
  

  

Abstract— The fundamental goal of robot impedance control 
is to shape a given system’s behavior to match that of a 
predefined desired dynamic model. A variety of techniques are 
used throughout the literature to achieve this goal, but in 
practice, most robots ultimately rely on straightforward 
architectures akin to PD control that have intuitive physical 
interpretations convenient for the control designer. This is 
particularly true of systems employing series elastic actuators 
(SEAs) in spite of the potential that more complex controllers 
have for improving impedance rendering in devices with higher 
order dynamics. The model matching framework presented 
here leverages H∞ control approaches, that are yet to gain 
widespread use in the robotics community, to significantly 
simplify the impedance control design task. This framework 
provides a novel means by which to synthesize a dynamic 
feedback controller for an SEA that accommodates a wide 
range of desired impedances and available feedback. The ease 
of employing this synthesis approach and its potential benefits 
for SEA control are discussed in light of the limitations of other 
existing techniques. This discussion, and the insight gained 
from a series of simulations comparing impedance controllers 
designed using established passivity-based techniques to 
controllers born out of our model matching framework, lay the 
foundation for further adoption of H∞ synthesis in SEA control. 

I. INTRODUCTION AND BACKGROUND 
The use of robotic systems is rapidly expanding beyond 

traditional automation. Surgery, rehabilitation, human 
augmentation, and dexterous manipulation for assembly and 
manufacturing are some of the many applications open to 
today’s robots [1]–[4]. With this exciting growth, it is 
becoming ever more important for robots to be robust to 
interactions with their physical environment. Robots are now 
expected to operate in an unstructured world designed for 
humans; they must manipulate human tools and interfaces or 
interact with unmodeled objects, often including humans 
themselves. 

A. Series Elastic Actuation 
An increased use of series elastic actuators (SEAs) in the 

design of robots has paralleled the push for more robust 
systems. By intentionally incorporating a compliant element 
in series with the drivetrain of a robotic actuator (shown 
schematically in Fig. 1), a naturally low output impedance 
can be provided that is particularly effective at stable 
interaction with the environment. This stability and 
improvements in shock tolerance, energy storage, power 
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output, and force sensing are among the many benefits of the 
SEA architecture widely cited in the literature [5]–[7]. 

Numerous robotic systems incorporating series elastic 
actuators have been explicitly designed for interaction with 
humans or their surrounding environment (e.g. [8], [9]). 
While individual designs vary, the significant compliance 
introduced by series elasticity complicates actuator control in 
most cases. There is a large body of work dating back to the 
mid 1980’s that addresses the control of robots with flexible 
joints and the need to model actuators as fourth order systems 
as in Fig. 1 (e.g. [10]–[12]). Most of these studies address the 
unintentional compliance introduced by gear train flexibility, 
however, and while the system model used for this case is the 
exact same as that of an SEA, in practice, an intentional 
increase in passive compliance requires these past control 
approaches to be augmented to preserve performance.  

B. Impedance Control 
Impedance control is a natural approach to take with 

actuators designed for interaction tasks because it specifically 
addresses the dynamic relationship between force and 
velocity at an actuator’s output rather than governing these 
quantities individually [13]. In many ways, impedance 
control is the virtual equivalent of what series elastic 
actuation attempts to accomplish physically. By specifying an 
actuator’s desired apparent impedance, one essentially 
provides a description of how the actuator is to respond to its 
physical environment. 

In “simple” impedance control, as outlined in [13], 
desired impedances typically take the form of a second order, 
mass-spring-damper model. This is straightforward to apply 
to robot manipulators because the controller closely 
resembles a PD motion controller, where the resulting closed 
loop stiffness and damping simply correspond to proportional 
and derivative control gains [14]. Designers can rely on their 
intuitive understanding of the gains’ physical interpretations 
to quickly generate appropriate control laws and easily iterate 
designs. 
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Figure 1.  Simplified model of a series elastic actuator. Subscripts m 
and L represent motor and link variables, respectively. u and Fext are 
motor and external forces; θ and q are motor and link positions; and 
m, b, and k are mass, damping, and spring rate, respectively. 
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Unfortunately, PD based approaches are less 
straightforward when the inherent passive dynamics of a 
series elastic actuator are introduced to the system model. 
Separating an actuator’s motor from its output introduces a 
choice for the location of sensor feedback. If sensing is 
colocated with the motor, stability is easily preserved [12]. 
However, the resulting closed loop impedance in this case is 
limited in stiffness by the series compliance because the 
virtual spring of the controller simply acts in series with the 
passive spring of the actuator (see Fig. 2, for example). 
Conversely, if actuator output is used exclusively for 
feedback, stability cannot be guaranteed beyond a small 
region provided by the passive damping in the actuator [15]. 
This trade naturally suggests full state feedback as a 
preferable approach to the impedance control of SEAs or 
other flexible joint robots, and indeed, various forms of this 
technique have been applied successfully [16], [17]. As the 
number of control parameters increases, however, selecting 
appropriate gains becomes more difficult because their 
underlying physical meanings are less clear. Thus, controller 
design is less intuitive. 

The passivity-based impedance control of [17] offers an 
example of attaching meaningful physical interpretations to 
state feedback gains for flexible joint robots. Specifically, 
joint torque feedback is interpreted as a means to lower the 
apparent motor inertia of an actuator. A motor-position-based 
PD controller can then be applied to generate a desired 
impedance because decreasing apparent motor inertia serves 
to make the actuator appear more like a second order system 
(see Fig. 2). Originally intended for systems with 
unintentional (i.e. relatively low) gear train compliance, 
applying this approach more broadly to low stiffness series 
elastic actuators reveals a few shortcomings. Namely, output 
stiffness is still limited to the actuator’s passive stiffness due, 
once again, to motor side PD control, and desired output 
impedances are limited to a second order, mass-spring-
damper-like structure to preserve the physical interpretation 
of the control architecture.  As will be shown, the accuracy 
with which desired impedances are achieved also declines as 
the actuator’s passive stiffness is approached. This is 
typically not a problem for the stiffer systems of [17] but it 
does present a real limitation for series elastic actuators, as a 
stiffness approaching or exceeding passive actuator stiffness 
is often desired when controlling very soft SEAs. 

As outlined in [18], passivity-based impedance control 
compares favorably to other existing approaches for handling 
joint flexibility and, in spite of the aforementioned 
shortcomings, its rigorous stability guarantees make it an 
attractive option for SEA control as well. Thus, throughout 
the subsequent sections, impedance control produced using 
our proposed model matching framework will be 
benchmarked against the performance of [17]’s control 
architecture. Recognizing that a full multi-dof application of 
our synthesis technique, akin to that of [17], is not presented 
here, this comparison will nevertheless highlight many of the 
benefits to be gained by incorporating H∞ control approaches 
into the design of SEA impedance controllers.   

C. H∞ Control 
The goal of H∞ control is to minimize the response of 

specified system outputs to specified system inputs as 
measured by the H∞ norm of the closed loop transfer 
function. To achieve this goal, the problem is first formulated 
in the general control configuration of Fig. 3. Here the 
objective is to synthesize a controller, K, for the given plant, 
P, that minimizes the H∞ norm, 

 G ∞ = max
ω

σ (G( jω )) = max
w

z 2

w 2

,  (1) 

where G is the closed loop transfer function, z is the output 
vector of interest, and w is the vector of exogenous inputs. 
This measure, equivalent to the maximum singular value, σ , 
of the closed loop transfer function, is essentially a ratio of 
the energy flowing out of the system in response to the 
energy flowing in. Minimizing G ∞  has the effect of making 
the outputs of interest immune (as much as possible) to the 
exogenous inputs. It should be noted that in the general 
control configuration, while often desirable, having full state 
measurements of the plant or direct knowledge of system 
outputs within the sensor feedback is in no way a 
prerequisite. In fact, numerous examples in the literature 
show that almost any linear control problem can be 
represented by the system in Fig. 3 [19]. Additionally, this 
construction does not require a predefined physical 
interpretation of the controller K. Numerous approaches have 
been used within this framework to synthesize controllers of 
various structures given a wide range of available sensor 
feedback. 

 

 
 

Figure 2.  A physical interpretation for state feedback as conceptualized 
in [17]. Variables are defined as in Fig. 1 with a subscript τ signifying 
augmentation due to torque feedback. 

 
 
 

Figure 3.  General control configuration. 
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Synthesizing an H∞ optimal controller can be accomlished 
in a number of ways and the framework to be described in the 
following sections is agnostic in regard to the specific 
solution method chosen. It should be noted, however, that the 
H∞ synthesis problem lends itself to formulation as a set of 
linear matrix inequality (LMI) constraints, as in [20]. This 
construction allows for the efficient computation of a solution 
using readily available software packages like the MATLAB 
Robust Control Toolbox [21] and cvx [22]. In fact, leveraging 
the LMI-based solvers in these software packages within the 
context of the series elastic actuator impedance control 
problem allows a designer to synthesize appropriate 
controller gains through completely automated optimization 
routines. This enables the application of higher order 
dynamic controllers to SEA impedance control without the 
burden of a complex, nonintuitive control design process. 
Successful controller synthesis is, of course, predicated on 
formulating the impedance control problem in the appropriate 
general configuration. 

II. MODEL MATCHING FRAMEWORK 

A. Problem Formulation 
Disturbance rejection is one of the most common uses of 

H∞ control because minimizing system response to specific 
inputs fits naturally into the optimal H∞ gain framework 
presented in the previous section. The goal of impedance 
control, however, is to prescribe, rather than minimize, the 
relationship between output force and velocity. Thus, to 
accomplish impedance control, the system output considered 
in the H∞ control problem must be reformulated to represent 
the discrepancy between a desired behavior and the plant’s 
closed loop response. Minimizing the H∞ norm for this 
augmented problem will then have the effect of matching 
system behavior to the specified model. 

The model matching framework in Fig. 4 provides an 
outline for how to construct the SEA impedance control 
problem to effectively generate controllers via H∞ synthesis. 
While the concept of model matching is not new, applying 
this idea to the impedance control of series elastic actuators is 
unique in the literature. Furthermore, this framework 

alleviates many of the deficiencies still outstanding in 
existing approaches to SEA control design. Principally, after 
the designer assigns models to each of the blocks in Fig. 4, 
the selection of controller gains is entirely automated by 
solving the H∞ optimization problem. Abstracting the 
selection of gains away from the control designer eliminates 
the need for a corresponding intuitive physical interpretation 
of the controller. Thus, this model matching framework 
provides a means to synthesize higher order dynamic 
controllers or address cases where the desired impedance 
model or available measurement feedback, for example, 
make it difficult for the designer to approach the problem 
with an a priori knowledge of proper controller architecture. 

 Examining the problem formulation in more detail, it can 
be seen that the plant P from the general configuration of Fig. 
3 is augmented in Fig. 4 to now include not only a model of 
the series elastic actuator, Psea, but also a model of the desired 
impedance, Pdes, and a series of weighting functions. The 
exogenous input, w, is defined as the external force acting on 
the actuator, Fext, and the output of interest includes the 
difference between the physical system’s position (or 
velocity) response and that of the desired impedance model.  

B. Weighting Functions 
The included weighting functions within the model 

matching framework (represented by W blocks in Fig. 4) 
allow the control designer to easily customize the synthesis 
problem to a specific set of physical constraints. Controller 
effort, u, is included as an additional output in the 
optimization problem and the weight, Wu, placed on it serves 
to penalize high motor commands. Thus, the synthesized 
controller can be constrained to operate within the given 
actuator’s force or torque limitations. Wext and Werror serve to 
bound the synthesis problem by defining magnitude and/or 
frequency ranges over which the external loads and model 
matching error, respectively, should be included in the H∞ 
norm calculation. 

Wsense and Wout are unique among the included weighting 
functions because they primarily serve to select signals rather 
than weight them. Unlike PD control, our method for 
designing SEA impedance controllers does not presuppose 

 
 

 
 

Figure 4.  Model matching framework for the synthesis of SEA impedance controllers. 
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the available sensor feedback. Wsense provides a simple matrix 
for the designer to select which outputs from the physical 
plant will be available as feedback for the controller. While 
full state feedback might be ideal for a series elastic actuator, 
it might not be possible in all cases. Thus, our problem 
formulation allows for an easy way to modify available 
sensed outputs without re-architecting the entire system 
model. This is a valuable tool for empirically studying the 
feasibility of a desired impedance control scheme in the face 
of limited sensor data and could perhaps be used in the future 
to inform actuator design based on the viability of controllers 
with less feedback. 

When varied in conjunction with the structure of the 
desired impedance model, Wout provides the control designer 
a means to change which actuator states are compared to Pdes 
in the model matching operation. The implications of 
comparing output positions rather than velocities, for 
instance, are yet to be fully explored. Wout allows for this 
flexibility in problem definition.  

An in-depth exploration of the versatility gained by 
generating impedance control using the presented framework 
is left for later work. The architecture as constructed in Fig. 
4, however, certainly provides a number of options during 
controller synthesis that are not typically available to the 
designer given existing techniques. 

III. CONTROLLER SYNTHESIS 
To illustrate the benefits of the proposed model matching 

framework, the balance of this paper will now examine an 
example application. A model for the small series elastic 
actuator presented in [23] will be constructed, and the process 
of synthesizing appropriate controllers to render a variety of 
output impedances with this device will be described. The 
performance of the resulting impedance control will then be 
compared in simulation to that of the previously discussed 
passivity-based approach from [17].  

A. Model Construction 
A state space representation for the series elastic actuator 

model in Fig. 1 takes the form: 

 
 
Psea

xsea = Aseaxsea + Bsea_uu + Bsea_ww
ysea = Cseaxsea + Dsea_uu + Dsea_ww

⎧
⎨
⎩⎪

  (2) 

where the actuator states, xsea, are simply the position and 
velocity of each mass. Using the properties determined for 
the series elastic actuator of [23] (summarized in Table 1), it 
is straightforward to calculate values for the system matrices 
Asea, Bsea_u, and Bsea_w. Additionally, because full state output 
is desired for the actuator model in our framework, Csea = I  
and Dsea_u = Dsea_w = 0 . 

For this example, the desired impedance is described as a 
second order transfer function relating external force input to 
the actuator’s output link position: 

 Pdes (s) =
1

mdess
2 + bdess + kdes

 . (3) 

The values mdes, bdes, and kdes represent the mass, damping, 
and spring rate of the desired output impedance respectively. 
It is important to note that the model matching framework 

does not limit the desired impedance to a second order 
structure. In fact, controller synthesis can be performed 
without regard to the order of the desired model. Traditional 
impedance control techniques could be significantly 
complicated by higher order desired impedances but H∞ 
optimization within the model matching framework makes 
this change almost transparent to the control designer.  

The weighting functions for this specific synthesis 
problem are selected as follows: 

Wu =
1
22

Wext = 1 Werror (s) =
100kdes
0.1s +1

Wout = 0 0 1 0⎡⎣ ⎤⎦ Wsense = 1 0 1 0⎡⎣ ⎤⎦

 

 

Of specific note here is the selection of Werror as a low pass 
filter with a 10 rad/s cutoff frequency and a DC gain of 100 
times the desired apparent stiffness. This focuses the 
optimization problem on the low frequency range while 
enforcing a maximum steady state error as a percentage of 
the desired deflection due to loading 

B. H∞ Synthesis 
With all the components of the model matching 

framework fully defined, the augmented generalized plant, P, 
can be constructed and the H∞ output feedback problem can 
be solved. The hinfsyn function in the MATLAB Robust 
Control Toolbox is used to solve the set of linear matrix 
inequality constraints born out of this problem construction, 
and a dynamic feedback controller is synthesized of the form: 

 
 
K

xK = AKxK + BKysense
u = CKxK + DKysense

⎧
⎨
⎩

  (4) 

where xK represents the states of the dynamic controller. The 
order of the resulting controller matches that of the 
augmented plant, P. In this case,  AK ∈7×7 because the 
actuator model is fourth order, the desired impedance model 
is second order, and an additional state is introduced due to 
the filter in Werror. 

IV. SIMULATIONS 
Once an impedance controller is created, it can be applied 

directly to the physical series elastic actuator in order to 
produce an output behavior that matches the desired 
impedance to within the optimal H∞ norm calculated during 
synthesis. For subsequent desired impedances, the H∞ 
optimization problem can be solved again and unique 
controllers generated. Three such cases for our example 

TABLE I.    SERIES ELASTIC ACTUATOR PROPERTIES 
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actuator are examined here, spanning a range of output 
impedances. In each case MATLAB/Simulink is used to 
simulate the closed loop behavior of the actuator and plot its 
response to a 1 N step input in external force. 

The first desired impedance tested is considerably softer 
than the passive SEA, with mdes = 0.2 kg, bdes = 15N/(m/s), 
and kdes = 300 N/m. Fig. 5 shows that both passivity-based 
impedance control and our H∞ optimal approach provide 
closed loop step responses very close to the ideal desired 
model. The dynamic controller synthesized using the model 
matching framework does show slightly better tracking of the 
desired model, however. 

The benefit of using a model matching approach to 
synthesize impedance controllers becomes clearer as the 
desired impedance increases. Fig. 6 plots the step response 
for each type of controller when asked to render a stiffer, 
critically damped impedance of mdes = 0.2 kg, bdes = 49
N/(m/s), and kdes = 3000 N/m. While the steady state error is 
small in both cases, the passivity-based controller exhibits 
considerable overshoot before settling. Here, the H∞ optimal 
dynamic controller appears better equipped than the static 
state feedback of passivity-based control to render a second 
order response with the fourth order SEA. 

Further increasing the desired impedance with values 
mdes = 0.2 kg, bdes = 60N/(m/s), and kdes = 4500 N/m, draws 
an even clearer distinction between the two approaches to 
impedance control design. In the step responses of Fig. 7, a 
discrepancy between the desired impedance and the model 
matched response begins to be seen, particularly during the 
initial rise, but this is dwarfed by the large oscillations 
resulting from the passivity-based controller. 

The inability to render a stiffness higher than the passive 
actuator’s is mentioned in [17] as a limit to the passivity-
based approach. Degradation in performance as desired 
stiffness approaches, but does not exceed, passive stiffness is 
not addressed, however. This is likely not an issue for the 
relatively stiff systems addressed in [17], but it is problematic 
for series elastic actuators. An exhaustive analysis of this 
behavior is not done here, but a remedy within the confines 
of an intuitive static state feedback controller is not readily 
apparent. Dynamic feedback controllers synthesized via H∞ 
model matching do, however, effectively render the full 
range of desired impedances tested here. These controllers, as 
mentioned, are seventh order, meaning that, for this case, the 
controller in (4) has 72 unique gains that must be determined. 
This construction is far from intuitive and indeed lacks a 
clear physical interpretation. However, using an H∞ based 
model matching framework preserves the ease of controller 
construction in spite of increased controller complexity. 
Automating gain selection makes the use of higher order 
impedance controllers more realistic in practice. 
Additionally, H∞ optimization ensures desired performance 
can be achieved or, conversely, an infeasible result from the 
optimization process provides the designer with an easy 
check on the performance limits of a particular actuator or set 
of design constraints.  

 Using the model matching framework to synthesize 
impedance controllers is not without its own set of 
shortcomings, however. A high order dynamic controller, 
with its large number of gains, is considerably more difficult 

to implement in practice than static state feedback. Systems 
utilizing this approach will require more processing power 
and faster control loop rates to perform well. For simple 
examples like the one presented here, this is certainly not 
prohibitive, but if the desired impedance model or weighting 
functions are made higher order, driving the size of the 
synthesized controller even higher, these practical issues will 
become even more important to consider. Changing the 
desired impedance during operation also presents an avenue 

 
 

Figure 6.  Simulated responses to a 1N step in external force for two 
controllers rendering . 

 
 

Figure 5.  Simulated responses to a 1N step in external force for two 
controllers rendering .  

 
 

Figure 7.  Simulated responses to a 1N step in external force for two 
controllers rendering . 
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for further research. This requires solving the optimization 
problem in real time to provide a new set of controller gains, 
and additional work is needed to determine the best way to 
accomplish this in a series elastic robot. The process for 
constructing appropriate weighting functions within the 
proposed framework could be refined as well, as this is a task 
not commonly required for robot impedance control. 

It should be noted that the controllers providing improved 
desired impedance matching here, also require greater 
actuator effort. Fig. 8 plots the command effort required to 
achieve the step responses of Fig. 7. While the peak force of 
the model matching based controller is still well within our 
actuator’s 22N limit, it is significantly higher than that of the 
passivity-based controller. Greater care in addressing actuator 
saturation limits is needed when designing within the model 
matching framework. Because better performance is possible 
using this design approach though, the designer is free to 
make intelligent design trades concerning required actuator 
effort and improved impedance rendering. 

V. CONCLUSION 
This work demonstrates the significant promise that H∞ 

synthesis has as a means for generating impedance 
controllers for series elastic actuators. The ability to easily 
generate control laws that optimally match desired 
impedances provides a number of benefits over the existing 
techniques used to design SEA controllers. The model 
matching framework described here provides an outline for 
constructing the impedance control design problem to 
leverage these benefits of H∞ control. 

An extensive discussion on the shortcomings of relying 
on intuitive physical interpretations for architecting 
impedance control provides insight into the need for a more 
versatile, general design process when working with series 
elastic systems. It is our intention that the model matching 
framework presented will preserve some of the designer’s 
physical intuition in the design process (through weighting 
functions for instance) without tying the actual controller 
gains to this requirement. Thus, more complex controllers 
can be easily generated in an effort to render higher order 
desired impedance behaviors, deliver output stiffnesses on 
the order of (if not greater than) actuator passive stiffness, 
and provide more rigorous methods of ensuring controller 
performance across a variety of conditions. 

The results of initial simulations suggest that many of the 

potential benefits of using H∞ control for SEAs are in fact 
achievable given the right framework within which to 
construct the impedance control problem. Much of what has 
been learned in H∞ control has yet to be applied to robotics 
generally, but also more specifically, to the impedance 
control of robots with flexible joints. This model matching 
approach to the synthesis of impedance control lays the 
foundation for further adoption of H∞ based techniques in 
the control of systems with series elastic actuators. 
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Figure 8.  Motor torque required to produce the simulated impedance 
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