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Abstract—Robotic rehabilitation of the upper limb following
neurological injury is most successful when subjects are engaged
in the rehabilitation protocol. Developing assistive control strate-
gies that maximize subject participation is accordingly an active
area of research, with aims to promote neural plasticity and, in
turn, increase the potential for recovery of motor coordination. Un-
fortunately, state-of-the-art control strategies either ignore more
complex subject capabilities or assume underlying patterns govern
subject behavior and may therefore intervene suboptimally. In this
paper, we present a minimal assist-as-needed (mAAN) controller
for upper limb rehabilitation robots. The controller employs sen-
sorless force estimation to dynamically determine subject inputs
without any underlying assumptions as to the nature of subject
capabilities and computes a corresponding assistance torque with
adjustable ultimate bounds on position error. QOur adaptive in-
put estimation scheme is shown to yield fast, stable, and accurate
measurements regardless of subject interaction and exceeds the
performance of current approaches that estimate only position-
dependent force inputs from the user. Two additional algorithms
are introduced in this paper to further promote active partici-
pation of subjects with varying degrees of impairment. First, a
bound modification algorithm is described, which alters allowable
error. Second, a decayed disturbance rejection algorithm is pre-
sented, which encourages subjects who are capable of leading the
reference trajectory. The mAAN controller and accompanying al-
gorithms are demonstrated experimentally with healthy subjects
in the RiceWrist-S exoskeleton.

Index Terms—Adaptive control, human-robot interaction, Lya-
punov methods, nonlinear control systems, rehabilitation robotics,
sensorless control.

1. INTRODUCTION

ROUND 795 000 people suffer strokes each year in the

United States; the leading cause of long-term disability,
stroke has broad social impacts and an estimated $33.6 billion
yearly cost [1]. Spinal cord injury (SCI) incidence is approxi-
mately 12 500 each year in the United States [2], with yearly
direct and indirect costs of approximately $14.5 billion and
$5.5 billion [3]. Rehabilitation of patients with neurological
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impairments, such as stroke and SCI, primarily requires repet-
itive motions, which are known to improve muscle strength
and movement coordination [4]. In order to increase functional
outcomes and promote plasticity of the brain and spinal cord,
therapy must be intensive, with long duration and high subject
involvement [5].

Robotic devices are well suited for rehabilitation after stroke
and SCI because they ensure the consistency of repetitive and
intense therapeutic interactions. Robotic systems also enable
objective and quantitative evaluations of subject performance
both during and after treatment sessions. In addition, virtual
reality interfaces provide unique mediums where therapy can
be rendered within functional and motivational contexts [6];
consequently, the intensity of therapy can be increased. Clinical
studies involving robotic rehabilitation protocols further support
the implementation of these devices for the treatment of stroke
[7] and SCT [8].

Control of rehabilitation robots, however, remains an open-
ended research area. Assistive strategies, which target a wide
range of severely to mildly impaired subjects, are the most ex-
tensively investigated controller paradigm in the rehabilitation
robotics community [9] and have been shown to be the most
promising techniques for promoting recovery after stroke [10].
There is strong evidence that active participation induces neural
plasticity [11], and therefore, assistive controllers should inter-
vene minimally so as to best promote involvement and recovery.
Increasing treatment efficiency by minimizing robotic effort is
particularly important because it reduces the overall duration
and cost of intensive therapy sessions.

To address this phenomenon, several controllers have been
proposed, which seek to provide minimal amounts of robotic
assistance. Impedance control—as described by [12]—is
frequently employed, and controller properties are modified
based on subject performance. Krebs et al. [13] detail an
impedance scheme with both a force-field tunnel normal to
trajectory direction and a constant gain virtual back-wall on
subject velocity. Mao and Agrawal [14] similarly utilize a
force-field tunnel normal to trajectory direction, but maintain
constant assistive tangential forces, which allow movement
velocities to be completely defined by the subject. Mihelj
et al. [15] include a dead-band about the desired trajectory and
decrease the stiffness of an assistive virtual spring when subject
error is within that dead-band.

Impedance controllers can be simply implemented and have
intuitive properties; unfortunately, these control approaches fail
to incorporate the time-varying capabilities of a human user
and may therefore intervene incorrectly. For instance, when a
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subject is not able to satisfy some preset performance metric,
the virtual wall defined in [13], the tangential force defined in
[14], or the virtual spring defined in [15] will provide assistive
efforts with constant gain control action. The subject might still
be able to provide an input in the desired direction, however,
and accordingly require less assistance than is provided; alter-
natively, the subject may atypically resist desired motions and
substantially deviate from the reference trajectory.

So as to more faithfully adjust robotic assistance in response
to temporal variabilities in subject performance, several adap-
tive control schemes have been proposed. Emken et al. [16] use
an established model of human motor adaptation to derive an
adaptive robotic controller, where assistance is reduced via a
naturally inspired forgetting factor. Wei et al. [17] combine a
feedback controller with an adaptive feedforward term—which
is updated between tasks—to address consistent errors during
repetitive therapeutic tasks. Conversely, Proietti et al. [18] in-
troduce a controller that adaptively changes feedback gains on
a task-by-task basis, effectively modulating the impedance to
match subject ability.

We argue, however, that providing minimal assistance only
becomes possible when the subject’s functional capability is
known; adaptive controllers that incorporate subject input esti-
mation are often applied for this purpose. In particular, Gaus-
sian radial basis networks have attracted considerable interest
due to their universal approximation property [19]. Inclusion of
Gaussian radial basis networks in adaptive control algorithms
was previously proposed for both real-time robot control [20]
and arm motion modeling purposes [21]. This approach funda-
mentally assumes subject input to be position dependent and
estimates that input via Gaussian radial basis functions (RBFs)
distributed throughout the workspace.

Wolbrecht et al. [22] first employed an adaptive controller
with Gaussian RBFs for the purposes of robotic rehabilitation.
To ensure continuous subject engagement, the authors include an
adaption law that decreases assistive forces—i.e., “forgets” the
estimated subject input—whenever tracking errors are small.
This approach is problematic, however, because estimates of
subject input are necessarily perturbed by the forgetting factor.
Pehlivan et al. [23] also use RBFs, but decouple input estimation
and engagement problems by directly manipulating the subject’s
positional error bounds. Both [24] and [25] improve the estima-
tion ability of [22] through directionally dependent RBFs.

For a Gaussian radial basis network to accurately estimate
a subject’s functional capability, that subject’s ability to com-
plete tasks must be strictly a function of their position in the
workspace. While this consistency may be reasonably expected
from healthy individuals, it is not necessarily present in neuro-
logically impaired subjects—consider the effects of movement
disorders [26] and varying velocities [27], [28] on torque pro-
duction and reaching capabilities. Furthermore, adaptation laws
contained within the approaches described above do not guar-
antee that parameters will converge to their true values, except
under special conditions. As such, accurate estimation of subject
input is not ensured at all times.

In this paper, we introduce a minimal assist-as-needed
(mAAN) controller, which utilizes sensorless force estimation
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Fig. 1. RiceWrist-S, a robotic rehabilitation device used to experimentally
validate our proposed controller. A force sensor was attached at the handle, and
unused DOFs (PS & RU) were physically constrained.

to independently determine subject capability at each moment
in time—without assuming any underlying pattern—before
providing a corresponding assistance with adjustable ultimate
bounds on position error. Our adaptive input estimation scheme
employs a Kalman filter (KF) in conjunction with Lyapunov
stability analysis and is shown to yield fast, stable, and accurate
estimation regardless of subject interaction. Finally, in order
to promote active participation of subjects with various capa-
bility levels, we introduce two additional algorithms: a bound
modification algorithm that alters allowable error and a decayed
disturbance rejection algorithm that lets able subjects exceed the
desired trajectory. The algorithms are demonstrated experimen-
tally by healthy subjects operating a preexisting rehabilitation
robot.

This paper is organized as follows. Section II introduces our
experimental hardware, Section III derives the sensorless force
estimator, and Section IV incorporates that estimation within our
proposed control law. Additional algorithms to improve subject
adaptivity are detailed in Section V, and the mA AN controller is
subsequently tested in Section VI. Finally, the conclusion of our
research and remarks for future work are presented in Section
VIL

II. HARDWARE DESCRIPTION AND SYSTEM MODELING

We used the RiceWrist-S [29], a three-degree-of-freedom
(DOF) forearm-wrist exoskeleton, as our experimental platform
(see Fig. 1). This serial manipulator is capable of indepen-
dently actuating the user’s forearm and wrist DOFs; prona-
tion/supination (PS), flexion/extension (FE), and radial/ulnar
deviation (RU) can all be controlled. The RiceWrist-S also in-
corporates a passive and redundant DOF at the handle to account
for any axial misalignments between subject and mechanism.

In order to render low friction and backlash, the device em-
ploys both a brushless DC motor to directly drive the PS joint and
brushed DC actuators with cable drive transmissions for FE and
RU joints. We have previously demonstrated that the RiceWrist-
S achieves low apparent inertia, corresponds with the desired
range-of-motion, and provides torque outputs appropriate for
rehabilitation applications [29].
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Our manipulator dynamics can be represented in the tradi-
tional form

M(q)i+Clq,q)g+9(q) =7 + 7, (1)

where ¢ is a 3 x 1 vector of joint positions, M is the 3 x 3
inertial matrix, C' is the 3 x 3 matrix that represents Corio-
lis/centrifugal terms, ¢ is the 3 x 1 gravity vector, 7, is the
3 x 1 vector of torques applied by the actuators, and 7, is the
3 x 1 vector of torques applied by the subject and mapped into
joint space.

We implemented the subsequently proposed mAAN con-
troller on the FE joint of this RiceWrist-S manipulator. Static
friction, inertia, and viscous friction have been experimentally
identified for this joint. Static friction was estimated from the
system response to a ramp position input; inertia and viscous
friction were determined by investigating the system response
to a step position command. We used the modified logarithmic
decrement method presented in [30], which isolates inertial and
viscous effects responsible for exponential decay of the system’s
free vibration.

III. SENSORLESS FORCE ESTIMATION

Force sensors can be used to measure the subject’s applied
force in real time; however, these sensors increase system cost
and raise stability concerns [31]. Motivated by a desire to avoid
adding force sensors, a variety of “sensorless” force estima-
tion methods employ motors, compliance, or position sensors
already incorporated within the robot. Sensorless force estima-
tion techniques exploit differences between the expected and
actual manipulator configurations to continuously approximate
disturbances applied to the system. Here, we briefly review mo-
tor and compliance-based force estimators, before providing a
more detailed analysis of model-based force estimation.

For some robots, it is possible to indirectly measure dis-
turbances using motor torques—but motor torques are noisy,
particularly if gears are present [32]. Alternatively, this force
measurement problem can be converted into a position mea-
surement problem by incorporating compliant elements. Com-
pliance has been implemented at the mechanical level with series
elastic actuators [33], and at the controls level via virtual springs
[34]. Within the realm of rehabilitation robotics, compliance is
particularly attractive because it improves backdrivability and
safety during human-robot interaction [35]. Despite these ben-
efits, introducing compliant elements augments design com-
plexity; as such, for systems simply seeking force estimation,
compliance might not be the most convenient solution.

In this work, we apply model-based estimation, where plant
dynamics and input—output data are used to mathematically
extract the disturbance. Given joint positions, velocities, and
accelerations, it is trivial to solve the equations of motion for
disturbances; in practice, an observer can be used to measure un-
known disturbances using incomplete and noisy states. State and
disturbance observers are surveyed in [36]. If a robotic manipu-
lator’s joint positions and velocities are known, we recommend
the well-established nonlinear disturbance observer outlined by
Chen et al. [37]. Model-based methods are attractive because
they 1) provide theoretical guarantees of estimated disturbance

accuracy, unlike measured motor torques, and 2) do not mandate
design modifications, in contrast with compliant elements.

One drawback of model-based disturbance estimation is that
the robot’s inertial matrix inverse must typically be calculated.
Another flaw is the assumption that disturbances are constant;
unless a prediction of future disturbances is available—as might
be the case when performing iterative tasks—the resultant esti-
mation trails fluctuating disturbances. Finally, if the plant model
is inaccurate, this method cannot correctly distinguish between
responses caused by known and unknown inputs; the estimated
disturbances therefore include both external forces (7,) and un-
modeled dynamics (7, ). While this effect may be undesirable,
we will show that model-based disturbance estimation can still
be quite convenient. For now, formally denote the disturbance
that model-based approaches seek to estimate as

d:7—p+7—m- 2)

Applying our disturbance definition, the robot manipulator dy-
namics (1) can be rewritten as

M(q)i + Clg,d)q + §(q) = 7 + d. 3)

The ensuing paragraphs describe a model-based estimator that
yields an approximate disturbance measurement consistent with
these equations of motion.

We elected to use a modified version of the sensorless force
estimator proposed by Jung et al. [38], which employs a KF in
conjunction with Lyapunov stability analysis. Since our system
measures joint positions but not their derivative, estimation of
the system states—i.e., joint position and velocity—is desired
alongside force estimation. In the presence of zero-mean white
Gaussian noise, KFs minimize the L?-norm of estimation error;
we introduce a KF to address our estimation problem, from
which we ultimately derive both a disturbance adaption law and
an observer of the aforementioned states. KFs have previously
been incorporated in disturbance observers for applications with
human-robot interaction [39]. Although dual or joint KFs [40]
could have been used for both state and disturbance estimation,
interleaving Lyapunov analysis offers an assurance of system
stability and safety. Here, we overview the derivation provided
by [38] and emphasize our modifications. We will primarily
use the variable conventions given in [41], where an intuitive
explanation of the KF equations can also be found.

The above nonlinear dynamics (3) converted into stochastic
state-space form are posed as

F(x)x + G(x) (7',,» +d— g(x)) 4+ Ny
Hx + ny, 4

T
y:

where F s G ,and ¢ are matrices encoding the estimated dynamic
model; z = (q7, ¢")7 is the state vector; y is the measurement
vector; n, is the process noise with covariance 3, ; and n,,
is the sensor noise with covariance >.,,. The square matrix H
maps states to outputs and is presumed to be nonsingular—
potentially requiring the use of derivatives and/or integration.
KF estimates of the state vector (), measurement vector (7)),
and error covariance matrix (P) are given by

&= F(@)i+G@)(n +d—§(#) - RG—y)
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§= Hi
P= F(#)P+PF@)" +%, - PH'ST'HP (5

where d is the estimated disturbance vector, R is the weighting
matrix between predicted and observed outputs, and P is the
solution to the continuous time Riccati equation. According to
[41], R = PHT S~!, where S is the residual covariance.

Assume F(z) ~ F(&), G(x) ~ G(&),and §(z) ~ §(&), not-
ing that errors here may lead to bounded stability. This
approximation—along with our dynamics formulation—will
conveniently facilitate the use of a classical observer, with-
out requiring the linearization applied by Jung et al. [38]. Let
e=2—x and e; = d— d; then, use the notation € and ¢€; to
represent their moving average; by substituting in the state-space
representations (4) and (5), we obtain the ensuing dynamic error
equation

¢ = (F(2) — RH)e + G(#)éq. (6)
If F(#) — RH and G(%) are linearly independent, as is the
case for robotic manipulators, a unique equilibrium exists at
e=-¢ey=0.

Applying Lyapunov stability analysis as described in [42] and
[43], this equilibrium is stable when the following conditions
are met. Consider the Lyapunov function

V,(e,eq) = %éT\I/é—i— %édTF_léd (7)
where W and I' are user-selected symmetric positive-definite
weighting matrices. Notice we use a constant W rather than the
time variant P suggested by Jung et al. [38]—including P adds
anuncanceled P term to the derivative of the Lyapunov function,
and hence, the proof found in [38] only applies at steady state
(P = 0). Now, if we compute v, along the trajectories of the
system and recall d= 0, we instead obtain

V,(e,eq) = e" U (F(#) — PH"S'H)e
+el [G(2)T e +Td]. ®)

Select the residual covariance inverse and estimated disturbance
derivative to be

S = (H")'PF(@) +al)H !

d= —TG() WH " (j—y) ©

where o is a strictly positive constant. Our choice of S~! ensures

the matrix F(“) — RH is stable, while the expression for d
provides an adaptlon law; plugging (9) back into (8) desirably
yields V = —e" ae. Since V does not contain any €, terms,
we can only conclude that V, is negative semi-definite, and
hence, the system is stable in the sense of Lyapunov.

A stronger conclusion is attained by recognizing that vV, is
monotonically decreasing, which implies that V,, €, and e, are
bounded. Because 1) VO is quadratic in €, 2) the state estimation
error € is a square integrable function, and 3) € is bounded, we
can apply Barbalat’s Lemma to prove thate — 0 ast — oo. Fur-
thermore, the adaption law converges to true values (¢; — 0 as
t — 00) in the presence of certain inputs. Although we will not
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Fig. 2. Disturbance and state measurements found using the proposed sen-
sorless force estimator on a single joint of our RiceWrist-S. The applied torque
is a chirp signal sweeping from an initial frequency of 0.1 Hz to a maximum
frequency of 1 Hz at 25 s. Position estimation errors were found by subtracting
the estimated joint values from the motor’s encoder readings. The maximum
disturbance estimation error is less than 8% of the disturbance’s amplitude, and
the position estimation error is always smaller than 0.1°.

here detail these necessary excitations, we will demonstrate in
Section IV that bounded errors in disturbance estimation are
sufficient for our purposes. We, therefore, conclude that both
the state and disturbance estimation converge to the moving av-
erage of their actual values so long as suitable conditions are
met (see Fig. 2).

During implementation, users will need to tune the gain matri-
ces; fortunately, some intuition can be used to guide the selection
of U, T", and av. The diagonal indexes of ¥ determine the relative
importance of position and velocity estimation errors and affect
the corresponding rates of convergence. The magnitude of I"
influences the system’s sensitivity to disturbances—diagonal I"
elements can also be biased to vary individual joints’ sensitivity.
Finally, the constant « acts like the inverse of the sensor noise
covariance X, ; higher values of «v indicate that the sensor read-
ings are more believable, while lower values of o suggest that the
model is more accurate. Since the states can often be directly
measured through some combination of sensors, derivatives,
and/or integration, frequently H = I and the above equations
are simplified. In the following sections, we employ this KF
with Lyapunov analysis for sensorless force estimation.

IV. MINIMAL ASSIST-AS-NEEDED CONTROL LAW

We posit that an AAN controller for rehabilitation exercises
should 1) help subjects complete desired motions, while 2) en-
couraging active participation and 3) providing the minimum
required assistance [22]. Accordingly, we propose an mAAN
controller of the form

=7 —d (10)
where 7, signifies a baseline controller, d indicates the model-
based disturbance estimate, and 7, represents the total controller
input. This mAAN controller has the same structure as those
previously demonstrated in [22] and [23], which both employ
a PD baseline controller and feedforward disturbance rejection
term. In [22] and [23], the disturbance estimate was found as
a function of workspace position—here, however, the subject
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forces are dynamically measured without any such positional
dependence.

The logic behind this mA AN controller design comes directly
from its intended application. If the estimated disturbance is
equal to the applied disturbance, then system behavior is gov-
erned by a baseline controller; should that baseline controller
be designed for trajectory tracking, then “perfect” disturbance
rejection ensures desired movements. In practice, sensorless dis-
turbance estimation is never exact (see Section III)—as a result,
applied perturbations affect tracking error and hence subject
passivity is discouraged. Whenever subjects contribute to a mo-
tion, the amount of robotic assistance is reduced accordingly;
on the other hand, while subjects are unable to perform a task,
the mA AN controller works to offset their applied disturbance.
Taken to an extreme, if the subject completes an action flaw-
lessly, then the controller provides no aid—alternatively, if the
subject remains inactive, then the controller outputs torques req-
uisite to perform the planned motion, albeit with some tracking
error.

Including disturbance rejection within the mAAN controller
is theoretically beneficial because it cancels out unknown plant
dynamics. Since model-based disturbance estimation considers
any deviation from our model as a disturbance, subtracting the
resulting estimate drives the plant to behave like our model.
Active disturbance rejection control—which has recently gar-
nered considerable attention—relies upon this concept; as ar-
gued by Han [44], disturbance rejection transforms the system
identification problem into an estimation problem. Depending
on the time delay and magnitude of modeling errors, one may
purposely select erroneous but desired plant dynamics within
a disturbance rejection control scheme so long as the small-
gain theorem is upheld [42]. The implications for our mAAN
controller are noteworthy—although a correct model is still nec-
essary to purely measure applied torques, slightly incorrect pa-
rameterization does not harm closed-loop system performance.
This property of disturbance rejection is leveraged within our
controller stability analysis.

We selected the passivity-based motion control law proposed
by Slotine and Li [45] and detailed in [43] for our baseline
controller. Given a twice-differentiable reference trajectory, let
us express the position error in joint space as § = ¢ — ¢?. Define
the sliding variables

v= ¢ —Ag
a= v
r=q¢—uv (1n)

where A is a positive-definite matrix that determines the weight
of position errors relative to velocity errors. The baseline con-
troller can then be written

7, = M(g)a + C(g,¢)v + g(q) — Kpr (12)

where Kp is a positive-definite gain matrix. The baseline
controller, therefore, functions as a PD controller, where K
and KpA serve as the derivative and proportional gains,
respectively—rules guiding the selection of K are subse-
quently derived. If desired, this formulation can be converted

into task space via the manipulator’s kinematics and Jacobian
matrix. Implementation of the passivity-based motion controller
requires real-time knowledge of the reference trajectory, model
dynamics, and system states; these prerequisites do not alter
computational demand, however, as 1) the model equations of
motion are also solved within the disturbance observer, and
2) the best estimate of joint positions and velocities is found
through our KF approach.

Combining our baseline controller (12), mAAN control law
(10), and modified manipulator dynamics (3), we obtain

M(q)i 4 C(q,4)r + Kpr+e; =0 (13)

Imagine for a moment that d is not calculated through estima-
tion, but is precisely measured by some external device. In this
idealized case, Lyapunov stability analysis can prove 7 to be at
least uniformly ultimately bounded using the candidate function

1 T M (q)r-
2
Having independently established stability conditions for both
the disturbance observer and controlled system, we now seek to
verify the stability of our composite controller (10), which inte-
grates d estimates from the disturbance observer (9); we here fol-
low the method developed by Chen [46]. Because sensor noise
is present, persistent excitations are unassured, and disturbances
are time variant, the numerical estimate dis inexact—hence, we
must also consider controller stability when e; # 0.
Choose the Lyapunov candidate function

Ve ea,r) =Vole ea) + Ve(r).

Velr) = (14)

15)

By taking its time derivative, substituting the robot dynamics,
and applying the skew symmetry property, we find

Ve,eq,r) = —e a®e—r' Kpr
+r! (M (q)7 + Clg, )r — eq)

where M (q) = M(q) — M(q), C(q.q) = C(q,q) — C(q,q),
and g(q) = g(q) — §(q). By virtue of our formulation in (3),
g(q) is included within e4. Allow || - || to hereafter symbolize
the L?-norm. Using the inequality y” = < ||y||||=|| and remem-
bering Anin (Kp) is a lower bound on K p—where Ay, (Kp)
denotes the minimum eigenvalue of K p—it is obvious that V/
can be bounded as

(16)

V(€7edvr) < _)Lmim(I(D)HTH2
+ Il - 1M (g)7 + Clg,¢)r — eall. (17)

Let us introduce a constant 6, such that 0 < 6 < 1, in order to
put the previous inequality in the form

Vie,ea,r) < (0= DAmin(Ep)|7]* — Ormin (Kp)]||7]>
+ 7] - [IM(q)7 + Clg. d)r —eal.  (18)

Thus, V < (0 — 1)Amin (Kp)||7||?Vr if the following inequality
is satisfied:

137 (q)7 + C(g, ) — eal|

>
Il = B (KD

19)
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Fig. 3. Tracking error on a single joint of the RiceWrist-S using mAAN
control and disturbance observer estimates with both varying K'p values and
disturbance amplitudes. Applied torques were sinusoidal, with 1-Hz frequency
and amplitude D 4 . The robot was commanded to maintain a stationary pose.
As K p increases, the error bounds tighten; here, the amount of error 7 resulting
from an identical input decreases in response to increased K p . Disturbances
with greater amplitude desirably create larger errors.

We, therefore, conclude that the coupled mAAN controller
and model-based disturbance estimate yield a tracking error
with uniformly ultimately bounded stability (see Fig. 3). A rig-
orous description of the ultimate bound is made in the Appendix.
Should M — 0, C — 0, and e; — 0, this analysis demon-
strates ||7|| — 0and the system is globally asymptotically stable.
Throughout this proof, we assumed ||r|| to be bounded—since
the amount of force which a subject can physically realize is nat-
urally limited, it follows that the amount of induced error must
be noninfinite. Of particular interest is the inclusion of Kp
within the bounded set description; by varying the user-selected
gain matrix Kp, we can directly manipulate the bounds on the
allowable tracking error. For instance, it may be desirable to de-
crease the allowable tracking error when subjects are attempting
to learn a motion—once those subjects demonstrate proficiency,
however, the radius of ultimate boundedness can be increased
to challenge subject ability (or vice versa). The mAAN con-
troller presented here is experimentally validated in subsequent
sections.

V. SUBJECT-ADAPTIVE ALGORITHMS

By incorporating estimated subject forces within the mAAN
controller, we provide minimum required assistance, encourage
active participation, and ensure the completion of desired mo-
tions; however, unless properly challenged, subjects may still let
the robot take control [47]. “Challenge” here refers to difficulty,
which implies both the range of acceptable error and degree of
robotic assistance. For more impaired subjects, reduced chal-
lenges (smaller allowable errors, increased assistance) might
be necessary to successfully track trajectories; conversely, less
impaired subjects may complete reference movements when
greater challenges (larger allowable errors, decreased assis-
tance) are present. The absence of assistance, resistance [48], or
even perturbations [49] may best render challenges that promote
learning.

In order to adapt challenges to subject capability, we include
an algorithm that modulates the allowable error bound based
on previous performance. We here exploit the phenomenon that
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errors combined with visual feedback provide an impetus for
active involvement—indeed, error is likely a driving signal for
motor learning [50]. Altering error bounds can be interpreted as
changing the cross-sectional radius of a desired trajectory; this
radius is here modulated according to subject ability. Further-
more, in cases where a subject is consistently able to surpass
the desired trajectory, it may be sensible to enable that subject
to complete the task in less time than is typically allotted. For
this purpose, we have implemented an algorithm, which decays
resistive forces when movement speed exceeds the given tra-
jectory. The decay term is continuously altered based on the
subject’s current ability, without regard to behaviors exhibited
during other tasks; contrastingly, the allowable error bound is
discretely adjusted between tasks and considers average perfor-
mance on a task-by-task basis. Viewed together, these subject-
adaptive algorithms aim to ensure that all users—regardless of
ability—are challenged and therefore encourage active partici-
pation for more rapid recovery.

A. Error Bound Modification Algorithm

Since trajectory errors are ultimately bounded by (29), chang-
ing the feedback gain K'p modifies allowable error; a high Kp
tightens error bounds, while a low K relaxes error bounds. We
here introduce 7*, a user-specified maximum allowable average
trajectory error. By comparing r* to the current tasks’s average
error, 7;, this algorithm updates the feedback gain for the next
task, K'p ;4 1. Our formulation is loosely similar to what was
detailed in [23], where Kp ;41 is computed by 1) comparing
the subject’s performance to predetermined minimum and max-
imum average errors and then 2) linearly interpolating between
preset feedback gains. Here, however, Kp ;11 is modulated in
a more direct and responsive manner through both using r* and
accounting for prior performance. More specifically, the algo-
rithm we propose compares 7; to 7;_1, the subject’s average
error during the previous task.

Discrete computation of the feedback gain occurs at the end
of each task, and is carried out as

Kpiv1=04z)Kp, (20)

where z;, the change rate that satisfies 0 < |x;| < 1, can be

formulated as
sign(r*—7r;)
> 20

T — r*
Tj = Tnom - (
and xpon, 1S a predetermined, constant, nominal change rate. The
sign of x; is determined by comparing the average error in the
current task to the maximum allowable error. For example, if 7;
is smaller than r*, the algorithm dictates that the subject is able to
provide better error performance than expected, and hence, the
feedback gain decreases for the subsequent task. The magnitude
of x; depends upon the first and second multiplier terms of Zpom
in (21); magnitude thus considers both the difference between
actual and maximum error and performance changes over time.

Unlike forgetting factors used to alter robotic assistance—
for example, [22]—our proposed error bound modification al-
gorithm does not perturb the controller’s estimate of subject

|7i — 77|

|Ficg — 7|
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capability and strictly regulates the maximum amount of allow-
able error, yielding more rigorous assurances of stable human—
robot interaction. We ultimately feel the algorithm provides
clinicians a straightforward means to select what errors are and
are not acceptable; hence, our algorithm makes the mAAN con-
troller more suitable for applications in rehabilitation robotics.
This algorithm could be adjusted so as to adapt error bounds
based on other performance metrics—such as those quantifying
movement quality and smoothness—but tracking error was here
selected because of its intuitiveness.

B. Disturbance Rejection Decay Algorithm

The error bound modification algorithm constrains users
within some radius of the desired trajectory. We next alleviate
that constraint by allowing fast intentional movements toward
the goal while maintaining the controller’s ultimate bounded-
ness characteristics.

In order to reduce resistance of able subjects, we modify
the mAAN control law (10). According to this modification,
when 1) the subject’s position is closer to the target than the
desired position, and 2) the subject is inputing force in the
target direction, the control law becomes

=1 —Fd (22)

where F' is a decay term that satisfies 0 < F' < 1. This alter-
ation matches with our intuition; if a subject is consistently able
to provide force input toward the goal, the controller should
be able to allow this “good” disturbance instead of rejecting it.
Furthermore, when implementing the disturbance rejection de-
cay algorithm in conjunction with the error bound modification
algorithm, » = 0 while subjects surpass the reference trajectory.
The decay term F' is calculated at every sampling time

F=(1+v)F (23)
where
Vdee, if gy >0
- { dec qdTp (24)
Vine, €lse

such that vgec < 0 and wvj,c > 0. The above relationship de-
creases the term F' at a rate of vg4.. so long as the subject’s
force input is in the direction of desired velocity—on the other
hand, F' increases with a rate of vy, if the subject reverses input
direction. In order to decrease disturbance rejection and move
faster than a desired trajectory, consistently correct movement
is required. For instance, in a scenario where impaired subjects
produce fast but jerky motions, the proposed decay term would
balance conflicting tendencies; F' here decreases in response
to inputs directed toward the goal, but then increases when no
torque or erroneous torques are applied. Of course, this algo-
rithm is purely optional and can be omitted in cases where
improving movement quality is favored over enabling increased
subject participation.

VI. EXPERIMENTS

We conducted a series of experiments to evaluate the mAAN
controller’s performance and validate our subject-adaptive al-

gorithms. All experiments were implemented on the FE joint
of the RiceWrist-S, which served as a one DOF testbed for
the sake of simplicity. The controller was realized using MAT-
LAB/Simulink (The MathWorks, Inc.), and data acquisition at
a sampling rate of 1 KHz was achieved using QuaRC (Quanser
Inc.). Furthermore, a six-axis nano-17 force sensor (ATI Ind.
Autom.) was employed for evaluation purposes. Experiments
involving healthy subjects were performed with approval from
the Rice University Institutional Review Board.

A. Estimation of Subject Capability

In this experiment, we seek to compare the force estimation
quality of the proposed mA AN controlle—which is based upon
a KF—to widely used adaptive procedures derived from Gaus-
sian RBFs. The control law (10) is executed on the FE joint of
the RiceWrist-S for two cases: one where d is calculated using
our KF approach (9), and a second where d is estimated using
the RBF procedure.

As indicated in Section I, Gaussian RBFs have been exten-
sively used to model human input for robotic rehabilitation ap-
plications [22]—[25]. This approach necessarily assumes subject
torque to be strictly position dependent and represents that in-
put as a weighted sum of Gaussian RBFs distributed throughout
the motion workspace. Using an adaption law that considers
instantaneous position and velocity errors as well as the user’s
“proximity” to each RBF, this procedure “updates” the RBF
weights. For a more detailed description, see [23].

Although position-dependent input torques are presumably
present in healthy individuals, the same is not necessarily true
for neurologically impaired subjects [26]-[28]. We, therefore,
want to evaluate the estimation capabilities of KF and RBF ap-
proaches when both position and nonposition-dependent inputs
are provided. In order to consistently simulate subject input, an
intrinsic disturbance was incorporated as a feedforward term
in the controller input. For the first 60 s, that disturbance re-
sisted manipulator movement by acting as a virtual spring; since
spring force is directly related to manipulator position, this ex-
emplified a position-dependent torque. After 60 s had elapsed,
nonposition-dependent sine-waves with 1.5-, 3.0-, and 4.5-Hz
frequencies and 0.05-N-m amplitude were consecutively added
at 20-s intervals. The manipulator’s desired trajectory was de-
fined as a sine-wave with 0.25-Hz frequency and 20° amplitude.
For the Gaussian RBF adaptation, 17 RBFs with 5° function,
width were defined throughout the trajectory (in accordance
with [23] for a single DOF); we attempted to select parameters
that provided the best RBF performance.

Fig. 4 shows the ratio between the L? norm of disturbance
estimation errors and the L? norm of the applied disturbance
for both KF and RBF techniques—as well as the L?-norm of
applied non-position dependent disturbances—over 20-s peri-
ods. For the first 60 s, the RBFs adapt to position-dependent
inputs, and hence, their estimation improves; during the sec-
ond 60 s, however, that estimation degrades due to the inclu-
sion of nonposition-dependent disturbances, which cannot be
accurately modeled because of underlying assumptions in the
RBF method. On the other hand, we can see that the KF ap-
proach provides relatively constant performance (disturbance
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Fig. 4. Comparison of an RBF approach and our proposed mAAN controller
during subject input estimation. The bar graph represents the ratio of the L? norm
of the disturbance estimation error to the L? norm of the applied disturbance
for both techniques over 20-s intervals. The green dots signify the magnitude of
non-position dependent disturbances present over the same intervals—note that
non-position dependent disturbances were only added during the second half
of this experiment. Parameters for both approaches were selected to provide
optimal performance on the FE joint of the RiceWrist-S.

Fig.5. Visualinterface used for human—robot experiments. The torus (orange)
represents a subject’s actual position, the small ball (white) indicates desired
position, and the highlighted sphere (blue) marks our current target. Other
spheres (white) correspond with the center and opposite periphery.

estimation errors remain between 8.47% and 10.17%) regard-
less of whether nonposition-dependent disturbances are present;
this indicates that the KF technique is more capable of captur-
ing the range of dynamic behaviors, which may be exhibited
by neurologically impaired subjects. We also note that while
RBF estimation errors seem to converge toward the KF tech-
nique’s performance when only position-dependent inputs are
present, comparable performance is not achieved within sixty
seconds. Through this experiment, we have demonstrated that
the force estimation quality of our mAAN controller compares
favorably to state-of-the-art Gaussian RBF procedures, both in
terms of speed and consistency. We conclude that the proposed
mAAN controller is, therefore, better suited to determine subject
capability.

B. Validation of the Error Bound Modification Algorithm

We next sought to experimentally examine how the error
bound modification algorithm responded to changes in subject
involvement; specifically, we aimed to demonstrate that the pro-
posed algorithm can regulate a subject’s independence from the
exoskeleton. This experiment was performed on the RiceWrist-S
with ten healthy subjects, all of which used their dominant arm.

Subjects were instructed to change their involvement strategy
during a 180 s series of pointing tasks—*“passive” for the first
90 s, then “active” for the second 90 s. Healthy subjects sim-
ulated “passive” inability by keeping their hand relaxed while
holding the device handle. When “active,” subjects moved in-
tentionally to match the desired trajectory; in this segment,
a visual display was shown to indicate the actual position,
desired trajectory, and randomly assigned target (see Fig. 5).
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Fig. 6. Effect of error bound modification algorithm on feedback gain and
average error. (a) Adapting bounds to subject performance: Feedback gains for
passive subjects (task no. 1-30) are higher than for involved subjects (task no.
31-60). As the allowable error decreases, the magnitude of robotic assistance
increases. (b) Demonstration of ultimate boundedness: Users are constrained to
have an average error less than or equal to 7*. The plotted points represent the
mean error across all subjects and the shaded regions depict the corresponding
variance. As the bound radius increases, subjects display more independence
from the given trajectory.

The total allocated time to move from center-to-periphery and
periphery-to-center was 3 s per task. Initial, minimum, and
maximum feedback gains were assigned to be 1072, 107°, and
0.5 N-m-s/rad, respectively. The feedback gain K, was updated
according to (20) at the end of every task.

The user-specified r* term employed in (21) defines a
maximum allowable average trajectory error; Kp varies in
accordance with the relationship between r* and subject per-
formance. We verified this correlation by testing four different
r* values, ranging from 5 x 1073 to 2 x 1072 rad/s, in four
subject trials. An r* value was randomly assigned at the start of
each 180 s test, and subjects took breaks between trials in order
to minimize fatigue effects.

Fig. 6 depicts the average feedback gain and error as functions
of task number (time) and r* across all ten subjects. Tasks
1-30 (i.e., 0-90 s) correspond with passive interaction, while
tasks 31-60 (i.e., 90-180 s) reflect active involvement. Our
experimental results in Fig. 6(a) indicate that K increased
when subjects failed to participate; as the allowable average
trajectory error decreased, the feedback gain grew to greater
magnitudes in a faster manner. This trend likely stems from (21),
where the rate of change for Kp is determined by comparing
average trajectory error to 7*. On the other hand, while subjects
actively participated Kp decreased with roughly a first-order
decay for all assigned r* values. When r* was sufficiently small,
however, K p did not approach zero—this is because users were
unable to complete the tasks unassisted with an average error
less than 7.



PEHLIVAN et al.: MAAN CONTROLLER FOR UPPER LIMB ROBOTIC REHABILITATION 121

Experimental results shown in Fig. 6(b) demonstrate that er-
ror bound adjustments ensured r was less than or equal to r*.
As r* decreases, more robotic assistance is required even for
healthy, active subjects to maintain the desired error level, but
when r* increases above some physically realizable threshold,
less assistance is required and subjects are allowed both greater
movement variability and independence. The effects of transi-
tioning from passive to active induced noticeable error spikes
in cases where the r* constraints were lessened. Examination of
the actuator torque time-series data averaged across all subjects
demonstrated that 1) the amount of robotic assistance for passive
subjects was uninfluenced by r* values, and 2) the amount of
robotic assistance for active subjects increased as r* decreased;
predictably, greater actuator torques were required for passive
tasks than during active participation. We conclude that the error
bound modification algorithm can adjust Kp based on subject
performance in order to enforce user-specified ultimate bounds.

C. Validation of Disturbance Rejection Decay Algorithm

To demonstrate that the proposed decay algorithm can de-
crease the rejection of “good” disturbances—i.e., subject inputs
directed toward the goal while consistently moving faster than
some given trajectory—we conducted an experiment with ten
healthy subjects. Subjects were instructed to use their dominant
arm and observe the visual feedback presented in Fig. 5. When-
ever a target was highlighted, the subject attempted to move
toward that goal at a comfortable speed. We specified a desired
trajectory that allocated 3 s to move from center-to-periphery
and periphery-to-center—this trajectory was designed to be
slower than typical subject movements. The initial, minimum,
and maximum feedback gains and the r* value were assigned
as 1072, 107, and 0.5 N-m-s/rad and 0.05 rad/s, respectively.

Our mAAN controller was implemented with and without
the disturbance rejection decay algorithm in four alternating
segments; the decay algorithm was included for segments one
and three [shaded gray in Fig. 7(a)], while segments two and
four exclusively used the mAAN controller. Each segment was
120 s long. In the first and third segments, the decay term F' is
modified based on subject performance according to (24). So as
to maintain consistency during the experiment, we kept vge. and
Vine Tates constant for all subjects. In practice, these rates could
be modulated for subjects with different reaction capabilities.

Examining our experimental results reveals that the distur-
bance rejection decay algorithm decreased resistive controller
actions [see Fig. 7(a)] and allowed subject-defined faster mo-
tions [see Fig. 7(b)]. The collective representation of actuator
torques given in Fig. 7(a) is supported by time series data, which
demonstrates the progression of robotic assistance through-
out our experiment. During the first and third segments, the
actuator torque magnitude quickly converges to an average
value of approximately 0.025 N-m; however, in the second and
fourth segments, increased assistance is observed due to con-
straining controller behavior. We further note that the feedback
gain values decrease to the minimum assigned Kp by the end
of the first segment and remain at this minimum throughout the
rest of the experiment.

Note that during segment transitions, the F' term rapidly fluc-
tuates; we believe that this stems from a subject familiarization

phase, where in the first segment, users become acquainted
with the robotic hardware, and during the third segment, users
adapt to the change of controller strategies. Further, since one of
the ten participants failed to consistently perform motions faster
than the desired trajectory, their atypical data were excluded
when constructing Fig. 7(a). Our results demonstrate that includ-
ing a decay algorithm within the mA AN controller can cater to
more able subjects and increases involvement by enabling these
users to exceed given trajectories.

VII. DISCUSSION AND CONCLUSION

In this study, we have developed an mAAN controller, which
utilizes model-based sensorless force estimation to determine
subject capability; by combining a baseline controller with that
disturbance estimate, we derived a control law that provides
only required aid. The subsequent inclusion of error bound
modification and disturbance rejection decay algorithms adapt
our controller paradigm to rehabilitation applications and help
challenge subjects with various levels of impairment.

Impedance schemes have been frequently employed within
the context of AAN control, where their controller proper-
ties are modified based on subject performance. Although
impedance controllers are easy to implement and possess
intuitive properties, these approaches also fail to incorporate
the time-varying residual capabilities of a human user and may
therefore intervene suboptimally across the robot workspace.
To address this issue, adaptive controllers that model the
subject’s functional capability have been proposed within AAN
algorithms. Specifically, Gaussian radial basis networks have
been included in adaptive controllers for estimating interaction
forces—however, this approach hypothesizes that subject
capabilities are position dependent.

We here introduced a model-based estimation method that
employs a KF in conjunction with Lyapunov analysis to yield
1) stable estimation of manipulator states and 2) a parameter
adaption law that approximates the disturbance derivative. It is
shown that, unlike the Gaussian radial basis network approach,
this stochastic technique can determine subject inputs that vary
spatially and as a function of time; as such, we no longer need
to restrictively assume that underlying patterns govern subject
capability.

Considering the discovery that error is likely a driving signal
for motor learning [50], we implemented an error bound mod-
ification algorithm, which leverages the ultimate boundedness
of our mAAN controller and modifies the allowable trajectory
error via varying a feedback gain. Furthermore, we developed
a disturbance rejection decay algorithm that decreases resistive
forces when able subject movement desirably exceeds some
given trajectory. By means of both improved estimation of
subject ability and these challenge algorithms, we hope to
increase subject engagement, promote neural plasticity, and
better therapy effectiveness—steps that will ultimately reduce
treatment duration and cost.

Our sensorless force estimation, error bound modification,
and disturbance rejection decay algorithms are all validated ex-
perimentally. Results demonstrate that the proposed controller is
not limited to estimating only position-dependent subject inputs;
furthermore, it is shown that estimation convergence occurs
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Controller and subject performance while varying the rejection of “good” disturbances. “DRDA” here indicates the presence of the disturbance rejection

decay algorithm. (a) Effect of decay term on controller action: The average decay term F' (blue line) and root mean squares of average actuator torques 7, over
120-s intervals (yellow bars) decrease when subjects consistently demonstrate the capability to correctly surpass a given trajectory. (b) Average trajectories with
and without the decay algorithm: Permitting able movements allows the subject to more quickly attain the target position and therefore encourages involvement.

much faster than the Gaussian radial basis network approach—
for example, in Fig. 4, the norm estimation error for our pro-
posed controller was approximately half the norm estimation
error of an RBF controller. Experiments with healthy subjects
verify that the error bound modification is capable of responding
to changes in involvement. Inclusion of an upper bound on the
average allowable error enables explicit definition of acceptable
movement variability and subject-robot independence. Experi-
ments also show that the disturbance rejection decay algorithm
encourages voluntary movement by decreasing input rejection
when subject forces are 1) consistently directed toward the goal
and 2) of greater magnitude than strictly required for trajectory
following. In this situation, subjects are allowed to define a pace
different from the externally imposed reference trajectory.

Future work includes testing the mAAN controller in a clini-
cal setting for the rehabilitation of neurologically impaired sub-
jects. Tuning here should be straightforward—therapists can
use r* to select an appropriate error bound radius, and switch F’
based on whether trajectory following or increased variability
tasks are desired. Ideally, we would like to compare recovery
induced by our mA AN controller with results obtained by other
AAN control approaches; we also want to examine how 7*
and F' tools are best utilized by practitioners. Clinicians might
consider the implementation strategy of this controller; specifi-
cally, either tuning parameters individually for each joint space
DOF, or adopting parameters based on coordinated movements
in task space. While for unimpaired subjects there exists some
evidence [51] to support training of coordinated movements
through decomposition into joint space motions—such as the
wrist FE movement used in our experimental validation—there
remains a lack of evidence within neurologically impaired popu-
lations [52] to favor this technique over directly training coordi-
nated movements. The inclusion of an algorithm that modulates
allocated time based on subject performance may be a further
addition to the described controller.

APPENDIX

Although the proposed Lyapunov function (15) depends on
multiple states, we here aim to define an upper bound for the
trajectory error r. The inequality identified in (19) enables us

to conclude that the trajectory error r is uniformly ultimately
bounded; this ultimate bound on trajectory error can be explicitly
calculated with the following bounding class « functions, which
are always possible to find [42]:

ar([[rl) < Ve eq,r) < az(lIr]))- (25)

The ultimate bound B,, on trajectory error r can be defined in a
rather conservative way [42] as

By = oy (az(|lull))

where 4 is the limiting term that satisfies V < 0 V||r|| > p
> 0.

The stability analysis described via (7)—(9) indicates that the
state estimation error ¢ and disturbance estimation error ¢, are
bounded and enables us to define an upper bound as

Lrg. o Lorna,

5 e + 2e,I‘ eq < D.
The bounding functions of the Lyapunov function (15) can be
identified considering both the relation given in (27) and the
fact that the inertia matrix itself is both positive definite and
bounded [53]. Hence, the subsequent inequality can be written
for the proposed Lyapunov function

1
§>~min(M)||r||2 <Vleeqr) <

(26)

27)

Amax (M) + D (28)

| —

where Ay, and Ay .« are the minimum and maximum eigen-
values of inertia matrix M throughout a given workspace. We
note that the left and right sides of (28) correspond to o (||7])
and as(||r||), respectively. By using the right-hand side of the
inequality (19) as the limiting term p and utilizing the bounding
functions defined in (28), the ultimate bound on the trajectory
error r can be calculated via (26)

Anax (M) M (q)7 + C(g, 4)r — eq|> + D

B, =
Amin (M)GQ)‘?nin (KD )

(29)
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