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A B S T R A C T   

Brain-machine interfaces (BMI) based on scalp EEG have the potential to promote cortical plasticity following 
stroke, which has been shown to improve motor recovery outcomes. However, the efficacy of BMI enabled ro
botic training for upper-limb recovery is seldom quantified using clinical, EEG-based, and kinematics-based 
metrics. Further, a movement related neural correlate that can predict the extent of motor recovery still re
mains elusive, which impedes the clinical translation of BMI-based stroke rehabilitation. 

To address above knowledge gaps, 10 chronic stroke individuals with stable baseline clinical scores were 
recruited to participate in 12 therapy sessions involving a BMI enabled powered exoskeleton for elbow training. 
On average, 132 ± 22 repetitions were performed per participant, per session. BMI accuracy across all sessions 
and subjects was 79 ± 18% with a false positives rate of 23 ± 20%. 

Post-training clinical assessments found that FMA for upper extremity and ARAT scores significantly improved 
over baseline by 3.92 ± 3.73 and 5.35 ± 4.62 points, respectively. Also, 80% participants (7 with moderate-mild 
impairment, 1 with severe impairment) achieved minimal clinically important difference (MCID: FMA-UE >5.2 
or ARAT >5.7) during the course of the study. Kinematic measures indicate that, on average, participants’ 
movements became faster and smoother. Moreover, modulations in movement related cortical potentials, an 
EEG-based neural correlate measured contralateral to the impaired arm, were significantly correlated with ARAT 
scores (ρ = 0.72, p < 0.05) and marginally correlated with FMA-UE (ρ = 0.63, p = 0.051). This suggests higher 
activation of ipsi-lesional hemisphere post-intervention or inhibition of competing contra-lesional hemisphere, 
which may be evidence of neuroplasticity and cortical reorganization following BMI mediated rehabilitation 
therapy.   

1. Introduction 

Upper-limb motor weakness occurs in 77% of first time and 55 – 75% 
chronic stroke survivors and significantly affects their quality of life 

(Coscia et al., 2019; Lawrence et al., 2001). Regaining arm and hand 
function is an essential part of achieving independence in daily life and 
therefore is a major goal of rehabilitation programs. While most tradi
tional rehabilitative strategies are using bottom-up approaches by 
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incorporating training of distal body parts to influence neural systems 
(Belda-Lois et al., 2011), e.g., constraint induced movement therapy 
(CIMT) (Wolf et al., 2008), robotic arm training (Lo et al., 2010), 
bilateral arm training (Whitall et al., 2000), or functional electrical 
stimulation (Makowski et al., 2014), a number of studies have addressed 
clinical effects of top-down approaches, e.g., brain stimulation (Dimyan 
and Cohen, 2010; Liew et al., 2014), motor imagery (López et al., 2019) 
and brain-computer interface (BCI) (Daly and Wolpaw, 2008) to induce 
neuroplastic changes in the sensorimotor network, especially in stroke 
survivors with severe motor deficits. 

Brain-machine/computer interface (BMI/BCI) can improve treat
ment benefits when combined with robotic and muscular stimulation 
based neurorehabilitation therapies, by capitalizing on the principles of 
Hebbian plasticity (Soekadar et al., 2015). Indeed, previous clinical 
studies that combined motor imagery based BMIs with upper-limb arm 
and hand exoskeletons or electrical muscle stimulation achieved 
significantly better motor improvement compared to sham or control 
groups (Ang et al., 2014; Biasiucci et al., 2018; Frolov et al., 2017; 
Pichiorri et al., 2015; Ramos-murguialday et al., 2013). Despite these 
promising findings, evidence of cortical changes following neuro
rehabilitation therapy remain largely unproven, and a neural correlate 
(or biomarker) that can predict the extent of motor recovery still re
mains elusive (Stinear, 2017). To address this deficit, Ramos- 
murguialday et al. (Ramos-murguialday et al., 2013) used functional 
MRI and found post-therapy activations in the ipsi-lesional motor and 
pre-motor cortices to be correlated (ρ = 0.55) with Fugl-Meyer Assess
ment for Upper Extremity (FMA-UE) scale. Ang et al. (Ang et al., 2014) 
found the revised Brain Symmetry Index to be inversely correlated to 
motor improvement, suggesting that bilateral activations of cortical 
hemispheres led to better recovery (ρ = -0.62). Others have reported 
increased resting state functional connectivity and integrity of white 
matter tracts (via diffusion tensor imaging) within the motor areas of 
both hemispheres following BMI mediated stroke rehabilitation (Bia
siucci et al., 2018; Rathee et al., 2019; Song et al., 2015). 

In this study, we explored the relationship between movement 
related cortical potentials (MRCP) and motor recovery, following 12 
sessions of BMI-enabled robot-assisted stroke rehabilitation. It was hy
pothesized that MRCP amplitude and latency (i.e., duration of MRCP 
prior to movement onset) would increase, on account of increased 
activation of the ipsi-lesional hemisphere or inhibition of competing 
contra-lesional hemisphere, following motor relearning and cortical 
reorganization (Yilmaz et al., 2015). Further, to increase patient 
engagement and strengthen MRCPs, the BMI algorithms were optimized 
to detect MRCPs in single-trials using our previously published method 
(Bhagat et al., 2016). Preliminary findings of our clinical trial, reporting 
the improvements in movement quality and arm function from initial 6 
participants, were published previously (Sullivan et al., 2017). In this 
paper, we present a comprehensive analysis from 10 participants by 
determining longitudinal efficacy of EEG-based BMIs, as well as by 
evaluating changes in brain activity, motor recovery, and movement 
quality following BMI-exoskeleton therapy. 

2. Methods 

A single-arm clinical study (ClinicalTrials.gov #NCT01948739) was 
conducted to evaluate the efficacy of BMI enabled exoskeletons on 
stroke recovery and brain activity. The study procedures were approved 
by the Institutional Review Boards of University of Houston, Rice Uni
versity, University of Texas Health Science Center at Houston, and the 
Houston Methodist Hospital at Houston, Texas. All participants pro
vided informed consent in accordance with the Declaration of Helsinki. 

2.1. Study participants 

Between 2013 and 2018, 160 individuals were screened for eligi
bility based on following inclusion criteria: first time subacute and 

chronic stroke (i.e. at least 3 months since injury); stable baseline arm 
function (see below); hemiparesis of upper extremity (manual muscle 
testing of at least 2 but no more than 4 out of 5 in elbow and wrist 
flexors); no joint contracture or severe spasticity; no neglect that would 
preclude participation in the training protocol; presence of proprio
ception; no history of neurolytic procedure in the past four months; and 
no contraindication to MRI. Persons with orthopedic limitation of upper 
extremity that would affect motor performance; lack of motivation due 
to untreated depression were excluded from the study. To evaluate 
baseline arm function stability, FMA-UE assessment was performed at 
screening and was repeated one month later. A participant was enrolled 
only if the difference in FMA-UE scores at these visits was ≤3 points 
(Klamroth-Marganska et al., 2014). 

Among the participants excluded at screening (n = 142), 117 did not 
meet the inclusion criteria, 4 did not have a stable baseline, and 13 
declined to participate. In addition, 8 individuals that previously 
participated in our pilot study (Bhagat et al., 2016) for the clinical trial 
were excluded, since they were familiar with BMI-exoskeleton therapy 
paradigm. Subsequently, eighteen participants enrolled in the study and 
were assigned to the BMI-exoskeleton therapy group, and there was no 
control group. Among these participants, 10 individuals completed the 
protocol. Participants who dropped out of the study had MRI contrain
dication (n = 4), could not commit time to participate in all therapy and 
assessment sessions (n = 3), or were not interested in participating (n =
1). The enrollment and intervention details following the Consolidated 
Standards of Reporting Trials (CONSORT) flow diagram are shown in 
Fig. 1. 

The study cohort consisted of participants with either cortical (n =
4), subcortical (n = 4), or both cortical and subcortical lesions (n = 2). 
Specific details regarding the location of stroke lesions, as determined by 

Fig. 1. CONSORT flow diagram showcasing patient recruitment, intervention 
and follow-ups. 
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physicians after reviewing T1-weighted MRI scans, are provided in 
Supplementary Table S1. And in Table 1 below, we present de
mographics and baseline characteristics of participants who completed 
the study. Additionally, the average grip and pinch strengths for our 
participant pool were 11.13 ± 8.7 kg and 4.48 ± 2.3 kg, respectively. 
According to (Woytowicz et al., 2017) classification of impairment 
severity, the participants can be further grouped as severe-moderate 
impaired (baseline FMA-UE ∈[16, 34]) or moderate-mild impaired 
(baseline FMA-UE ∈[35, 53]), which is also highlighted in Table 1. 

2.2. Study protocol and experiment design 

The clinical trial protocol consisted of 14–15 sessions and 5 func
tional assessments (Fig. 2A). The initial 2 sessions were used for cali
brating the BMI algorithm (see Sec. 2.3) to each participant. Participants 
P2 and P8 underwent an additional calibration session to fine-tune the 
BMI classifier’s parameters. Once calibrated, the BMI-exoskeleton 
therapy was provided for 12 sessions, 3 times per week, for 4 weeks. 
Participant P10 was unavailable during weekdays and hence, his ses
sions were conducted on the weekends for 6 weeks. The functional as
sessments were performed twice at baseline as described earlier and 
once post-treatment, as well as at 2-weeks and 2-months follow-ups. 

The primary outcome measures were functional improvement in arm 
and hand movements using FMA-UE test, modulation in neural activity 
as measured by EEG, and improvement in movement quality as deter
mined from the exoskeleton’s kinematics. The secondary outcomes 
assessed motor recovery using additional clinical scales such as Action 
Research Arm test (ARAT), Jebsen-Taylor Hand Function test (JTHFT), 
pinch and grip strengths. FMA-UE score is comprised of 8 scoring items, 
namely arm movements involving flexor synergy, extensor synergy, 
combined synergies (e.g. move hand to lumbar spine), out of synergy (e. 
g. shoulder abduction to 90◦, while elbow is at 0◦ and forearm is pro
nated), hand, wrist, speed/co-ordination, and reflexes (K. J. Sullivan 
et al., 2011). Likewise, ARAT scores are the aggregate of 4 subscales: 
grasp, grip, pinch, and gross movements (Yozbatiran et al., 2008). 
Additionally, we recorded surface electromyography (EMG) from biceps 
and triceps muscles of both impaired and unimpaired arms to determine 
if participants exhibited global synkinesis or motor irradiation (Hwang 
et al., 2005), but also to provide a ‘ground truth’ for the BMI output 

(Fig. 2B). 
Each therapy session lasted 3 to 3.5 h and included EEG preparation 

(~45 min.), daily kinematic assessment (~15 min.), therapy time (~2 
h), and breaks as needed. During therapy, participants were presented 
with a center-out reaching task on a computer screen to train their elbow 
flexion and extension movements, while their impaired arm was sup
ported by the MAHI Exo-II exoskeleton (Fitle et al., 2015). To perform 
the movement, the participants were instructed to “first think about the 
movement and then gently attempt to move their arm”. Each trial lasted 
up to 15 s, and the participants could attempt to move multiple times in 
a trial. If the BMI algorithm successfully detected the motor intention, 
which was corroborated by EMG activity in the prime muscles, then the 
exoskeleton was triggered to assist in the movement; otherwise the 
exoskeleton remained stationary and resisted the movement. This pro
tocol enforced the participants to remain mentally engaged in the task in 
order to maximize the benefits of the BMI-exoskeleton therapy. A target 
appeared on the screen either in the upward or downward position at 
random, corresponding to elbow flexion and extension movements, 
respectively. Once the target was hit, the exoskeleton automatically 
returned to center, and after a randomized resting interval (4–6 s), the 
next trial was presented. Typically, participants practiced 60–180 trials 
per session (median = 160, IQR = 20), and the number of repetitions 
increased once they became proficient in controlling the BMI and their 
fatigue diminished. 

2.3. BMI algorithm 

Our BMI algorithm was based on methods developed previously, 
wherein an EEG-based classifier’s predictions were gated with residual 
EMG activity from the impaired arm, before triggering an exoskeleton’s 
movement (Bhagat et al., 2016). To detect motor intent we identified 
movement related cortical potentials from delta-band EEG rhythms (0.1 
– 1 Hz), using a Go vs. No-go Support Vector Machine (SVM) classifier 
(Lotte et al., 2007). The classifier was trained for each participant using 
pre-recorded calibration data, in which they voluntarily moved or 
triggered movement of the exoskeleton with their impaired arm, while 
performing motor imagery. 

Unlike the previous study, wherein we handpicked the EEG channels 
that were fed to the classifier, here we automated the channel selection 

Table 1 
Demographics and baseline assessments of study participants.  
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process. First, we visually short-listed EEG channels that contained 
MRCPs from grand averaged movement epochs. Next, we used back
ward elimination and dropped channels that were less relevant for 
classification, as determined from the mutual information between class 
labels and feature vectors (Lan et al., 2005; Peng et al., 2005). The 
automatic channel selection was introduced in order to select only a 
subset of MRCP channels that contributed to class discriminability and 
thereby, had an impact on the classifier’s performance. Grand-averaged 
MRCPs measured for each participant during calibration and outcomes 
from the automatic channel selection process are presented in supple
mentary materials (Figures S3–S12). 

The training algorithm also automatically selected the optimal 
feature extraction window length using receiver operating characteris
tics (ROC) curves (Fawcett, 2006). This was achieved by training the 
classifier offline for different window lengths ranging from 100 ms to 1 s, 
in 100 ms increments. In each iteration, an ROC curve was obtained 
using confusion matrices and eventually, the window length corre
sponding to the classifier with maximum area under ROC curve was 
considered optimal for that participant. 

The online BMI performance was further improved by tuning 2 pa
rameters: the classifier’s prediction probability estimate (τc) and number 
of consecutive Go predictions required before intent is asserted (Nc) 
(Bhagat et al., 2016). Parameters τc and Ncwere initially set at 0.5 and 3 
respectively, and increased up to 1 and 10 until the participants ach
ieved high accuracy. Once tuned, the BMI classifier and its parameters 
were fixed for 12 therapy sessions. For configuring the EMG-gate, a 
simple threshold detection technique was employed. Under this tech
nique, RMS values for EMG signals from impaired hand were baseline 
corrected by subtracting the mean value over a 30 s resting period. The 
resulting signals were then compared against an empirically determined 

threshold, typically 5 – 30 units above baseline. The EMG thresholds 
however, did require to be readjusted between sessions and sometimes 
within a session, to overcome offsets from poor contact with the skin or 
from brushing against the exoskeleton’s braces. 

The online BMI algorithm was implemented such that EEG was the 
primary deciding factor in the classification of motor intent. Once a 
positive prediction was made by EEG classifier, then the algorithm 
checked to see if EMG activity in either flexion or extension muscles is 
greater than threshold within the next 1 sec and only then the 
exoskeleton was triggered to assist in the movement. 

2.4. Computation of post-treatment MRCP changes 

To quantify changes in neural activity as a result of therapy, we 
looked at differences in grand averaged MRCPs between the initial and 
final closed-loop BMI therapy sessions. MRCPs were calculated with 
respect to movement onset times identified from EMG activity of the 
impaired hand. For this, EMG signals were denoised using Teager-Kaiser 
energy operator, low-pass filtered (0.5 Hz, 4th order Butterworth), 
standardized, and then compared against a threshold of 0.5 standard 
deviation to identify intervals of either flexor or extensor contraction 
(Tenan et al., 2017). Contraction intervals larger than 1 s were retained 
for further analysis and their time of onset was utilized to segment EEG 
epochs for calculating MRCPs. This approach ensured that the MRCPs 
were measured with respect to true movement onset and independent of 
the classifier’s predictions. To obtain a sufficient number of trials for 
averaging, we combined EEG epochs from the first 2 and final 2 therapy 
sessions and then computed their difference. Further, we looked at dif
ference in MRCP peak amplitudes and latency from scalp EEG electrodes 
located over the motor cortex, specifically, central (Cz, C1- C4), fronto- 

Fig. 2. EEG-based BMI control of MAHI 
exoskeleton for stroke rehabilitation. A) Time
line for the clinical study protocol. B) Schematic 
representation of the experiment setup, showing a 
stroke participant’s impaired elbow being trained 
by the MAHI Exo-II, while EEG and EMG activity 
are recorded. In this BMI scheme, successful 
detection of motor intent from EEG is validated 
against residual EMG activity from impaired arm, 
before a Go or Wait command is issued to the 
exoskeleton. A computer screen in front of the 
participant, cues start and end of trial and provides 
simultaneous visual feedback of the movement.   
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central (FCz, FC1 – FC4) and centro-parietal electrodes (CPz, CP1 – CP4). 
Further, to account for left hand vs. right hand impairment, the elec
trode locations were flipped for individuals with right hand impairment. 
Finally, MRCP latency was defined as time difference starting from 50% 
of peak amplitude until the time of movement onset (see Supplementary 
Fig. S1) (Muller-Gethmann et al., 2000). 

2.5. Data and statistical analysis 

The benefit of BMI-enabled exoskeleton therapy was assessed with 
two objectives, namely improvement in patient engagement (measured 
as a participant’s ability to reliably operate a BMI) and improvement in 
motor function (measured via changes in neural activity, clinical scores, 
and movement kinematics). BMI performance was quantified per session 
in terms of prediction accuracy, false positives, early detection time, and 
user feedback. Prediction accuracy was determined based on the frac
tion of successful trials from total trials, while to calculate false posi
tives, we used catch trials that asked participants to intentionally remain 
idle during those trials. Our early detection time metric measured how 
far in advance the BMI could predict movement from EEG alone, before 
a participant physically tried to move their impaired arm (as seen from 
EMG activity). The participants’ approval rating of the BMI’s decisions 
was assessed using a 3-point Likert Scale, with a scoring scale of 3 =
Approve, 2 = Not sure, and 1 = Disapprove. To compare offline vs. 
online BMI performance metrics we used Wilcoxon rank sum test, since 
the data was non-normal and had unequal sample sizes. 

To test for statistical significance of motor recovery based on clinical 
assessments, one-way mixed effects analysis with repeated measures 
was used. The assessment intervals were taken as fixed effect with four 

levels (Baseline, post-treatment, 2-weeks, and 2-months follow-up). 
Whereas a between-subject intercept was considered as the random ef
fect. Mixed effects models were selected over conventional repeated 
measures ANOVA, to compensate for the missing follow-up sessions 
(Wainwright, 2007). Additionally, an in-depth analysis of FMA-UE and 
ARAT subscales was conducted to assess which of their scoring items 
improved amongst participants and how long were the improvements 
retained post-intervention. 

Movement quality improvements were evaluated by comparing ki
nematic data from initial 2 with final 2 therapy sessions. These metrics 
included Average Speed, Spectral Arc Length (a frequency-domain 
measure that increases in value as movements become less jerky 
(Balasubramanian et al., 2015)), and two metrics related to the shape of 
the velocity profile: Number of Peaks (a higher number of peaks implies 
jerkier movement), and Time to 1st Peak (which is usually less than the 
ideal value of 0.5, or 50% of the total movement duration, when a 
movement has more than one peak). Due to the non-normality of the 
data, Wilcoxon signed rank tests were used on the paired differences for 
each movement quality metric. 

All data analysis were performed in MATLAB R2018b, with the 
exception of mixed effects analysis which was carried out in R (R Core 
Team, 2017) and its ‘lme4’ package (Bates et al., 2015). The statistical 
significance criteria was set at p-values less than 0.05. 

3. Results 

3.1. BMI performance across participants 

During the 4–6 weeks long therapy regime, on average, participants 

Fig. 3. Longitudinal BMI performance. BMI performance in 10 chronic stroke survivors over 12 therapy sessions, averaged by session in sub-plot A and averaged 
by online testing vs. calibration in sub-plot B. From top to bottom, mean ± s.d. values for BMI’s prediction accuracy, false positives, early detection time, and user 
approval rating are shown. Results from 2 participants (P9 and P7) with best and worst BMI accuracy are overlaid on the plots. Dotted lines indicate statistically 
significant trends in accuracy and user rating. 
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completed 132 ± 22 repetitions per session by triggering the exo
skeleton’s movement via the BMI. As seen in Fig. 3A top plot, the 
average prediction accuracy was consistently better than random chance 
(=50%) across sessions. During the last 5 therapy sessions, 4 partici
pants achieved greater than 90% accuracy. Overlaid on the plots are BMI 
performance traces for participants with best (P9) and worst (P7) ac
curacies across sessions. The remaining plots in this figure demonstrate 
the BMI’s performance in terms of its ability to avoid false positives, its 
early detection time, and users’ approval rating. The dotted lines are 
best fit lines for which the slope was non-zero and statistically signifi
cant (p < 0.05). 

Fig. 3B compares the BMI’s online performance with its offline per
formance at calibration. Overall the BMI’s accuracy was similar during 
online and offline testing (79 ± 18% vs. 81 ± 8%, n.s.). The average false 
positives in the online scenario were significantly smaller than offline 
(23 ± 20% vs. 34 ± 14%, p < 0.05). In offline testing, motor intent could 
be detected as early as 723 ± 740 ms before onset of movement, while in 
the online case the early detection of intent could be made only 66 ± 86 
ms in advance (p < 0.001). Finally, the average approval rating was high 
and consistent across users at 2.6 ± 0.4 points on a 3-point Likert scale. 

3.2. Clinical outcomes 

Fig. 4 shows changes in clinical metrics from baseline evaluated at 
different time points: post-treatment, 2-weeks, and 2-months follow-ups. 
The average change in FMA-UE and ARAT during the entire course of the 
study were 3.92 ± 3.73 and 5.35 ± 4.62, respectively. Repeated mea
sures mixed effects model analysis confirmed that there were significant 
improvements from baseline in FMA-UE (F (23.03, 3) = 5.54, p < 0.01) 
and ARAT (F (23.018, 3) = 6.25, p < 0.01). Post-hoc analysis revealed 
that FMA-UE and ARAT scores after treatment and at follow-ups where 
significantly better than at baseline. Moreover, as shown in Table S2 
(supplementary materials), overall 8 participants achieved minimal 

clinically important difference (MCID) after therapy or at follow-ups, 
based on their FMA-UE and ARAT scores. MCID thresholds for FMA- 
UE was set as 5.2 points and for ARAT as 5.7 points change from base
line (Lee et al., 2001; Page et al., 2007). No change in JTHFT scores was 
observed. Marginal improvements in grip and pinch strengths were 
noted, but these did not reach statistical significance. 

3.3. Changes in FMA-UE and ARAT scores by subscales 

In Fig. 5, we breakdown the FMA-UE and ARAT scores into its con
stituent subscales. For each of the spider charts shown in the figure, the 
black outer polygon represents maximum score achievable under each 
subscale. The maximum score in each scoring item is also stated next to 
each vertex in subplots A & B, as well as in all remaining subplots. The 
colored polygons represent the 4 different assessment time points, 
namely baseline, immediately after treatment, 2-weeks and 2-months 
follow-ups. 

Fig. 5A & B show the mean ± s.d. scores for FMA-UE and ARAT 
subscales. On average participants improved in movements involving 
arm synergies, speed, co-ordination, wrist and hand components of 
FMA-UE, as well as grasp and pinch components of ARAT. The im
provements were greatest at 2-weeks assessment, but later regressed and 
at 2-months follow-up the scores were similar to that of post-treatment, 
albeit better than baseline. Subplots C-F in Fig. 5 track progress of in
dividual participants that were able to achieve MCID during any of the 
follow-up assessments. For participants that did not attend a follow-up 
visit (i.e. P5, P7, and P9), their score was assigned zero in the plots 
and their most recent assessment score were used for further groupings. 
Specifically, subplot C groups individuals that retained gains in both 
FMA-UE and ARAT scores at 2-months follow-up (with the exception of 
P7). Fig. 5D groups individuals that retained gains in FMA-UE, but either 
regressed or did not improve on ARAT scores. Similarly, Fig. 5E shows a 
participant who retained his ARAT scores, but regressed on FMA-UE. 

Fig. 4. Motor recovery post-intervention. Clinical outcome metrics assessed post-treatment (post-tt) and at 2-week (2wk f/u) and 2-months (2mon f/u) follow-ups 
relative to baseline. Shaded regions indicate the 4 – 6 weeks long intervention period. Underneath each data point, the number of scores that were averaged to 
calculate the mean value are shown. 
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Fig. 5. Detailed breakdown of motor recovery. Breakdown of FMA-UE and ARAT scores by subscales, shown by averaging across participants (subplot A & B) and 
individually (subplots C-F) for participants that achieved minimal clinically important difference. Subplots C-F, further group participants based on their FMA-UE and 
ARAT outcomes at 2 months follow-up. The arrows in subplots A & B indicate the order of administering the test, starting at the first item and then progressing 
counter-clockwise. 

Fig. 6. Improvement in movement quality between start and end of therapy. Movement quality was derived from joint angle velocity using various kinematic 
metrics. For all metrics except Number of Peaks, an increase in value corresponds to improvement. 
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Finally, subplot F shows a participant that regressed on both FMA-UE 
and ARAT scales at 2-months follow-up. Since participants P2 and P4 
did not achieve MCID at any point during the study, their score charts 
are not shown in Fig. 5. 

3.4. Behavioral outcomes 

3.4.1. Motion kinematics 
In Fig. 6, boxplots compare movement quality metrics between the 

start and end of therapy sessions. Using a single-sided Wilcoxon signed 
rank test, the median values for Average Speed, Spectral Arc Length, and 
Time to 1st Peak were significantly higher at the end of the therapy. 
Likewise, the number of peaks were significantly lower at the end of the 
therapy. Median values for Average Speed increased from 13.6 deg/s to 
23 deg/s (p < 0.05) and Spectral Arc Length increased from − 2.29 to 
− 2.17 (p < 0.05). The median Number of Peaks decreased from 2.11 to 
1.68 (p < 0.001), which suggests that movements at the end of therapy 
were less jerky. Also, the median Time to 1st Peak increased from 0.36 to 
0.45 (p < 0.001), which indicates well-balanced movements (ideal 
value = 0.5) were achieved post-therapy completion. 

3.4.2. Presence of global synkinesis 
Bilateral surface EMG analysis revealed that the involuntary co- 

activation of unimpaired arm when using paretic arm, also known as 
global synkinesis phenomenon, existed in 2 participants: P4 (baseline 
FMA-UE = 21, ARAT = 4) and P8 (baseline FMA-UE = 49, ARAT = 42). 
As seen from the normalized bilateral EMG traces in Supplementary 
Fig. S2, synkinesis was primarily observed during elbow extension, 
while it was absent during elbow flexion. Moreover, no change was 
observed in the extent of co-activation of the unimpaired arm between 
the start and end of therapy. 

3.4.3. Correlation of MRCP amplitude and latency with clinical outcomes 
We correlated changes in FMA-UE and ARAT scores post-treatment 

with differences in MRCP signals, corresponding to initial and final 
therapy sessions. As seen in Fig. 7 top row, MRCP amplitude from the 

contralateral EEG electrodes highly correlated with functional assess
ment scores. Specifically, change in average MRCP amplitude for 
contralateral central electrode (i.e. C1 or C2 depending on impaired side 
and abbreviated as C1/2) significantly correlated with ARAT scores (ρ =
0.72, p < 0.05). Likewise, correlation between MRCP amplitude from 
contralateral centro-parietal electrode (i.e. CP1 or CP2 depending on 
impaired side and abbreviated as CP1/2) and FMA-UE scores, was 
tending towards significance (ρ = 0.63, p = 0.051). No significant cor
relation between MRCP latencies and clinical outcomes was observed. 
Fig. 7C & D plot the averaged MRCP signals from the initial and final 
therapy sessions for all participants, corresponding to central and 
centro-parietal EEG electrodes. 

4. Discussion 

Cortical reorganization and motor recovery following stroke are 
contingent on ensuring active user engagement and participation during 
rehabilitation, to promote activity-dependent neuroplasticity (Ven
katakrishnan et al., 2014). Towards this extent, BMI-based neuro
rehabilitation therapies have performed arguably better at engaging the 
user and achieving better functional outcomes than any other contem
porary rehabilitation therapies (e. g. CIMT, robot-assisted or neuro
muscular stimulation alone, etc.) (Cervera et al., 2018). In the same 
light, this study confirmed that BMI-enabled robot-assisted upper-limb 
therapy resulted in improved motor function for a majority of the par
ticipants with chronic stroke, as determined from post-treatment, 2- 
weeks, and 2-months assessments. 

Specifically, functional metrics that are typically associated with 
arm/hand movements and co-ordination, i.e. FMA-UE and ARAT, 
improved as a result of therapy (7 participants with moderate-mild 
impairment and 1 with severe-impairment showed some level of 
motor recovery by the end of the intervention). Whereas, metrics asso
ciated with hand strengthening and speed, such as JTHFT, grip and 
pinch strengths remained stable. Since the BMI-enabled MAHI Exo-II 
exoskeleton was primarily targeting elbow training, this result is ex
pected. However, as seen in Fig. 5A & B, the effects of elbow training 

Fig. 7. Correlation (ρ) between MRCP 
amplitude and functional assessment 
scales. Subfigures A & B compare MRCP 
amplitudes from central and centro-parietal 
EEG electrodes with clinical outcomes. In 
these figures, numbers represent participant 
I.Ds and the dashed lines represent regres
sion lines between changes in MRCP ampli
tude versus clinical scores. Subfigures C & D 
show MRCPs recorded from all the partici
pants at start and end of therapy. Note, 
MRCPs are aligned with respect to move
ment onset (t = 0 s).   
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generalized to positive improvements in wrist and hand subscales of 
FMA-UE and pinch and grasp subscales of ARAT outcomes. This is likely 
due to the enhanced somatosensory feedback provided by neuro
rehabilitation therapy, as well as increase in a participant’s ability to use 
their hand and wrist, following recovery of their proximal joints (Ang 
et al., 2014). It is interesting to note that participants’ arm recovery 
continued to improve at 2-weeks, while other studies did not see any 
change during this time window e.g. Klamroth-Marganska, et al, 2014 
(Klamroth-Marganska et al., 2014) and Biasiucci et al, 2018 (Biasiucci 
et al., 2018). These improvements might be related to increased arm use 
in daily life. Moreover, maintenance of improvement at 2-months (as 
compared to baseline) is indicative of continued treatment benefits in 
long-term. No adverse events directly related to the intervention were 
reported, although one participant (P5) experienced unexplained 
tiredness, forgetfulness, and excessive decline in motor performance, 2 
months after therapy (see Fig. 5F). 

While clinical outcomes are indisputable evidence of motor 
relearning, often these are imperceptive to cortical changes at sub- 
clinical levels. Hence, to determine the efficacy of any neuro
rehabilitation therapy, it is important to identify neural correlates or 
biomarkers that can explain and even predict post-treatment clinical 
outcomes. Indeed, previous studies have identified neural correlates 
based on the BOLD response (Ramos-murguialday et al., 2013), white 
matter tract anisotropy (Song et al., 2015), brain symmetry index (Ang 
et al., 2014), and sensorimotor rhythms’ spectral power (Bundy et al., 
2017). Our analysis of MRCPs from start to end of therapy showed that 
participants who improved in motor function were characterized by 
modulation in MRCP amplitudes from the contralateral EEG electrodes 
that were highly and positively correlated with functional assessment 
scores. More specifically, MRCP amplitudes from the primary motor 
cortex and post-central gyrus (Brodmann Areas 4 & 7) contralateral to 
the impaired arm, correlated with ARAT (ρ = 0.72, p < 0.05) and FMA- 
UE (ρ = 0.63, p = 0.051) scores, respectively (Koessler et al., 2009). 
However, no significant correlation with MRCP latency was observed. 
Since MRCP amplitude is believed to encode information about 
computational effort and attention (Cui and MacKinnon, 2009), increase 
in MRCP amplitude suggests higher activation of the ipsi-lesional 
hemisphere or inhibition of the competing contra-lesional hemisphere. 
However, it is still unclear, if higher activation of ipsi-lesional hemi
sphere is a consequence of cortical reorganization or neuroplasticity, 
and should be explored in a future study. 

Interestingly, even though our participants performed a small num
ber of physical movements per session (132 ± 22), their functional and 
kinematic outcomes were comparable to high-intensity robot-only 
therapies (Klamroth-Marganska et al., 2014; Lo et al., 2010). This was 
likely facilitated by the BMI’s consistent decoding accuracy (avg. = 79 
± 18%), low false positives (23 ± 20%) and early detection latency 
(− 66 ± 86 ms). This in turn allowed the exoskeleton to seamlessly 
respond to the participant’s volitional movement intent and provide 
causal afferent sensory feedback, thereby promoting cortical plasticity. 
It is important to note that while motor intent could be predicted before 
the physical movement onset, the online detection occurred much later 
(− 66 ± 86 ms) than offline detection (− 723 ± 740 ms). This difference 
in detection latencies arises more from the classifier’s tradeoff between 
sensitivity/specificity than due to MRCP variability. In the offline sce
nario, the classifier parameters: prediction probability threshold (τc) and 
number of consecutive Go decisions required (Nc), were fixed at 0.5 and 
3, respectively. Whereas, during the online BMI fine-tuning, these pa
rameters where gradually increased to improve the classifier’s speci
ficity. This inadvertently made the classifier take longer to declare a Go 
decision, which resulted in shorter early detection time. 

Our study did have a few shortcomings. The absence of a control 
group prevented us from understanding the individual benefits of BMI 
and robotic therapy alone. However, we ensured that the participants 
enrolled had a stable baseline and any improvements can be attributed 
to the combined effect of BMI plus robotic therapy. Our sample size was 

small (n = 10), which prevents us from generalizing the outcomes to a 
larger sample. This was in part to our narrow inclusion criteria, which 
excluded about 75% of the participants that were screened. The BMI 
control was limited to one-dimensional (Go vs. No-go), which might not 
have been engaging enough for some of the participants (e.g. P7). For 
future participants, it should be prioritized to achieve multi-dimensional 
BMI control and combine it with virtual or augmented reality, to provide 
an immersive learning environment. 

Most existing BMIs make use of mu or beta band power modulations 
(event-related desynchronization), whereas the BMI presented in this 
study used MRCPs to detect movement intentions, which was further 
corroborated by EMG activity in the prime muscles. Because these BMI 
setups occur in different frequency bands (higher vs. lower frequencies, 
respectively) and differ in the domain they are computed (frequency vs. 
time-domain, respectively), it is not possible to directly compare them 
because they make use of entirely different physiological features. 
Finally, the validity of MRCPs as a neurophysiological marker for sub
clinical improvement must be taken with caution. Besides the small 
study cohort, the bottom plots in Fig. 7 depicts high intra-subject vari
ability in amplitudes. Also, there were 3 participants (P5, P6, and P7) 
whose MRCP-amplitude even decreased post-therapy, while their ARAT- 
scores increased. Nonetheless, our study found compelling evidence for 
clinical efficacy of BMI-enabled robot-assisted rehabilitation. 
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