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Abstract— Robotic exoskeletons can provide the high inten-
sity, long duration targeted therapeutic interventions required
for regaining motor function lost as a result of neurological
injury. Quantitative measurements by exoskeletons have been
proposed as measures of rehabilitative outcomes. Exoskeletons,
in contrast to end effector designs, have the potential to
provide a direct mapping between human and robot joints.
This mapping rests on the assumption that anatomical axes
and robot axes are aligned well, and that movement within the
exoskeleton is negligible. These assumptions hold well for simple
one degree-of-freedom joints, but may not be valid for multi-
articular joints with unique musculoskeletal properties such
as the wrist. This paper presents an experiment comparing
robot joint kinematic measurements from an exoskeleton to
anatomical joint angles measured with a motion capture system.
Joint-space position measurements and task-space smoothness
metrics were compared between the two measurement modal-
ities. The experimental results quantify the error between
joint-level position measurements, and show that exoskeleton
kinematic measurements preserve smoothness characteristics
found in anatomical measures of wrist movements.

I. INTRODUCTION

Regaining lost motor function after neuromuscular con-
ditions such as stroke or spinal cord injury requires long
duration, high intensity therapy sessions involving high levels
of patient engagement [1]. To retrain the ability to perform
activities of daily living (ADL), exoskeletons targeting the
upper extremity have been developed [2], and have been
verified in clinical studies [3]. In particular, the wrist is
garnering attention due to its role in dexterous manipulation.
Rehabilitation robots for the wrist have been proposed, such
as Pehlivan, et. al [4] and Masia, et. al [5]. The READAPT
[6] combines a wrist exoskeleton with a hand exoskeleton.
Often these devices are used both for delivering therapy and
for assessing rehabilitation outcomes.

Robots offer capabilities for measurement modalities typ-
ically not available to clinicians, who often rely solely on
functional assessments such as GRASSP [7] or Box and
Blocks [8]. Tyryshkin et. al [9] propose objective measure-
ments created from tracking hand position in Cartesian space
that correlate with established measures, and provide greater
detail in assessing motor function post stroke than tradi-
tional methods. Exoskeleton designs such as the READAPT
have similar capability at measuring motor function in task
spaces, as well as the potential to access individual joint
level measurements. The mapping between human joints
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Fig. 1.  The OpenWrist [12], part of the integrated hand and wrist
exoskeleton READAPT, evaluated as a measurement device via movement
smoothness analysis. Rigid bodies defined by passive motion capture
markers used to measure relative wrist angles are highlighted in red.

and robot joints enables analyses of joint-level movement
characteristics not available in either traditional clinical mea-
sures or task-space measurements [10], [11]. For practical
considerations, these benefits are maximized when the same
device is used for training and measurement.

A few assumptions are made in these joint-level measures,
namely that using the measurement device doesn’t affect the
measurand, and measurements of robot joints are sufficient
for inferring human joint angles. Previous studies have shown
how measurement via the READAPT affected the measurand
for coordinated movements of the hand and wrist [6]. Key
assumptions about device transparency were tested, namely
that ‘low’ inertia and static friction properties were sufficient
to ensure accurate measurement, and comparisons between
passive backdriving and active zero-impedance modes were
made. While this preliminary study examined the impact
of a wearable device on movement, it did not verify that
the measurements of robotic joint angles correspond to
human joint angles. Separately, the accuracy of torque and
position measurements of the hand exoskeleton module of
the READAPT have been presented [13], validating the hand
exoskeleton’s measurements. However, the wrist portion of
the device [12] has not been examined in detail. In particular,
the impact of ergonomic considerations to prevent kinematic
overconstraint on measurement need to be evaluated.

Devices rely on a variety of features, from passive degrees
of freedom [4] to anatomically designed wrist mechanisms
[14], to align exoskeleton joints to the complex rotations
in the wrist. However, preventing kinematic overconstraint
is not enough to ensure that robotic joint measurements
are accurate reflections of human joint measurements, in
particular when unmeasured movement is part of the design.
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To this end, we present a preliminary experimental vali-
dation of the OpenWrist [12], the READAPT wrist module,
as a measurement tool for wrist movements of able-bodied
individuals. Section II describes the experimental validation
methods, and Section III presents the findings of the ex-
periment. Section III-A compares the measurements of the
device in terms of position, discussing the limitations of both
the experimental methods, exoskeleton device, and arbitrary
wrist axis conventions. Section III-B presents two movement
smoothness metrics calculated with robotic and anatomical
joint measurements, putting the results of the experiment in
the context of how these devices are often used.

II. EXPERIMENTAL METHODS

We are interested in investigating the suitability of our
exoskeleton as a rehabilitation assessment device. To this
end, we recorded movements with a motion capture system
and the exoskeleton’s integrated sensors while subjects com-
pleted a multi-DOF pointing task. We selected isolated and
combined wrist flexion/extension and radial/ulnar deviation
movements for their unique physcial and movement proper-
ties [15]. A task similar to prior work [15] and therapeutic
tasks [16] allows us to investigate the effect of anatomical
and robotic joint misalignment and movement within the
robot on measurements of complex joints such as the wrist.

A. Task Description

The task required pointing movements to nine targets, one
at a constant position near neutral, and eight targets displayed
on a circle, shown in Fig. 2. Subjects were instructed to reach
the targets at a speed suggested by the closing of a gate
around the target, shown in Fig. 2b and Fig. 2c. Subjects
reached each target five times in a practice session then 15
times in a psuedo-random order for two speed conditions,
‘slow’ and ‘fast’, which suggested 0.6 and 0.4 seconds
respectively, to complete the task. To simplify segmentation
based on velocity thresholds, subjects were required to wait
on all targets for one second.
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Fig. 2. Subjects begin at the center target, then a goal target is highlighted
and blocks appear, closing at a rate that suggest the time allowed for the
movement. Then, after reaching the outer target, subjects return to the center.

While the visualization shown to the user was circular, the
mapping between each target position and the required wrist
angles was chosen to reflect a constant portion of the ROM,
and not a constant angular distance, as shown in Fig. 3. The
target locations were selected by taking the average wrist
ROM defined by Crisco, et. al, [17], reducing it by 40%, and
spreading targets every 45° around the edge of the reduced
workspace. The cursor moved in a linearly scaled fashion

with radial/ulnar deviation corresponding to up/down, and
flexion/extension corresponding to left/right, respectively, as
measured by the motion capture system.
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Fig. 3. Target positions were created by scaling the workspace proposed
by Crisco et. al [17] by 40%. Targets were placed around the work space
at 45° intervals, marked by asterisks. The visualization displayed a circular
workspace, but the distance from center to the desired target was scaled to
the red ellipse in (a). The units in (b) are positions in the visualization.

B. Subjects

Nine subjects, two female, seven male, ages 20-28 were
tested in compliance with the Rice University Institutional
Review Board. All subjects were right hand dominant, with
no known wrist impairments or history of injury.

C. Kinematic Joint Angle Measurement

When acting as a measurement tool, the OpenWrist, shown
in Fig. 1, is unpowered, backdriven, and measurements are
taken from the 500 count Avago HEDL-5540 quadrature
encoders at each robotic joint. The sensor resolution of this
device is on the order of hundredths of a degree, similar
to previously presented devices [4]. Encoder velocity is
obtained with a Q8-USB DAQ from Quanser.

D. Anatomical Joint Angle Measurement

Human wrist angles were measured with a motion camera
system. Six Optitrack Flex VIOOR2 100 FPS cameras, 3
mm and 11 mm passive reflective markers for the hand and
forearm (shown in Fig. 1), respectively, were used in con-
juction with QuaRC and Simulink in Windows to measure
the relative joint angles in soft real time during the pointing
tasks. Markers were used to create rigid bodies, whose
orientation relative to the motion capture world frame were
recorded by QuaRC and Simulink. An algorithm, proposed
by Biryukova et. al [18] was used to determine an estimate
of the anatomical wrist rotations. This implementation is
more similar to magnetic motion tracking methods than
most implementations of optical motion capture of wrist
movements in that marker placement is not a function of
anatomical landscape [19], removing requirements about the
location and accuracy of optical marker placement. However,
concerns about movement of markers on the skin is still
present, which the use of physical rigid bodies, highlighted
in red in Fig. 1 sought to minimize.

The algorithm is defined in detail by Biryukova et. al
[18], but is repeated here in brief to clarify the results of
partial differentiation and the selection of the eigenvalue.
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The algorithm uses the orientation of two rigid bodies, the
forearm and hand, to the world frame and estimates axes of
rotation based on single DOF calibration movements. The
orientation of the axis is obtained by minimizing the integral

t
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where w; and wy are the orientations of the axes with respect

to the hand and forearm, R;, R> are the orientation of the

rigid bodies with respect to the world frame, and ¢ is the

duration. The partial derivative of (1) with respect to w; and

wo gives a linear system of equations
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where the integrals were determined via trapz in MAT-
LAB. The eigenvalue of the matrix given in (2) where
the smallest magnitude corresponds to the axis orientation
which minimizes the originally proposed integral in (1).
Repeating the process for another movement results in the
other axis orientation. Taking the cross product of the two
resulting axes creates a third orthogonal axis, which for the
purposes of this study was not considered to correspond to
pronation/supination, since no calibration of that DOF was
made. Crossing this third axis with an anatomical axis creates
an orthogonal set of anatomically inspired axes, which was
used to determine wrist angles, as clarified in Fig 4.

Fig. 4. Simplified 2D schematic illustrating the 3D calibration and defintion

of the anatomical axes, with ‘r’ subscripts representing robot axes, ‘a
subscripts representing calibrated anatomical axes, and ‘a,p’ representing
the change made to the RU axis to impose orthogonality.

The sample calibration movements in Fig. 5 show the wrist
angles about the calibrated axes along with the measurements
of the robot joint encoders. The difference between the
motion capture and the encoder measurements are likely a
function of both the anatomically calibrated axes’ misalign-
ment with the robot joints, and the limitations of assuming a
constant axis position and orientation to represent anatomical
joint axes. In the next section, we quantify these differences
and evaluate the impact on robotic metrics of movement
quality derived from the joint angle measurements.

E. Data Analysis

Anatomical joint measurements were filtered and differ-
entiated using a third order Savitzky-Golay filter with a
21-sample (200ms) window [20]. Inbound and outbound
movements were segmented in two ways. First, kinematic
and anatomical trajectories were segmented independently,
at the point where the velocity profile first exceeded, then
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Fig. 5. Single DOF calibration movements were used to determine
anatomical axes, plotted against the robot kinematic measured during the
same movements. Positive rotations were defined as wrist flexion and radial
deviation. The error in these joint level trajectories is largely a result of
anatomical and kinematic misalignment.

fell below 2% of the movement’s maximum velocity [21],
without knowledge of the other measurement modality. This
selected threshold compares with other implementations of
1% [22] and 5% [15] thresholds. Then, to reduce the effect
the variations introduced by separately segmenting each
movement, the motion capture and joint encoder move-
ments were segmented at the same point, using the velocity
threshold crossing information from both movements, to
create the minimum window, with *’s used to denote the
coupled method. Fig. 6 shows a sample task, with the two
segmentation results overlaid on each other in gray. Coupled
segmentation would select only the darker area for both
anatomical and kinematic movement analysis.

Kinematic and anatomical joint measurements were di-
rectly compared. Then, two measures of movement smooth-
ness were computed. Robotic exoskeletons are typically used
to assess multi-DOF movements in the task space, with
metrics such as the correlation p to a minimum jerk speed
profile [10], and the spectral arc length [11]. These task-space
metrics are computed on a movement’s tangential velocity,
which would reduce errors caused by joint misalignment. We
used the MATLAB function and default settings from Bala-
subramanian et. al [11] to calculate the spectral arc length.
Results were considered outliers if their value fell outside of
3 interquartile ranges past hinges [16]. All movements were
analyzed together, since the goal of this analysis is not the
preservation of any particular movement property dependent
on movement speed or direction, but rather the comparison
between anatomical and kinematic joint angle measurements.

III. EXPERIMENTAL RESULTS

The results of the pointing task experiment quantify the
effects of estimating anatomical wrist joint angles with robot
kinematic measurement, in the joint and task space.
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A. Position Measurement Comparison

Kinematic and anatomical joint measurements were com-
pared for all trajectories. We computed RMS errors between
the two measurements, along with standard deviations (see
Table I), treating the anatomical measurements obtained from
motion capture as ground truth so that we could evaluate the
accuracy of kinematic measurement of wrist orientation.
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Fig. 6. RU trajectory taken from outbound movement. Segmentation is
indicated via semi-transparent gray windows about the movement.

In general, human and robot joint axis misalignment drove
the errors shown in Table I, which is separated by target
and anatomical joint axis. The large error observed in Target
4 is partially attributable to range of motion limitations of
the robotic mechanism. This particular ROM limitation is
likely a result of the device being designed for ADL ranges,
and not the arbitrary range imposed during our test, as
well as the definition of neutral for the experiment being
different than of the device’s. While the errors for each
target were small, the relatively large standard deviation of
these values suggests that the intersubject variability of wrist
axes direction detracts from the accuracy of using robot
kinematics to infer measures in anatomical joint space.

B. Smoothness Measures

The movement smoothness metrics p (correlation to a
minimum jerk velocity profile) and SAL (spectral arc length)
were computed from the kinematic and anatomic joint mo-
tion measurements and are presented in Fig. 7a and 7b. These
metrics were computing using segmentation based only on
the observed measurements (i.e. segmentation of kinetic data
is independent of segmentation of anatomic data).

In Fig. 7c and 7d, differences in smoothness metrics com-
puted with kinematic and anatomic joint measurements are
plotted for independent segmentation, and for segmentation
based on the minimum movement time for the two data sets
(*). Results suggest that p is highly sensitive to segmentation
scheme, while SAL is not, as observed by the changes in the
range of values in Fig. 7c and 7d.

TABLE I
RMS ERROR AND STANDARD DEVIATION (o) BETWEEN KINEMATIC AND
ANATOMICAL MEASUREMENTS

Anatomical RU Anatomical FE
Target RMS [rad] | o [rad] | RMS [rad] | o [rad]
o | 1 0.055 0.041 0.089 0.087
2 0.034 0.024 0.061 0.035
[ ]
3 0.023 0.016 0.050 0.032
[ ]
4 0.062 0.043 0.079 0.058
[ ]
° 5 0.034 0.028 0.050 0.031
Y 6 0.017 0.010 0.034 0.019
]
7 0.016 0.010 0.022 0.016
y 8 0.032 0.019 0.040 0.029

0.2

os -le E 05f 1 : T
- R

ol : : :

1 L L

or : -0.5 1
! ! =2 A 0.2
osp 4 L 24 15
pA PK SAL, SALg Ap* A SAL A SAL*
(@) (b) (©) ()
Fig. 7. Smoothness measures p and SAL, calculated from anatomic (A)

and robot kinematic (K) measurements across all subjects, and all targets
are shown in (a) and (b), respectively. For all plots, whiskers extend to three
interquartile ranges past hinges. Qualitatively, (a) and (b) reflect the high
variability of p and robustness of spectral arc length across measurement
modalities found during the experiment. The difference between anatomic
and kinematic p and SAL for each task, defined as A = Anatomic —
Kinematic are shown in (c) and (d), respectively. The * indicates the use
of the minimum movement time for the two data sets.

IV. DISCUSSION

The goal of this work was to quantify the impact of joint
misalignment and movement with respect to the robot on
the relation between robot kinematic and human anatomic
measurements. The sample pointing task in Fig. 6 dis-
plays a few of the characteristics we wished to investigate.
Specifically, the combined effects of static friction driving
the kinematic velocity to zero after the first velocity peak
and inertia delaying and ‘smoothing’ on movement metrics
were of interest. The trajectory shows both the effects
of movement within the device, as well as errors arising
from joint axis misalignment. In general, when comparing
position measurements, the kinematic measurement fails to
capture small variations in wrist movements relative to the
device. Also, the imposition of orthogonal axes of rotation
insufficiently captures actual anatomical motions. While our
experiments involved only able-bodied participants, these
issues are independent of population and remain relevant for
the task of rehablitation and assessment.

Researchers often present robotic rehabilitation outcomes
in terms of measures based on movement velocity profiles,

1440



such as p (smoothness correlation) and spectral arc length,
rather than reporting the trajectory data directly. Results
in Fig. 7 show large variance in movement smoothness,
which is not typical of healthy pointing movements. This
variance could be attributed to the mapping created for the
visualization, and perhaps required more training movements
before subjects became comfortable with the mapping. Or,
it is possible that wearing the exoskeleton device perturbed
movements. Note that the correlation to a minimum jerk
trajectory, p, is not consistent between joint encoder and
motion capture data for this experiment and is sensitive to
segmentation method. Looking at both Fig. 7b and 7d, the
same trends discussed by Balasubramian et. al are apparent,
namely, that spectral arc length is a more robust metric
for quantifying smoothness, and is less sensitive than p to
changes in segmentation. The smaller variance in SAL, both
in magnitude and as a proportion of the expected value range
supports the use of robotic kinematic data for this measure.

In general, any discussion of accuracy of joint-space
anatomical measurements hinges on uncertainties in approx-
imations made in the anatomical axes definitions. While im-
posing orthogonality on the direction of the average anatomi-
cal wrist axes, as described in Fig. 4, places some limitations
on the accuracy of the model, it is both sufficiently accurate
for the task, and appropriate for comparisons to robotic
measurements of metrics which use tangential velocity, such
as p and spectral arc length. Additionally, the inability of sub-
jects to perform perpendicular wrist movements, even when
guided by an exoskeleton is noteworthy. Angles between the
anatomically determined axes for calibrations ranged from
approximately 75° to 100°, similar to the results presented by
Biryukova et. al [18]. This coupling of rotations suggests that
analyses of movements about perpendicular flexion/extension
and radial/ulnar deviation axes may obscure important cou-
pled characteristics. Since the anatomic joint measurements
were used for the task, most movements required multi-DOF
robot movement, which could explain the wide range of
smoothness scores, if friction and inertia impact smoothness.

To improve the qualitative observations about the data
set shown in Fig. 7, we next examined the correlation
between the anatomic and kinematic measurements, shown
in Fig. 8. A high correlation suggests consistency across
measurement modalities, indicating that kinematic data is
an appropriate estimation of anatomic movements. First,
there is a positive strong correlation between the smoothness
metrics computed from kinematic data and those derived
from ‘ground truth’ anatomic data, supporting the use of
this exoskeleton as a measurement device. The quality of
the correlations of p drastically improve once segmentation is
coupled, rather than independent. This change is largely the
result of independently segmented anatomic measurements
capturing significantly more corrective and subtle motion at
the end of the trajectories, as shown in Fig. 6, which are
obscured by robotic joint static friction in kinematic measure-
ments. Smoothness metrics computed from kinematic data
are strongly correlated to anatomic data when the metrics
are computed for identical segments of data, suggesting that

care need be taken when designing segmentation algorithms
for kinematic measure of human joint movements.

s ’ : 2 15 25 ) 2 -1.5
SAL, SAL,
(c) Correlation coeff. = 0.57 (d) Correlation coeff. = 0.76
Fig. 8. Anatomical vs. kinematic metrics calculations of p (a,b) and SAL
(c,d) for both independent (a,c) and coupled (b,d) segmentation strategies.
High correlation coefficients indicate that kinematic measurement accurately
captures anatomical movements.

In Fig. 9, we present correlations between independent
and coupled segmentation methods applied in the calculation
of smoothness metrics derived from a single data source
(anatomical or kinematic). For both measures, there is a
high correlation between the kinematic measures calculated
using the independent and coupled segmentation algorithm,
indicating that kinematic data is robust to changes in segmen-
tation strategy. This correlation is expected since the robotic
device’s inertia and friction delay the start and hasten the
end of trajectories. The correlations of measures calculated
from anatomical trajectories were lower, due to the capture
of more movements with respect to the robot. However, the
higher correlation for SAL across segmentation strategies
further supports it as robust to changes in segmentation and
measurement modalities. Looking at Fig. 9 it is clear that
the change in segmentation strategy has less of an effect on
SAL overall than it did for p.

The ‘improvement’ in scores based on segmentation
method supports the idea that the robot kinematic measures
capture the bulk movement properly, that is to say, velocity
segmentation on the anatomical trajectories did not typically
remove as many submovements, corrections, or tremors, as
the robot did, which is to be expected for a device with low,
but still non-negligble inertia and static friction. For analyses
on gross, segmented movements, our results demonstrate
that robot kinematic measurement accurately captures human
movement characteristics.

V. CONCLUSIONS

Robots employed for rehabilitation applications are often
used as assessment tools. It is typically assumed that the joint
axes of an exoskeleton are aligned with the joint axes of the
individual, allowing assessment of movement coordination
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Fig. 9. Effect of segmentation on each of the metrics, as calculated from
anatomical data (a,c) and kinematic data (b,d). On all vertical axes, the
metrics are calculated with individual segmentation, and the horizontal axes
are the metrics calculated with coupled segmentation. The higher correlation
coefficients for kinematic measures indicate that robotic measurement is less
sensitive to segmentation strategies.

in both joint space and task space. For multi-articular joints
such as the wrist, this assumption can break down. In this
paper, we evaluated the accuracy of anatomical joint axis
measurement using the encoders of a wrist exoskeleton
robot module compared to ground truth measurements of
anatomical movements from a motion capture system. We
found that, as expected, the kinematic robot measures failed
to capture movements of the wrist relative to the robot.
While these errors manifest in any trajectory-based metrics,
for movement quality metrics, the measurements from robot
sensor data are more reliable. Two measures of movement
smoothness derived from task space velocity profiles were
evaluated for a target hitting task performed by able bodied
subjects. For performance measure p, that characterizes the
correlation between the subjects task space velocity profile
and an optimally smooth profile, we found that segmentation
differences in kinematic data versus anatomical data ac-
counted for the variations. If a coupled segmentation method
was used, restricting the data set to span the same time period
regardless of data used for metric computation, the kinematic
and anatomical data produced strongly correlated metrics.
Spectral arc length, which measures movement smoothness
in the frequency domain, was less dependent on segmenta-
tion method, and SAL computed with kinematic data was
strongly correlated to SAL computed with anatomical joint
motion data. We conclude that the data from a robotic
wrist exoskeleton can be reliably used to compute movement
smoothness metrics for target hitting tasks, even though such
measurements fail to capture relative motion of the wrist
compared to the exoskeleton device.
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