
  

 

Abstract— Stroke can be a source of significant upper 

extremity dysfunction and affect the quality of life (QoL) in 

survivors. In this context, novel rehabilitation approaches 

employing robotic rehabilitation devices combined with brain- 

machine interfaces can greatly help in expediting functional 

recovery in these individuals by actively engaging the user 

during therapy. However, optimal training conditions and 

parameters for these novel therapeutic systems are still 

unknown. Here, we present preliminary findings 

demonstrating successful movement intent detection from scalp 

electroencephalography (EEG) during robotic rehabilitation 

using the MAHI Exo-II in an individual with hemiparesis 

following stroke. These findings have strong clinical 

implications for the development of closed-loop brain-machine 

interfaces to robotic rehabilitation systems. 

I. INTRODUCTION 

Every year about 15 million people worldwide suffer from a 
stroke, and amongst survivors, about 5 million have chronic 

disability, leading to high economic burdens on their 

families and the society. The disability-adjusted life years 

(DALYs) lost due to stroke is projected to rise globally from 

38 million in 1990 to 61 million DALYs in 2020 [1]. 

Utilizing recent advances in brain-machine interface (BMI) 

and robot-assisted rehabilitation technologies, there is 

potential to promote functional compensation through 

sensorimotor adaptation and central nervous system 

plasticity [2] and help reduce the socio-economic burden of 

disability [3], [4]. Towards this end, rehabilitation robots and 
exoskeletons are being developed to improve functional 

motor recovery after stroke. These robots are capable of 

providing movement assistance and/or resistance to the 

patients at different levels, ranging from fully passive (or 

robot-controlled) to patient-triggered to fully active (or 

patient-controlled) movements. However, current 

rehabilitation robots lack the ability to monitor patient 

participation or engagement during the tasks. Motivation and 

patient engagement are important psychosocial factors that 

can greatly affect neurological rehabilitation outcomes for 
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the patient [5]. If users can be actively engaged in their 

rehabilitation through interfacing self-generated neural 

signals to accomplish task goals via a neurally interfaced 

therapeutic exoskeleton, then positive feedback can further 

enhance neural plasticity and facilitate motor recovery.  

 Previous studies have shown that scalp (noninvasive) EEG 

recordings of brain activity can be used to detect volitional 

movement intention of healthy and stroke subjects from 

slow movement-related cortical potentials (MRCP) [6] as 

well as by the respective decrease or  increase  in power in 

the α (8-13 Hz) or β (15-30 Hz) bands [7]. MRCPs are quite 
versatile, since their amplitudes and time courses vary 

depending on the subject’s psychological status as well as 

characteristics of the movement being performed such as 

distance, speed, precision, etc. [8], [9]. Traditionally, 

MRCPs have been studied by averaging over a large number 

of trials, since there was high trial-to-trial variability 

resulting from background neural activity and non-neural 

artifacts. However, recent studies have successfully 

demonstrated detection of movement intention from single 

trial MRCPs, by employing optimized spatial filtering and 

advanced machine learning techniques [9]. These findings 

are promising and underscore the potential utility of MRCPs 
in serving as neural control signals for an appropriate 

therapeutic robotic device. 

 In this study, we aimed to create a neural interface using 

MRCPs for a novel powered exoskeleton, the MAHI Exo-II 

for upper limb stroke rehabilitation (Fig. 1). It was therefore 

critical to identify: a) utility of MRCP as an appropriate 

neural control signal that represents user engagement, and b) 

the best training mode of the MAHI Exo-II (Exo) device. To 

this end, we examined changes in MRCPs in a stroke 

survivor, as compared to healthy able-bodied participants, 

when performing goal-oriented movements under different 
assistance modes. Further, a 2-class (Go vs. No-Go) Support 

Vector Machine (SVM) classifier was developed to detect 

 

 
 

Fig. 1: User with left-sided hemiparesis fitted with MAHI Exo-II and the 

EEG-EMG sensors; inset shows the GUI which feed-backs current 

exoskeleton position to the user. 
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the user’s movement intention from single trial MRCPs. The 

overarching goal is to eventually implement this classifier in 

real-time to enable control of the MAHI Exo-II by stroke 

survivors during rehabilitation. 

II. METHODS 

A.  Participants 

 In this pilot study, three healthy, able-bodied individuals 
(23+1 years old, right-handed males) and one individual with 
left hemiparesis (45 year-old male, with an ischemic, right 
posterior thalamic lesion five months ago) participated after 
providing voluntary, informed consent to study procedures 
approved by the Institutional Review Boards (IRB) at 
University of Houston, Rice University and University of 
Texas. For the stroke survivor, the level of impairment was 
assessed using the Modified Ashworth Scale (MAS) and the 
Fugl-Meyer Upper Extremity (FMA-UE) tests. The MAS 
score for any individual forearm/hand muscle group was 
between 0 and 2 (out of 4 i.e., maximum spasticity). The 
FMA-UE score was 49 (out of 66 i.e., normal function).  

B. MAHI Exo-II Upper Extremity Robotic Exoskeleton 

The MAHI Exo-II has four actuated degrees of freedom 

(DOF): elbow flexion-extension, forearm pronation-

supination, wrist flexion-extension, and radial-ulnar 

deviation. It is equipped with high-resolution encoders that 

provide accurate position and velocity measurement for 

implementation of various closed-loop protocols. For a 

detailed description of MAHI Exo-II, see [10]. 
Training Modes: The MAHI Exo-II can be operated in three 

training modes: Passive, Triggered, and Active [11]. In the 

“Passive” mode, no volitional movements are required from 

the users and the Exo automatically transfers the user’s hand 

from one position to the next, along a fixed trajectory. In the 

“Triggered” mode, the user self-initiates movement, 

following which the robot completes the movement. For 

detecting the user’s self-initiation (or movement onset) we 

determined a joint velocity threshold prior to the experiment, 

by having users practice the task in an unconstrained 

environment. Finally, the “Active” mode refers to a 

resistance-training mode in which the user must move their 
limb through an adjustable virtual viscous field, without any 

assistance from the robot. In this study, we modified the 

“Active” mode by turning off the motors to eliminate the 

virtual damping. This modified “Active” mode was called 

“Backdrive” mode in this study. We also added a fourth 

mode called “Observation” mode, wherein the subject only 

observed an experimenter operate the Exo in “Triggered” 

mode. Additionally, in “Passive” and “Observation” modes 

the subjects were specifically asked to also imagine moving 

the Exo during trials. We hypothesized that observation 

coupled with motor imagery would also activate underlying 
movement-related cortical networks and can be particularly 

useful to calibrate the neural signals in stroke survivors who 

have limited voluntary control over their upper limb. As 

shown in Fig. 1, the GUI provided feedback of Exo/arm 

movement to the user. Lastly, the Exo’s software allowed 

specifying the range of motion for each DOF independently 

for each user.  

 
Fig. 2: Sequence of each trial. Each trial starts when the subject enters the 

center position and a fixation cross is displayed for 4 to 6s. Two targets (Up 

& Down) appear on the screen, at which time the subject selects a target, 

prepares and later executes the movement. Unknown to the subject, target 

selection and preparation times of less than 2s result in an aborted trial, 

which can be restarted by re-entering the center position. In a successful 

trial, the subject performs elbow flexion/extension to hit the target, 

following which the robot automatically returns the subject’s hand to the 

center. 

C. Experimental Protocol 

Task: For this study, we chose a single DOF, namely elbow 
extension/flexion movement with the MAHI Exo-II. The 

Exo was operated in four modes as explained earlier: 

Passive, Velocity Triggered, Backdrive and Observation. 

Each mode consisted of 80 successful movements split into 

four blocks of 20, and the order of the modes for each 

subject was randomized. Breaks were given between each 

block and mode to minimize user fatigue. The sequence of 

each trial is shown in Fig. 2. 

Data Acquisition: EEG, Electromyography (EMG) and 

movement kinematics were simultaneously recorded 

(sampling frequency = 1000 Hz) during the experiment. 
EEG signals were recorded using 64 channel active 

electrodes system from Brain Products GmbH (Morrisville, 

NC). Additionally, 4 active electrodes (2 differential pairs) 

were used to record EMG signals over the biceps brachii and 

triceps brachii muscles. Concurrently recorded EEG & EMG 

signals by the same system were automatically 

synchronized. The MAHI Exo-II recorded joint kinematics 

(i.e. position, velocity) and generated +5V TTL trigger 

pulses to synchronize EEG-EMG acquisition. The triggers 

were generated at the beginning and end of each trial as well 

as on initiation of movement within a trial. The movement 
initiation, or onset, was determined at runtime based on a 

velocity threshold (as explained in sec. II.B). It is important 

to note that while the muscle activity (EMG signals) were 

most prominent in “Backdrive” mode and mostly absent in 

“Observation” mode, their signal-to-noise was very low in 

“Passive” & “Triggered” modes. This was caused by the 

mechanical vibrations of the Exoskeleton during “Passive” 

& “Triggered” modes, which interfered with the EMG 

sensors located in close proximity. Hence, for this study we 

used EMG signals only from “Backdrive” mode.  

D. Signal Processing 

All data analysis was performed offline using MATLAB 

(Release 2012b, The MathWorks, Inc., Natick, MA) and 

EEGLAB [12]. Raw EEG signals of the four trial blocks 

under each training mode (i.e. total 80 trials) were first 

appended and zero-phase band-pass filtered (0.1-1 Hz) using 

4th order Butterworth filter, followed by spatial filtering 

using Large Laplacian reference and then down sampled to 
200 Hz. Noisy EEG channels were replaced with channels 

derived using spherical interpolation. EEG signals were 
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segmented into trial epochs of duration [-3.5s to +1s] with 

respect to movement onset triggers (t = 0s). This resulted in 

a total of 320 epochs (80 epochs per mode) for each subject. 

All epochs were visually inspected for corruption by eye 

blinks or movement artifacts and the corrupted epochs were 

rejected (on average 8% of total epochs). Next, all the 
remaining epochs were averaged across trials to compute the 

grand-averaged MRCP for each channel. Additionally, raw 

EMG signals were band-pass filtered (20-100 Hz), full-wave 

rectified and low-pass filtered (1 Hz) to obtain linear EMG 

envelopes, which were later segmented into epochs. Fig. 3 

shows sample traces of EMG envelopes and grand average 

MRCPs for EEG channels over the primary motor cortex 

(M1) and supplementary motor area (SMA). Subsequently, 

EEG channels with the strongest MRCPs were identified and 

used for single trial detection of movement intent. 

E.  Detection of Movement Intent      

To detect the intention for movement from single trials, we 

extracted equal length ‘Go’ and ‘No-Go’ windows from the 

pre-movement onset EEG epoch [-3.5s to 0s]. Here, ‘Go’ 

window represents a time interval when the subjects 

intended (or prepared) to perform a task/movement, whereas 

the interval that lacked such intention is represented by the 
‘No-Go’ window. The length and trailing/leading edges of 

the ‘Go’ and ‘No-Go’ windows were optimally chosen for 

each subject, as described below.  

Optimization of ‘Go’/‘No-Go’ windows: First, EMG epochs 

in “Backdrive” mode were used to estimate the EMG onset 

time (median value over all trials) for a subject. In order to 

reduce variations in EMG onset time among single trials, the 

threshold for EMG onset was kept at 10% of the median 

over maximum values for all EMG envelopes. Second, 

assuming that the subjects were motionless before the 

median EMG onset time, we fixed it as the leading edge of 

the ‘Go’ window. Likewise the trailing edge of the ‘No-Go’ 
window was fixed at -3.5s. Lastly, our algorithm iteratively 

increased the window length in 50 msec increments (up to 

1s), by shifting the trailing edge of ‘Go’ (i.e., leading edge of 

‘No-go’) window. During each iteration, the performance of 

a classifier that was trained using trials from “Backdrive” 

mode was determined. The window length with maximum 

area under the ROC curve was chosen as the optimal 

window length for ‘Go’ and ‘No-Go’ windows. For each 

subject, the optimal window length was kept same across all 

training modes, in order to simplify the comparison of 

classifiers developed for each training mode. Across all 
subjects, the mean (± S.D.) values for EMG onset time (with 

reference to t = 0s) and optimal window length were found 

to be -650 (± 165) msec and 725 (±190) msec, respectively.  

Feature Extraction & Classifier Training: During feature 

extraction, we first computed a spatial average      of EEG 

channels       that showed strongest grand average MRCP, 

i.e.       
 ⁄ ∑      

 
    where e.g.,        FCz, FC2, 

Cz, C2] for the stroke subject (refer Fig. 3). Next for each 

trial, using the amplitude of      over the ‘Go’ and ‘No-Go’ 

windows, we created 4-D feature vectors for respective ‘Go’ 

and ‘No-Go’ classes. The elements of the feature vector 

were slope, peak negative amplitude, area under the curve

 
Fig. 3. Top row shows segment of median EMG envelope during Up/Down 

movements for the stroke participant (S1) and one healthy participant (H3). 

Bottom four rows show baseline corrected, grand average MRCP during 

four training modes with the MAHI Exo-II for six relevant frontal and 

central channels. Additionally, (t = 0s) corresponds to the movement onset 

time when the joint velocity threshold was exceeded. Dashed vertical lines 

indicate ‘Go’ and ‘No-Go’ windows optimally selected for each subject. 

 

(AUC) and Mahalanobis distance of       during ‘Go’/‘No-

Go’ windows. For detecting movement intention, a 2-class 

SVM classifier was trained using these features and tested 

using 10-fold cross-validation, with the help of LIBSVM 

library for MATLAB [13]. The feature vectors were 

transformed using a radial basis kernel function and then 

linearly scaled between [0, 1]. The cost C and kernel 

parameter γ for SVM models were optimized using the grid 

search technique for C ∈ {10, 100, 1000} and γ ∈ {0.2, 0.5, 

0.8, 1}. Classification accuracy was calculated as the ratio of 
total correctly predicted trials to the total number of trials. 

III.RESULTS 

In this first demonstration of an integrated EEG-based neural 

interface with the MAHI Exo-II, we were able to 

successfully measure MRCP in a stroke survivor. 

Specifically, these MRCPs were identified during three 

training modes of the Exo: Backdrive, Passive & Triggered. 

However, we did not observe any MRCP during 
“Observation” mode in the healthy participants as well as the 

stroke survivor. Nonparametric Kruskalwallis test (p<0.001) 

and post-hoc comparisons (Bonferroni-corrected) showed 

that accuracies were significantly higher in “Backdrive” & 

“Triggered” modes as compared to “Observation” (p<0.05). 

Next, we used SVM to classify single trials within each 

training mode based on features described previously. 

Interestingly, we found relatively high classification 
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accuracy (medians around 75%) across all training modes 

(see Fig. 4).  Particularly, it appears that classification was 

more successful in Triggered and Backdrive modes across 

all subjects. One-sided Wilcoxon signed rank test showed 

that accuracies were significantly higher than chance levels 

(50%) for both healthy and stroke participants (p<0.001; α-
level adjusted using Bonferroni correction for multiple 

comparisons: 0.0062). 

IV. DISCUSSION 

In this study, we successfully integrated a noninvasive EEG-

based neural interface with the MAHI Exo-II, and validated 

the system in a stroke survivor. Further, we were able to 
identify MRCP in three training modes using the Exo, which 

helped differentiate movement intention in participants 

compared to rest with relatively high accuracy. In this 

context, the “Triggered” training mode was of greatest 

relevance for stroke participants, as it can be implemented in 

participants with relatively low voluntary upper limb 

control. Therefore, it is very promising to note a median 

classification accuracy of around 75% for the stroke 

participant in this mode. This provides initial evidence for 

the potential applicability of MRCP as a neural control 

signal for a brain-machine interface to robotic systems in 

stroke survivors.  
Surprisingly, we also found a reasonably strong MRCP in 

the “Passive” mode, which was therefore classified with 

relatively high accuracy by the SVM. It appears that the 

“Passive” training mode in our system was able to recruit 

underlying movement intention related cortical networks 

plausibly by engaging the user with the task through a) 

observation of the movement of the user's arm by the Exo, b) 

kinesthetic feedback provided by the Exo, and c) through 

visual feedback from the GUI. This is encouraging as it 

further highlights the advantages of combining neural-

robotic interventions to increase active patient engagement 
during rehabilitation. Additionally, this mode can also be 

applied in stroke participants who may be unable to actively 

initiate movement in the “Triggered” mode, thereby 

increasing the target population for this and related 

interventions. However, this will need to be validated by 

testing additional participants with stroke. Interestingly, we 

did not find any discernible MRCP waveform during 

“Observation” of an actor's limb movement. This may be 

due to the fact that action observation related neural 

processes, which typical modulate oscillatory cortical 

dynamics in α or β bands, may not be adequately represented 

in the relatively low frequency, amplitude-modulated MRCP 
that was studied here. Additionally, it is also possible that 

user engagement in this mode was considerably lesser than 

the other 3 modes, which could have further contributed to 

lack of observed MRCP.  

A potential limitation in our proposed algorithm is that the 

‘Go’/ ‘No-Go’ windows are kept same across all training 

modes. We expect that optimally selecting Go/No-Go 

windows per mode will improve classifier performance and 

therefore, will be pursued in future studies. Also we are 

currently working on eliminating interference from Exo 

motor vibrations on EMG signals during “Passive” and

 
Fig. 4. Boxplots showing median classification accuracies across 4 training 

modes for all participants (interquartile and full ranges shown along with 

outliers as ‘+’). BD: Backdrive; P: Passive; T: Triggered; O: Observation. 

 

 “Triggered” modes. This will further enable us to accurately 

decide the optimal window lengths for these training modes.    

In summary, we provide initial clinical validation of an 

integrated EEG-based neural interface to the MAHI Exo-II 

for upper-arm stroke rehabilitation based on movement 

intent detection while the Exo is operated in Triggered as 

well as Passive training modes. In subsequent studies, we 

plan to implement and test this system as a closed-loop, real-

time BMI, which will ensure patient engagement during 

therapy sessions and maximize functional outcomes. 
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