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Abstract. An increase in the prevalence of endovascular surgery re-
quires a growing number of proficient surgeons. Current endovascular
surgeon evaluation techniques are subjective and time-consuming; as a
result, there is a demand for an objective and automated evaluation
procedure. Leveraging reliable movement metrics and tool-tip data ac-
quisition, we here use neural network techniques such as LVQs and SOMs
to identify the mapping between surgeons’ motion data and imposed rat-
ing scales. Using LVQs, only 50% testing accuracy was achieved. SOM
visualization of this inadequate generalization, however, highlights lim-
itations of the present rating scale and sheds light upon the differences
between traditional skill groupings and neural network clusters. In par-
ticular, our SOM clustering both exhibits more truthful segmentation
and demonstrates which metrics are most indicative of surgeon ability,
providing an outline for more rigorous evaluation strategies.
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1 Introduction

Medical advancements in recent years have increased the popularity of endovas-
cular surgery as an alternative to more traditional surgical methods [1]. In the
most basic sense, endovascular surgery is a form of minimally invasive surgery
(MIS) which allows access to various parts of the body through blood vessels and
the endovascular system. The surgeon introduces a catheter into the vasculature
of the patient, typically via the femoral artery, and from there navigates the
catheter to the desired location so as to perform some type of procedure. During
these procedures, surgeons must rely on fluoroscopy and other forms of medical
imaging in order to determine tool position. This imaging is often limited, and
complications may go unnoticed until they become too serious; therefore, it is
imperative that surgeons be proficient at endovascular techniques. Aside from
the risk of possible complications, surgeon skill level significantly affects clinical
outcomes after successful surgeries [2].

1.1 Previous work

As a result, there is medical interest in understanding an effective means to de-
termine a surgeon’s skill [3]. There are presently two preeminent methods for



assessing a surgeon. The most common involves an expert observing task com-
pletion by a novice, which is entirely subjective and vulnerable to significant
amounts of variability [4]. The second method is simply a measurement of the
number of cases performed by the surgeon; although it stands to reason that an
individual with more practice will likely be better, it is also likely that individ-
ual surgeons will improve at different rates. Either method is insufficient, and
therefore a primary goal of the endovascular community is the development of
an objective assessment technique [5], [6].

In an effort to more objectively study surgeons, sensors have been used to record
the tool tip trajectory [7]. The results are then processed to calculate a variety
of motion-based metrics; the most indicative of these metrics are correlated to
user smoothness, such as minimum jerk [8] and spectral arc length [9]. An alter-
native, yet similarly-minded, method is the extraction of submovement number
and duration from a larger task [10]. To date, researchers have attempted to show
that there exist correlations between these movement metrics and the standard
methods of skill evaluation. Surgeon force and motion signatures have been lever-
aged to objectively assess performance; hidden Markov models were then used
to learn the nonlinear mapping between performance data and skill [11]. Lin et
al. demonstrated the ability to decompose a surgical procedure into a series of
sub-tasks by parsing raw motion data in order to provide on-line training feed-
back [12]. Estrada et al. specifically quantified the correlation between various
metrics and the standard methods of surgeon evaluation on both manual and
robotic platforms [13].

1.2 Motivation/Objective

Successfully mapping metrics to skill may improve training procedures, reduce
the amount of oversight required, and ultimately automate this task. While the
statistically significant correlation between various objective metrics and cur-
rent subjective assessments is an important initial finding, it fails to provide a
holistic approach to skill classification. Hence, the motivation for our work is
to understand the mapping between movement metrics and surgeon proficiency,
which we will reveal through neural networks. We will first train an LVQ to clas-
sify surgeons using standardized novice, intermediate, or expert labels, and then
study the LVQ’s accuracy using testing data. Next we will utilize SOMs to exam-
ine the underlying clusters; by comparing these SOM clusters with pre-labeled
classes, we can evaluate the veracity of the medically imposed class labels. We
hypothesize that the traditional “novice, intermediate, and expert” labeling—
while commonly assumed to be correct—does not actually reflect the motion
data, and, as such, more sophisticated classification is recommended. Our sec-
ondary goal is to identify which motion patterns contribute most to the surgeon’s
classification; this knowledge may improve the feedback which can be provided
during and after the surgeon’s training.



2 Methods

2.1 Input Data and Class Labels

The data used in this paper was collected during a previous study [13]. Actual
and virtual tool-tip trajectories were recorded for fifteen surgeons over three ses-
sions while completing four separate tasks. Five of the subjects (i.e., surgeons)
were deemed “novices,” six were labeled “intermediates,” and the remaining four
were regarded as “experts.” The two platforms used during experimentation can
be seen in Fig. 1, along with sample input vectors. For the purposes of our re-
search, we did not differentiate between the platforms, sessions, or tasks, yielding
a total of 120 separate trials. The motion metrics associated with each trial—
described in more detail below—were then utilized as a unique input vector;
hence, our results were obtained using 120 input vectors.

(a) Manual Simulator [13] (b) Virtual Simulator [13]

(c) Example Input Vector

Fig. 1: A comparison of the manual and virtual simulators which were navigated during the various
tasks. In both platforms the surgeon is operating a catheter—in (a) the tip position is tracked using a
magnet at the tool-tip, while (b) offers a platform leveraging teleoperation. In (c) each of the plotted
points corresponds to one of the eleven motion metrics derived from the surgeon’s trajectory. Average
input vectors associated with a novice, intermediate, and expert surgeon are shown (standard error
bars included).

The input vectors for our LVQ and SOM neural networks were constructed
from previously calculated motion metrics. These metrics were all computed
from the three-dimensional catheter position data, which was collected at 30 Hz
frequency. Based upon the findings of Estrada et al. [13], we selected motion
metrics which were shown to individually correlate with traditional skill labels.
Eleven metrics (listed below) were chosen, and each comprised an element of the
eleven-dimensional input vectors. Although the units for the various metrics are



not detailed here, it should be noted that they were kept consistent through-
out our work. We found that our best results occurred with the inclusion of (1)
Spectral Arc Length, (2, 3) Average Submovement Duration (LGNB and Min-
Jerk Profiles), (4, 5) Number of Submovements (LGNB and MinJerk Profiles),
(6) Normalized Velocity, (7) Mean Arrest Period Ratio (10% was used for this
study), (8) Completion Time, (9, 10) Submovement Overlap (LGNB and Min-
Jerk Profiles), and (11) Average Frequency. Example input vectors can be seen
in Fig. 1. Note that these values are all well defined over a continuous range, and
that the chosen metrics mitigated statistical outliers which may skew results of
our input-space neural networks.

Each of these 120 input vectors was associated with a class label corresponding
to the surgeon’s proficiency; the three classes consisted of either “novice,” “inter-
mediate,” or “expert.” Forty input vectors were labeled novice, forty-eight input
vectors were denoted intermediate, and thirty-two input vectors were termed ex-
pert. When performing supervised learning, stratified four-fold cross-validation
was leveraged to select exclusive sets of ninety input vectors for training and
thirty input vectors for testing.

2.2 Classification with LVQs

In order to determine the mapping from input data to desired classification,
we used an LVQ with supervised learning [14]. More specifically, we used an
LVQ2 with stratified four-fold cross-validation; the LVQ was initialized with
120 prototypes, as this was found to provide the best classification accuracy,
where forty prototypes were allocated to novices, forty-eight were allocated to
intermediates, and the remaining thirty-two were allocated for experts. Thus,
this prototype allocation was done in proportion to class size. LVQ neurons
were randomly initialized and scaled to the range of the input data. Ideally, the
trained LVQ would adapt to the externally imposed classification structure, and,
as such, would serve as an autonomous means towards identifying the class of the
surgeon’s skill—novice, intermediate, or expert—based solely on motion metrics.
On the other hand, the reliability of the traditionally imposed class labels may
be questionable [15]. These labels are based on the number of cases performed;
however, it is conceivable that a surgeon could perform a large number of cases
with improper technique, and therefore be labeled an “expert” by this traditional
evaluation while actually maintaining a “novice” level of ability. In order to
examine the performance of our classification with LVQs, we will show confusion
matrix data and statistics across all four folds, as well as a visualization of our
best results.

2.3 Clustering with SOMs

As we will demonstrate, the best classification accuracies obtained with LVQs
were unsatisfactory, suggesting that more analysis into the label veracity is
needed for effective machine learning. Further analysis of the input data—and,



in particular, clusters present in the input data—was performed and visualized
through the use of SOMs [16]. We leveraged forty-nine prototypes for the SOM,
which were arranged into a seven-by-seven rectangular grid in the lattice space.
A Gaussian neighborhood function was used while updating the prototypes, and
mU-matrix visualization was employed to visualize clusters. Our rationale for
using an SOM was to capitalize upon the strengths of unsupervised learning;
we sought to obtain an objective view of the data structure without needing
potentially erroneous labels. Therefore, we had two primary goals behind this
SOM application. First, we wanted to validate or disprove the classification la-
bels (novice, intermediate, and expert) previously used for our LVQ training. By
superimposing these labels over the SOM lattice while visualizing SOM clusters,
we could test label veracity and hopefully understand why the LVQ machine
learning underperformed. Second, we wanted to identify clusters within the data
in order to determine the relative importance of surgeon attributes and mo-
tion methods when distinguishing between skilled and unskilled surgeons. By
comparing the input vectors associated with different clusters, we can better
understand which motion metrics were consistent and which varied amongst
clusters. These insights may enable more efficient evaluation of surgeons and
more directed training strategies. SOM clustering will be revealed through plots
of the lattice space.

3 Results and Discussion

3.1 LVQ Classification Results

The results obtained by implementing an LVQ were reasonable, but did not pro-
vide sufficiently accurate classification for the purposes of automated evaluation.
Our best results were obtained with an LVQ2 using a learning rate of 0.001 and
10,000 on-line learning steps, although other learning rates and learning step
counts were tested. Both the training and testing accuracy were plotted as a
function of learning steps to ensure that overtraining did not occur. To sum-
marize, we consistently found that we were able to differentiate the skill groups
and correctly classify surgeons within the novice, intermediate, and expert la-
bels 80% of the time for training data and 50% of the time for testing data.
In particular, the LVQ struggled to distinguish “intermediate” from “expert”
surgeons, logically suggesting a larger skill gap from novice to intermediate than
from intermediate to expert. This disparity is depicted in Fig. 2. We also note
that, while LVQ1, LVQ2, and LVQ3 were tested, there was not significant vari-
ation among the performance of these algorithms.

By inspecting the confusion matrices, summarized in Fig. 3, we can further ver-
ify that novices were reasonably distinguished from intermediates and experts,
but intermediates and experts were largely lumped together. We hypothesize
that this stems from at least partially inaccurate training labels; the imposed
classifications may not truly identify the skill level of each surgeon, since inter-
mediate surgeons, despite having performed fewer cases than experts, may be



more proficient than their caseload suggests. Moreover, the use of only three
classes is likely insufficient to accurately capture the gradient in surgeon skill,
and perhaps more nuanced labels would better reflect our motion data. The
overall statistics show that the LVQ procedure netted consistent and accurate
training classification, but the testing accuracy and hence machine learning was
unacceptable. We conclude that the LVQ was unable to generalize for the given
data, and suggest that this inability stems from the lack of labeling precision
and correctness for intermediate and expert surgeons. To verify this claim, we
will subsequently explore SOM clusters in the data space.

Fig. 2: Sample LVQ results. These plots are from one fold of the four-fold stratified cross-validation
procedure: training classification top; testing classification bottom. The black pixels represent novice
surgeons, the grey pixels represent intermediate surgeons, and the white pixels represent expert
surgeons.

Fig. 3: Average confusion matrix over the four folds. Data is given in the form % of hits (number
of hits). Diagonal elements represent correctly classified data, while off-diagonal elements show in-
correct classifications. The mean and standard deviation for training and testing accuracy are also
shown. Poor results likely stem from incorrect class labels, particularly between intermediates and
experts.

3.2 SOM Clustering Results

Following the failure of LVQs to successfully identify this mapping, SOMs were
applied to both test our concerns with the imposed classification labels and help
us further explore nuances within the data. The best results presented in this
paper were obtained using a seven-by-seven rectangular SOM grid in lattice
space, where the forty-nine prototypes were initialized randomly over the input
space. The learning rate α started at 0.005 and reached 0.001 following a linear



decrease across 100,000 learning steps; similarly, the Gaussian neighborhood
width σ started at 4 and linearly decreased to 2 over the same number of learning
steps. We experimentally observed the SOM training to converge after around
80,000 to 90,000 on-line learning steps, at which point no changes occurred in
the mapping. The results shown below were found to be repeatable and superior
to those identified using different parameters, which gives us confidence in the
subsequent conclusions.

Fig. 4: SOM final results. The left visualization is a modified U-Matrix [17]; red-scale represents the
number of mappings (i.e., relative density), while the gray-scale bars signify the distance between
prototypes in the data space. The redder the neuron, the more input vectors are contained within
its Voronoi cell; likewise, the darker the bar separating neurons, the greater the difference between
their weight vectors. The right visualization shows the known surgeon classifications projected onto
the SOM lattice—here red signifies novice, green represents intermediate, and blue indicates expert
surgeons, with color intensity representing the number of mappings (more intensity again means
increased density). Black neurons indicate that no input vectors are mapped to a particular node.
The clusters found in the mU-matrix are identified using white lines in the right visualization. We
can quickly observe that while novices (red) are primarily separated, clustering in the upper and
lower left, intermediates (green) and experts (blue) are largely intermingled, clustering along the
right side, a result which supports our LVQ findings.

Selecting the learning parameters as described above while observing the sys-
tem visualizations depicted in Fig. 4, we repeatedly converged to a similar, if
not the same, solution each time we trained the SOM. Instances in which we
did not converge to the results outlined in Fig 4 involved some type of rotation
of the lattice—however, this did not alter the SOM clustering. Using U-Matrix
techniques, we readily discerned some distinct clusters which were identified by
the SOM; we then checked these locations with superimposed novice, intermedi-
ate, and expert labels in the lattice space, and determined whether there existed
agreement between medically defined clusters and clusters identified by the SOM.

From the modified U-Matrix density map and the projection of classifications
into lattice space, we can deduce (a) that there exist some SOM clusters which
roughly correspond with traditional groups, but (b) other SOM clusters disagree
with the medical consensus. We have marked these SOM identified clusters in
Fig. 5. For instance, the bottom left section of the SOM lattice clearly clusters
several surgeons who performed poorly, and are correctly labeled as novices.
Likewise, the top left SOM cluster corresponds to another group of novice sur-
geons, which again matches the medical labeling. Moving to the right side of the
SOM lattice, however, we can see two regions: in the upper right, there exists



a mixed cluster—some experts, intermediates, and novices are included here,
suggesting labeling inaccuracy. Finally, in the bottom right of the SOM lattice
we find a cluster of increasing ability, with intermediates and experts grouped
together; perhaps these surgeons are closer in ability than their classification
would suggest. By applying SOMs to the input space of motion metrics, we were
therefore able to demonstrate that a surgeon’s experience is not sufficient when
attempting to classify that surgeon’s skill. Although there are some similarities
between the medical labels and SOM clusters, there is also sufficient disparity
to suggest that perhaps more precise skill assessment is required. These findings
also explain the inability of our LVQs to distinguish “intermediate” and “expert”
surgeons, as SOM clusters revealed overlaps between these classifications.

Fig. 5: SOM weight vector plotted in the grid cells. This figure shows both the final results of our
SOM grid with the known classifications projected onto the lattice, as well as the weight vector of
each PE with respect to the average weight vector across all nodes. The weight vector of a given PE
is shown in black, while the average weight vector across all nodes is plotted in a dotted magenta
line. The color coding of the prototypes is the same as before, with a slight fading of the colors in
order to better visualize the weight vectors. Black boxes were used to mark the SOM cluster bound-
aries identified in 4. By comparing the differences in weight vectors between members of different
clusters, we can visualize which metrics most impact distinctions in surgeon skill. With respect to
the average weight vector, novices appear to complete the task in less time but require an increased
number of motions; on the other hand, proficient surgeons move slowly but smoothly, reducing sub-
movement duration and number. The combination of SOM clustering and neuron weight vectors
reveals errors within traditional labeling and provides insight into important motion attributes. The
existing labeling of novice, intermediate, and expert does not agree with knowledge gained through
motion metrics (as shown by differences in clustering), and the contribution of various metrics can
be analyzed to yield better categorization (as shown by comparing weight vectors).

In order to further investigate clustering and the distinctions between various
groups, it was instructive to look at the weight vector within these individ-
ual clusters, as illustrated in Fig. 5. There are a few hypotheses which can be
formed from visualizing these prototypes and clusters. First, completion time is
not necessarily an accurate measure of skill. In fact, completion time appears



to be somewhat counter-intuitive; experts often take longer than less successful
intermediates and novices, perhaps because they are utilizing slower and more
deliberate movements. A quick procedure is ideal, but not if it comes at the cost
of deliberate, precise movements. Second, some metrics may provide redundant
differentiation, therefore requiring the use of fewer metrics—and other metrics
may be entirely irrelevant for classification purposes. Finally, the number of sub-
movements appears to be particularly useful when distinguishing surgeons; we
observed that the most proficient cluster employed substantially smoother mo-
tions than did novice or mixed clusters.

With these ideas in mind, we can describe the five classes of surgeons from
SOM clustering (Fig.5). Class one (lower left) will perform the task slowly and
with very little smoothness; likely true beginners. Class two (upper left) will
perform the surgery quickly with little smoothness; likely novice surgeons. Class
three (upper right) will perform the surgery quickly at the expense of some
smoothness metrics; likely competent surgeons primarily concerned with com-
pletion time. Class four (middle right) will perform the surgery above average
in terms of time and smoothness; likely experienced surgeons. Class five (lower
right) will perform the surgery at an average pace with exceptional dexterity;
likely skilled, precise surgeons.

4 Conclusions and Future Work

Based on the results of our LVQ and SOM, there does appear to be some consis-
tent mapping between motion metrics and desired classification; using the LVQ
we achieved around 50% testing accuracy. We hypothesized that this poor LVQ
machine learning, particularly when discerning between intermediate and expert
surgeons, stemmed from inaccurate class labeling. Using the SOM approach, we
were able to identify some clusters which roughly corresponded to the known
classification groups; however, we also discovered that several clusters disagreed
with the given labels. Indeed, from Fig. 4 we were able to conclude that the
traditional labeling based on surgeon experience disagreed with SOM clustering
in the motion metrics. We were further able to suggest which metrics may best
be able to indicate ability, as can be seen in Fig. 5. By replacing the subjective
medical grouping with the actual measured features, we may be able to improve
on skill assessment for endovascular surgeons. Similar to the work by Cotin et
al. [5], we suggest that it may be better to first identify statistics which are sig-
nificant to expert clusters, and then create a scoring system which classifies users
based on their accordance with those statistics. Summarily, SOM clustering, as
seen in Figure 5, helps accomplish our goals of both disproving classical labels
and suggesting improved alternatives.
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