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Abstract— One challenge of robotic rehabilitation interven-
tions is devising ways to encourage and maintain high levels of
subject involvement over long duration therapy sessions. Assist-
as-needed controllers have been proposed which modulate
robot intervention in movements based on measurements of
subject involvement. This paper presents a minimal assist-as-
needed controller, which modulates allowable error bounds
and robot intervention based on sensorless force measurement
accomplished through a nonlinear disturbance observer. While
similar algorithms have been validated using healthy subjects,
this paper presents a validation of the proposed mAAN control
algorithm’s ability to encourage user involvement with an
impaired individual. User involvement is inferred from muscle
activation, measured via surface electromyography (EMG). Ex-
perimental validation shows increased EMG muscle activation
when using the proposed mAAN algorithm compared to non-
adaptive algorithms.

I. INTRODUCTION

Robotic rehabilitation is a promising path towards imple-
menting high intensity, long duration, and repetitive move-
ment therapies for recovery after a neurological injury [1].
However, high levels of voluntary effort are also required
for robotic rehabilitation to best facilitate neural plasticity
and recovery [2], [3]. Towards this end, allowing movement
errors can prevent subjects from becoming overly reliant on
the robot, and “error” is therefore crucial in facilitating motor
learning [4], [5]. Many methods for allowing movement error
and maintaining subject engagement have been proposed;
traditionally, impedance controllers have been used to relate
forces with deviations from the robot’s desired trajectory [6].
Alternatively, assist-as-needed (AAN) controllers both ensure
that subjects successfully complete the desired task, and
promote the subject’s active, cognitive participation [7]. For
instance, position-based adaptive AANs predict the human’s
capabilities as a function of workspace location [7], [8], and,
more recently, sensorless force estimation techniques have
been incorporated in AAN controllers to determine subject’s
capabilities in real time [9].

While there are several ways to establish the interaction
between the robot and the patient during robotic rehabilita-
tion [3], [5]–[9], not all of these techniques are optimal in
the sense of maximizing patient engagement. In our previous
study [9], we summarized the limitations of these robotic
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Fig. 1. Subject with incomplete SCI interacting with the RiceWrist-S.
We tested how a mAAN rehabilitation controller encouraged this subject’s
engagement during robotic rehabilitation as measured by surface EMG.

rehabilitation controllers, and proposed a minimal assist-as-
needed (mAAN) controller which is capable of avoiding
many of these limitations. In that study, we showed that
mAAN approach more accurately estimates the subject’s
capabilities than position-dependent methods [7], [8], while
also continually adapting assistance levels to the user’s
current ability, unlike traditional impedance controllers [6].

In this study, our aim is to evaluate the effectiveness of the
mAAN paradigm through a case study with an incomplete
spinal cord injury (SCI) subject (Fig. 1). We specifically
test the paradigm’s ability to maintain subject engagement,
where engagement is inferred via EMG. Measuring EMG
gives access to the subject’s modulation of muscle activation
during movements with the robot rather than inferring such
activity through measurement of the resultant forces.

Previous work [9] developed a Kalman filter (KF) to
estimate subject input and system states, but other techniques
can fill this role. Here, we have formulated our mAAN
controller using the nonlinear disturbance observer (NDO)
proposed by Chen et al. [10]. The primary motivation behind
employing this NDO is its disturbance estimation capability
with a bounded estimation error even under time-varying
disturbances. After formulating our rehabilitation setting in
Section II, we introduce this NDO in Section III. Section IV
presents the details of the proposed mAAN controller which
incorporates this NDO. Section V describes the results of
this single-subject study, and Section VI summarizes how
mAAN controllers can encourage patient engagement.

II. PROBLEM STATEMENT

The experimental platform used in this study was
the RiceWrist-S, a three degree-of-freedom (DOF) serial
forearm-wrist exoskeleton. The device is capable of inde-
pendently actuating forearm pronation/supination (PS), wrist
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flexion/extension (FE), and radial/ulnar deviation (RU). In a
previous work [11] we demonstrated that the RiceWrist-S
possesses mechanical capabilities which make it especially
suitable for rehabilitation applications. The following model
represents the dynamics of the RiceWrist-S:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τr + τp (1)

Here q is a 3 × 1 vector of joint positions, M is the 3 × 3
inertial matrix, C is the 3 × 3 matrix which represents
Coriolis/centrifugal terms, G is the 3 × 1 gravity vector, τr
is the 3 × 1 vector of torques applied by the actuators, and
τp is the 3× 1 vector of torques applied by the subject and
mapped into joint space. The proposed mAAN controller was
implemented on the FE joint of the manipulator; the unused
DOFs were physically constrained. System parameters (static
friction, inertia, and viscous friction) have already been
experimentally identified for FE joint [11].

By “subject capability,” we mean the input force which
the subject applies at a given time. If the subject applies
forces which move the robot along the desired trajectory,
then they are capable of performing the task alone, and the
robot will remain backdrivable within a defined error bound.
If the subject applies forces which would cause the robot
to significantly deviate from the desired trajectory, then the
robot will intervene to provide assistance. Force sensors at
the end-effector are an obvious solution for determining sub-
ject capability. The inclusion of force sensors has drawbacks,
however, such as introducing stability concerns, the need for
frequent calibration, and an increase in the system cost.

One cost-effective alternative is sensorless force esti-
mation, a technique that exploits differences between the
expected and actual manipulator configurations to approx-
imate applied disturbances. In particular, in this work we
implement a model-based sensorless force estimation ap-
proach, where plant dynamics and input-output data are
used to extract the user’s applied force. If the plant model
is inaccurate, this disturbance estimation method cannot
correctly distinguish between responses caused by known
and unknown inputs; the estimated disturbances therefore
include both external forces (τp) and unmodeled dynamics
(τm). While this effect may seem undesirable, we show
that model-based disturbance estimation can still be quite
convenient for robotic rehabilitation applications. For the
sake of formulation, let us denote the disturbance which our
model-based approach seeks to estimate as

d = τp + τm (2)

Applying the disturbance definition (2), the robot manip-
ulator dynamics (1) can be rewritten

M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) = τr + d (3)

where (̂·) donates an estimated value.

III. NONLINEAR DISTURBANCE OBSERVER

The NDO originally proposed by Chen et al. [10] has been
employed in a variety of applications, such as friction com-
pensation, sensorless torque control and haptic interaction

control [12]. In this section we will provide an overview
of the disturbance observer formulation from [10]. As an
additional step, we further show that disturbance estimation
errors are bounded in the case of a time-varying interaction
between the subject and robotic device. First, the NDO
formulation defines a differential equation—which describes
the disturbance estimation system—as follows

˙̂
d = −L(q, q̇)(d̂− d) (4)

Here d̂ is the estimate of the disturbance term, and L(q, q̇)
is defined with the following relation

L(q, q̇)M̂(q)q̈ =
dp(q, q̇)

dt
(5)

where p(q, q̇) will be determined subsequently. The main
purpose of this disturbance observer formulation is to elimi-
nate the need for acceleration measurement via the inclusion
of an auxiliary variable z

z = d̂− p(q, q̇) (6)

Considering the relations given in (4-6), and the robot
manipulator dynamics given in (1), the time derivative of
this auxiliary variable z is as follows

ż = −L(q, q̇)(z + p(q, q̇)) + L(q, q̇)(M̂(q)q̈(t) + Ĉ(q, q̇)q̇(t)

+ĝ(q)− τr(t))− L(q, q̇)M̂(q)q̈

= −L(q, q̇)(z + p(q, q̇)− Ĉ(q, q̇)q̇ − ĝ(q) + τr)
(7)

Note that the above relation allows computation of the
auxiliary variable z, and hence the estimation of the dis-
turbance d̂, without acceleration information. Of course, in
order to achieve this, the functions L(q, q̇) and p(q, q̇) have
to be designed such that the disturbance estimation term
asymptotically converges to its true value. Towards this aim,
let us define the disturbance estimation error term such that

ed = d− d̂ (8)

Within this setting, disturbances are typically assumed to be
constant, i.e., ḋ = 0, noting that our estimation method will
still be shown to work even when this assumption is strongly
violated. Now, recalling the relation given in (4), the time
derivative of the error term can be written

ėd = −L(q, q̇)ed (9)

By inspecting (9), we see that the proper selection of L(q, q̇)
will cause ed to asymptotically converge to zero. Considering
(5), the selection of p(q, q̇) = cq̇ (where c is a positive
constant) gives the following relation

L(q, q̇) = cM̂−1(q) (10)

Due to the inherent properties of the inertia matrix for
robotic manipulators (symmetry and positive definiteness),
the selection of L(q, q̇) in (10) desirably leads to asymptotic
convergence of the error term in (9).
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A. Existence of Time Varying Disturbances

In a rehabilitation application, the force input (subject
capability) changes as a function of time, and, clearly, our
disturbance estimation technique should accurately account
for these changes. When time varying disturbances exist, the
assumption ḋ = 0 will not be correct. Hence, the disturbance
estimation error system (9) can be redefined as follows

ėd = −L(q, q̇)ed + ḋ (11)

There does not exist an equilibrium point for the error system
in (11). Hence the disturbance estimation error system is
not stable in the sense of Lyapunov. Lyapunov stability
analysis, however, can be used to show the boundedness
of the solutions [13], so that our estimation errors have
a limited magnitude. We employ the following Lyapunov
function candidate when ḋ 6= 0

Vo,NDO
(ed) =

1

2
eTd ed (12)

We here assume that the time derivative of the user input
is upper bounded with a constant D, where ‖ḋ‖ ≤ D. This
assumption is reasonable since subjects capability for provid-
ing input is limited in terms of movement frequency. Note
that the L2 norm is employed throughout the formulation
for consistency. Now, substituting in (11) and (10), the time
derivative of the Lyapunov function yields

V̇o,NDO
(ed) = −eTd (cM̂−1)(q)ed + ḋ

≤ −cλmin(M̂)‖ed‖2 +D‖ed‖
(13)

We used the relation yTx ≤ ‖x‖‖y‖ in the above inequality,
where λmin is the minimum eigenvalue of the inertia matrix
M . By introducing a constant θ, such that 0 < θ < 1, (13)
can be represented in the following form

V̇o,NDO
(ed) ≤ −(1− θ)cλmin(M̂)‖ed‖2+

θcλmin(M̂)‖ed‖2 +D‖ed‖
(14)

So, we conclude V̇o,NDO
≤ −(1 − θ)cλmin(M̂)‖ed‖2 ∀ ed

if and only if

‖ed‖ >
D

θcλmin(M̂)
(15)

Therefore, as soon as the inequality in (15) is satisfied, the
error system will behave like it is asymptotically converging
to the equilibrium point—i.e., like the case where ḋ = 0.
It is possible to define an ultimate bound on the disturbance
estimation error ed with a more rigorous analysis, but, for the
sake of briefness, we use a constant eUB as an upper bound
on right side of (15). The performance of the described NDO
for a time varying disturbance is shown in Fig. 2; we note
that the estimation of subject capabilities remains accurate,
even when the subject’s applied force is rapidly changing.

IV. MAAN CONTROL LAW

Since the proposed NDO is robust to time-changing sub-
ject capabilities, we next incorporate it within our mAAN
controller. In this section, we will focus on the mAAN
control law, noting that the associated stability analysis

Fig. 2. Experimental validation of the disturbance estimation capability of
our NDO. The applied torque is a chirp signal sweeping from 0.5 Hz to 4
Hz over 20 s with 1 Nm amplitude. The maximum disturbance estimation
error is less than 16% of the disturbance’s amplitude at any given time.

has already been performed with the KF method [9], and
thus does not need to be repeated. An AAN controller for
rehabilitation exercises should help subjects complete desired
motions while encouraging active participation. Accordingly,
the following mAAN controller is introduced

τr = τb − d̂ (16)

where τb signifies a baseline controller, d̂ indicates the
model-based disturbance estimate (from the NDO), and τr
represents the robot’s joint torques. This AAN controller has
the same structure as those in [7], [8], and [9]. Intuitively,
whenever the human provides an input to backdrive the
robot along the desired trajectory, τb − d̂ = 0, and so the
robot provides no assistance. By constrast, when subjects
make mistakes, (16) works to compensate for their applied
disturbance. Because of the bounded errors within the NDO,
(15), some tracking error is inevitable; we will subsequently
demonstrate that this tracking error can beneficially motivate
participation during training.

The baseline controller, τb, is selected to be the passivity-
based motion control law proposed by [14] and detailed
in [15]. With a twice-differentiable reference trajectory, we
express the position error in joint space as q̃ = q − qd. We
then define the desired motion variables

v = q̇d − Λq̃; a = v̇; r = q̇ − v (17)

where Λ is a positive definite matrix which determines the
relative weight of position errors. The baseline controller can
then be written

τb = M̂(q)a+ Ĉ(q, q̇)v + ĝ(q)−KDr (18)

where KD is a positive definite gain matrix. In [9], we
extensively studied the stability of (1), (16), and (18) when d̂
was determined using a KF approach. Because these deriva-
tions are almost identical when the NDO from Section III is
used instead of this KF approach, we will here skip to the
conclusion of this stability analysis, referring the interested
reader to [9] for more information. An important point to
consider however is that the stability analysis of the mAAN
controller, (16), employing our NDO, d̂, yields bounded
trajectory errors (see Fig. 3); bound being governed by the
following equation

‖r‖ ≥ ‖M̃r + C̃r − eUB‖
ελmin(KD)

(19)
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Fig. 3. Trajectory error using mAAN control and an NDO with both
varying KD values and disturbance amplitudes. Applied torques were 1 hz
sinusoidal with amplitude Damp. The robot was commanded to maintain a
stationary pose. As KD increases the error bounds tighten; here the amount
of error r resulting from an identical input decreases in response to increased
KD . Disturbances with greater amplitude desirably create larger errors.

where ε is a constant, such that 0 < ε < 1. Importantly,
(19) ensures that the human is able to make errors during
movements, but the magnitude of the error can be bounded
by changing the user-selected gain matrix KD. We will next
discuss an algorithm which automatically modulates KD,
and therefore the magnitude of the subject’s allowable error.

A. Error Bound Modification Algorithm

Our mAAN controller with an NDO ensures that subjects
complete the movement task while providing minimal as-
sistance. In order to further encourage active participation,
however, it is necessary to properly “challenge” the subject.
If the subjects are not challenged, they may become passive
and let the robot complete their movements [16]. With (19)
we have shown that the movement errors are bounded;
intuitively, we would like to allow less impaired subjects to
make greater errors (and therefore have a more challenging
task), while severely impaired subjects should only be able
to make small errors (making the task suitably easy). As we
have pointed out, changing the matrix KD modulates the
amount of allowable error. Like in [9], we thus introduce an
algorithm to automatically update KD in order to maintain
a user-specified allowable trajectory error:

KD,i+1 = (1 + xi)KD,i (20)

The feedback gain for the next task, KD,i+1, is determined
by comparing the subjects’ current average error, r̄i, to the
maximum allowable average error, r∗. As such, xi in (20)
can be formulated as:

xi = xnom
r̄i − r∗

r∗

(
|r̄i − r∗|
|r̄i−1 − r∗|

)sign(r∗−r̄i)

(21)

Here xnom is a predetermined, constant, nominal change
rate. The sign of xi is determined by comparing the average
error in the current task to the maximum allowable error.
To better understand how this algorithm works in practice,
we refer the reader to [9], where the authors performed
initial healthy-subject experiments. In this paper, we will
experimentally use this error bound modification algorithm

and mAAN controller to encourage the participation of an
SCI subject, as described in the next section.

V. EMG-BASED EXPERIMENTAL VALIDATION

The main purpose of the proposed subject adaptive algo-
rithm is to maintain subject engagement throughout training.
We experimentally examined how the inclusion of the pro-
posed mAAN controller would affect the variation in subject
involvement during wrist flexion/extension movements. A
four-session robotic training protocol was conducted with a
single subject, a 47 year-old male with incomplete SCI at
the C3-5 level, American Spinal Injury Impairment Scale
(AIS) C. The four sessions took place on spearate days
spanning a two week period. Each session consisted of two
separate training blocks a and b (training blocks are referred
subsequently by using the associated session numbers as
(session no)-a and (session no)-b). A given training block
consisted of two ten minute phases, separated by a short
break. The subject adaptive algorithms were not included
in the first phase, but were implemented with the AAN
controller in the second phase.

Throughout the training, visual feedback, which is de-
scribed in Fig. 4, was presented to the subject. The allo-
cated time to move from center-to-periphery targets was one
second, the targets at the periphery were placed at ± 20◦,
and the targets were presented randomly. The subject was
instructed to follow the given desired trajectory as close as
possible; however, intentional movements faster than given
desired trajectory were not discouraged. For the subject
adaptive algorithms, the initial, minimum, and maximum
feedback gains were assigned to be 10−2, 10−5, and 0.5
Nm · s/rad, respectively, and the r∗ value was set to 0.040
rad/s. For the case where AAN was implemented without
subject adaptive algorithms the feedback gain was assigned
as 0.5 Nm · s/rad.

Fig. 4. Visualization used for human-robot experiments. The torus (orange)
represents the subject’s position, the white ball indicates desired position,
and the current target is highlighted in blue. A task consisted of moving
from the center to one of the peripheral targets along the desired trajectory.

The effect of the subject adaptive algorithms on participant
engagement in therapy was evaluated by measuring muscle
activity with surface electrodes on the arm, similar to the
methods by Krisnan et al. [17], during trials with and without
the algorithms active. Measurements were taking during only
the first and second ten minute phases for a given training
block to minimize the effect of fatigue.

Since the experiment was implemented on the FE joint
of the RiceWrist-S, the muscles of interest were flexor carpi
radialis (FCR) and extensor carpi ulnaris (ECU). A Delsys
Bagnoli-8 surface EMG system was used to collect EMG
data. Skin preparation was conducted according to [18],
using fine sand paper along with isopropyl alcohol wipes
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prior to electrode placement. The electrodes were placed
approximately over the bellies of the FCR and ECU mus-
cles. To reduce possible electromagnetic interference (EMI)
caused mainly by electrical actuators, the conductive parts of
the exoskeletal frame were grounded and the subject’s arm
was wrapped in neoprene. Additionally, in order to decrease
any possible crosstalk between FCR and ECU muscles, and
finger muscles due to grip force a special handle was used,
which can be coupled to the palm of the subject so that
subject does not need to grip during the training. A 1000x
gain was chosen on the Delsys system to amplify the voltage
reading, and the system provided a 20-450 Hz band-pass
filter. The data was recorded with a QuaRC (Quanser Inc.)
data acquisition system at a sampling rate of 1 KHz. Another
filtering stage was applied digitally using a 25-450 Hz band-
pass discrete filter to reduce EMI. As a final step, the
magnitude of the band-pass filtered EMG data was smoothed
for the analysis using a 100 ms window running root mean
square (RMS) calculation.

Although the aim was to use the data collected from
both the FCR and ECU muscles, ECU muscle measurements
were unreliable, arising from a combination of the subjects
inability to activate the ECU muscle, and a thick skin layer
on the outer forearm. Hence the following data analysis
is conducted by using FCR muscle data only when the
desired movement was in the flexion direction. The subject
involvement was calculated as a percentage of time, using
the ratio between involvement time, tinv , and the total time,
ttotal. The involvement time, tinv , was calculated as the
amount of time the RMS value of the EMG data was
larger than a threshold of the maximum voluntary contraction
(MVC) recorded on a particular session. For the purposes of
analysis in this study, the threshold was set to 0.20. The total
time, ttotal, was calculated as the amount of time for the
subject to reach the desired target for a flexion movement.
Since the implemented subject adaptive algorithms allowed
intentional movement faster than the desired movement, the
amount of time for the subject to reach the desired target was
used in the calculation of ttotal, rather than the complete
allocated time for the desired movement, which was one
second as specified previously.

The subject involvement performances, for the cases with
and without the inclusion of the subject adaptive algorithms
within the AAN controller, were compared using the data
gathered throughout the eight training blocks. Fig. 5 shows
the average subject involvement values for each 50 second
interval of a given training block, labeled, for example, as
1-a (session 1, training block a). The results reveal that
for 6 out of 8 training blocks, average subject involvement
was consistently higher for training blocks when the subject
adaptive algorithms were active. For the training blocks
2-a and 4-b, average subject involvement was similar for
both cases. These findings are supported by Fig. 6(a) which
presents the average percentage of time across trials for each
block. Again, it is noted that, with the exception of training
blocks 2-a and 4-b, subjects involvement as measured by
EMG is greater when the adaptive algorithms are active.

An important trend was observed when the presented aver-
age subject involvement values in Fig. 5 were averaged over
all the training blocks. Fig. 6(b) presents that, for the case
without the inclusion of the subject adaptive algorithms the
average subject involvement shows an apparent decreasing

Fig. 5. The subject involvement performances for the cases with and
without the inclusion of the subject adaptive algorithms within the mAAN
controller shown for every training block separately. In 6 out of 8 training
blocks, average subject involvement was consistently higher for the case
with the inclusion of the subject adaptive algorithms.
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Fig. 6. The subject involvement performances for the cases with and
without the subject adaptive algorithms within the AAN controller averaged
for every training block. (a) The averaged subject involvement values for
the case with the subject adaptive algorithms resulted consistently higher
than the values for the case without the subject adaptive algorithms at every
training blocks, except at the training blocks 3 and 8. (b) For the case
without the inclusion of the subject adaptive algorithms the average subject
involvement shows an apparent decreasing trend as the time progresses.
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trend as the time progresses. This finding supports the claim
asserted in [16], which is unless properly challenged, subjects
may let the robot take control. On the other hand, for the
case with the inclusion of the subject adaptive algorithms,
the average subject involvement does not show a decreasing
trend, and it is consistently higher than the corresponding
cases where the algorithms are not active.

As a further investigation, the average position error and
the norm of the control input values are plotted per training
block (Fig. 7). As expected, the average position error for the
case with the inclusion of the subject adaptive algorithms is
higher for every training block (while being less than 2◦ for
a movement with 20◦ amplitude). The finding demonstrates
that for the case including the subject adaptive algorithms,
the standard deviation of the position error is considerably
large. The phenomenon is caused by the fact that the subject
adaptive algorithm minimizes the intervention to maintain
subject participation. The decrease in the intervention is
presented via Fig. 7(b), which shows the norm of the control
input. The total control action is consistently smaller in the
case where subject adaptive algorithms are active. Combined
with the findings presented in the Fig. 5 and 6, the results in
Fig. 7(b) suggest that the subject adaptive algorithms allow
more involvement with minimal intervention.
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Fig. 7. The average position error and the norm of the control input
values are plotted per training block. (a) The average position error for
the case with the inclusion of the subject adaptive algorithms is higher
for every training block with considerably larger standard deviation due to
the fact that that the subject adaptive algorithms allow the subject to make
errors to increase and maintain subject participation. (b) The subject adaptive
algorithms minimizes the intervention based on subjects performance.

VI. CONCLUSION

We presented and experimentally validated a novel AAN
controller formulated on a NDO. In addition to the sensorless
estimation of subject inputs over time, a bound modification
algorithm is introduced, which alters allowable error. Though
subject engagement during robotic therapy depends on nu-
merous factors, such as motivation, fatigue, and external
distractions, the findings of this pilot study suggest that the
inclusion of the subject adaptive algorithms, which challenge
the subject based on their performance, maintain subject
engagement throughout the robotic rehabilitation sessions.
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