol., vol. 106, no. 6, pp. 2796–2812,
Dec. 2011.

[12] A. S. Oliveira, L. Gizzi, D. Farina, and U. G. Kersting, “Motor modules
of human locomotion: Influence of EMG averaging, concatenation,
and number of step cycles,” Frontiers Hum. Neurosci., vol. 8, p. 335,
May 2014.

[13] K. D. Fitle, A. U. Pehlivan, and M. K. O’Malley, “A robotic exoskeleton
for rehabilitation and assessment of the upper limb following incomplete
spinal cord injury,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Seattle, WA, USA, May 2015, pp. 4960–4966.

[14] B. Freriks and H. Hermens, “European recommendations for surface
electromyography,” Roessingh Res. Develop., vol. 8, no. 2, pp. 13–54,
2000.

[15] B. Rohrer et al., “Movement smoothness changes during stroke recov-
ery,” J. Neurosci., vol. 22, no. 18, pp. 8297–8304, Sep. 2002.

[16] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix fac-
torization,” in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556–562.

[17] V. C. K. Cheung, A. d’Avella, and E. Bizzi, “Adjustments of motor
pattern for load compensation via modulated activations of muscle
synergies during natural behaviors,” J. Neurophysiol., vol. 101, no. 3,
pp. 1235–1257, Mar. 2009.

[18] B. Efron, “Bootstrap methods: Another look at the jackknife,” Ann.
Statist., vol. 7, no. 1, pp. 569–593, Jan. 1979.

[19] V. C. K. Cheung, A. d’Avella, M. C. Tresch, and E. Bizzi, “Central
and sensory contributions to the activation and organization of mus-
cle synergies during natural motor behaviors,” J. Neurosci., vol. 25,
pp. 6419–6434, Jul. 2005.

[20] J. Roh, W. Z. Rymer, and R. F. Beer, “Robustness of muscle syn-
ergies underlying three-dimensional force generation at the hand in
healthy humans,” J. Neurophysiol., vol. 107, no. 8, pp. 2123–2142,
Apr. 2012.

[21] J. H. Zar, Biostatistical Analysis. London, U.K.: Pearson, 1999.
[22] G. Torres-Oviedo and L. H. Ting, “Muscle synergies character-

izing human postural responses,” J. Neurophys., vol. 98, no. 4,
pp. 2144–2156, Oct. 2007.

[23] S. A. Chvatal, G. Torres-Oviedo, S. A. Safavynia, and L. H. Ting,
“Common muscle synergies for control of center of mass and force in
nonstepping and stepping postural behaviors,” J. Neurophysiol., vol. 106,
pp. 999–1015, Aug. 2011.

[24] M. Coscia et al., “The effect of arm weight support on upper limb
muscle synergies during reaching movements,” J. NeuroEng. Rehabil.,
vol. 11, no. 1, p. 22, 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


