
A Preliminary ACT-R Model of a Continuous Motor Task

Michael D. Byrne*, Marcia K. O’Malley†, Melissa A. Gallagher*, 
Sagar N. Purkayastha†, Nicole Howie*, and Joel C. Huegel°

*Department of Psychology, †Department of Mechanical Engineering and Materials Science, Rice University
°Department of Mechatronic and Electronic Engineering, ITESM, Guadalajara Campus, Guadalajara, Mexico

Cognitive architectures such as ACT-R and EPIC are being applied to human factors research problems with 
increasing frequency. However, it is unclear whether such systems can model continuous motor tasks that were 
once staples in the field but have since been largely displaced by more cognitively-oriented problems. Recent 
research on a challenging continuous motor control task has revealed interesting patterns in skill acquisition 
that appear compatible with the learning mechanisms present in ACT-R. However, what was not clear was 
whether ACT-R could model expert performance in a high-frequency motor control task. Unmodified, ACT-R 
could not. However, by making some small changes in ACT-R’s motor system and capitalizing on ACT-R’s 
ability to imagine visual objects, ACT-R was able to achieve expert-level performance in this task. Whether 
ACT-R will be able to mirror the skill acquisition data is still an open question.

INTRODUCTION

Over the last decade and a half, human factors has seen an 
increase in the use of modeling techniques that have their roots 
in computational cognitive architectures, e.g., ACT-R 
(Anderson, 2007) and EPIC (Kieras, et al., 2000). This is likely 
due at least in part to the increasing emphasis cognitive factors 
have had in human factors over the previous 30 or so years 
(see, for example, Byrne & Gray, 2003), but also to the 
increased ability of such architectures to “scale up” to tasks of 
relevance to human factors, such as graph comprehension 
(Peebles & Cheng, 2003) and driving (Salvucci, 2006). 
However, it is important when a field adopts new 
methodologies to consider whether those new methodologies 
are able to handle problem domains covered by older 
methodologies.

An example of such an area is manual control and tracking. 
Extensive work has been done on the topic of manual tracking 
including careful refinement of two models, the “crossover” 
model and the optimal control theory model, which together 
have been able to shed a great deal of light on human manual 
tracking in a variety of contexts. (Space prohibits a substantive 
treatment of these models; see Jagacinski & Flach, 2003, for an 
introduction.) What do cognitive architectures have to say 
about such domains? This kind of problem has received little 
attention from the cognitive architectures community; the most 
notable exceptions are the EPIC-based work on the Martin-
Emerson and Wickens tracking/choice RT task (Kieras, et al., 
2000) and Salvucci’s (2006) ACT-R work on driving. Those are 
both important pieces of work but neither one has as its primary 
focus the motor control aspects of the task. This is hardly 
surprising, since motor control is not the primary focus of such 
architectures; they are not termed “cognitive” architectures for 
nothing.

However, there are tasks with strong motor control 
components that also appear to have interesting cognitive 
components. For the remainder of this paper, we will consider 

one such task, researched extensively by O’Malley and 
colleagues (O’Malley, et al., 2006; Li, Patoglu, & O’Malley, 
2009; Huegel, et al., 2009). 

The Task and the Phenomena

The task used in this research is a motor control task but 
not strictly a tracking task since the targets are stationary and 
the only movement is operator-generated. Nonetheless, it is a 
challenging task. The operator is seated at a computer display 
and grips a joystick, which controls a disk on a computer 
screen. The disk is coupled to a second disk, and the goal of the 
task is to move the controlled disk (termed the “tool”) such that 
the coupled disk hits first one target, then the other. The disks 
are modeled as masses coupled by a damped spring. This is 
depicted in Figure 1. 
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Figure 1. The task configuration. m1 (termed the “tool”) is 
controlled by a joystick; the goal is to alternate hitting the two 

targets with m2 (termed the “disk”).

The task is scored according to the number of target hits 
that the operator can score in a 20-second interval. This is a 
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challenging task for many subjects. However, with practice, 
most (but not all) subjects become fairly proficient with the task 
and can generate slightly more than 1 target hit per second. One 
of the things that makes this task interesting is precisely the 
issue of learning. Some subjects start out poorly and improve 
only a modest amount across multiple experimental sessions. 
Still other subjects start out doing well and show a similar 
modest improvement, generating strong scores across all trials. 
Finally, a third group of subjects starts out doing poorly, but 
learns rapidly and ends up doing about as well as subjects who 
started out strong. Figure 2 presents data from Huegel (2009) 
showing this breakdown. High performers are defined as 
subjects whose initial hit count performance is more than one 
standard deviation above the mean. Low performers are defined 
as subjects whose final hit count performance is more than one 
standard deviation below the mean. The third group consists of 
all other subjects; they transition from performing like low 
performers into performing like high performers.
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Figure 2. Mean hit count per trial across sessions for the three 
subject groups in the spring-target task.

This is an interesting learning domain because these curves 
have distinct shapes. This raises a number of important and as-
yet unanswered research questions, such as: 

• Can group membership be predicted in advance, perhaps 
by examining some other measure or with some other shorter 
test?

• What is it that the high performers know that enables 
them to perform well even early in learning?

• Can we understand what it is that the transitional 
subjects learn? If so, can that be taught to low performers to 
bring up their performance?

ACT-R is a general-purpose (i.e., multi-domain) 
computational theory of human cognition and performance 
which synthesizes research findings in psychology, computer 

science, and neuroscience and provides a natural platform for 
investigating questions about human performance. ACT-R is an 
attractive tool for addressing the questions raised by these data 
because of the nature of the learning mechanisms present in 
ACT-R (Anderson, 2007). The slow, nearly linear learning of 
both the high and low performers is characteristic of the kind of 
speedup learning produced by reinforcement learning, which is 
ACT-R’s primary method for “tuning” procedural knowledge. 
(Reinforcement learning does not produce exclusively linear 
results, but often does.) The clearly non-linear learning 
exhibited by the third group, however, appears to be something 
qualitatively different. What ACT-R suggests is that those 
learners do, in fact, acquire some new declarative knowledge 
during the course of learning, and that this knowledge is then 
compiled into procedural knowledge, a process which generally 
produces the kind of super-linear learning exhibited by those 
subjects.

On the other hand, ACT-R may not be an ideal fit, since 
this kind of continuous motor task is not the kind of task that 
ACT-R has traditionally modeled. If ACT-R cannot even do the 
task as well as the high performers, there is little to be gained 
by trying to understand how it might learn to improve its own 
performance. Thus, our first question in addressing this research 
was: can ACT-R match the best human performance? At the 
outset, it was not at all clear that ACT-R could do so in such a 
task. Thus, the primary goal of this paper is to describe our 
efforts at matching an ACT-R model to the end-of-practice data 
from the top two groups, which we term “expert” performance.

 
METHODS

Movement Profiles for Experts

An important first step in modeling expert performance is 
understanding that performance at a detailed level. We are 
interested in constructing an ACT-R model that both produces 
high scores and achieves those scores in a way that is similar to 
how human experts do. 

Fortunately, Huegel (2009) performed a comprehensive 
analysis of the movement characteristics of human experts on 
this task. What he discovered is that human experts do two 
things:

• Movement is almost exclusively along the target axis. 
That is, experts do not move in circles or ellipses (as many 
subjects do, especially early in learning), but move more 
simply back-and-forth along the target axis.

• Fourier analysis of expert movements indicate high 
consistency of movement frequency; in particular, experts 
tend to match or slightly exceed the natural frequency of the 
system. Their motion is highly regular, point-to-point and 
back over the same time span. Experts do not simply move as 
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fast as they can, but tend to keep their movements in time 
with the natural frequency of the system.

These two variables explained most of the variance in the 
number of target hits between individuals and between 
sessions, and were only weakly correlated with each other, 
indicating that these are two key but separable components of 
skill in this task.

Discrete Movements

The first fundamental problem this task poses for ACT-R is 
that it, like many other such tasks, has the appearance of being 
continuous. The coupled disk is in constant motion and the tool 
is in motion most of the time. However, ACT-R has no 
capability for continuous motion. ACT-R’s manual motor 
system is a limited abstraction designed to model a fairly 
limited range of motor performance: essentially simple typing 
and mouse movements targeted at visible objects on a computer 
screen. Furthermore, ACT-R’s movements are entirely linear, 
start point to finish point movements (though there is noise in 
the finish point).

This task provides some opportunity to test the veracity of 
such approximations. While being restricted to straight-line 
movements is clearly inadequate for many tasks (e.g., 
gesturing), expert performance in this task happens to consist of 
almost entirely straight-line movement. As Craik observed 
more than 50 years ago (Craik, 1947), even in continuous 
tracking tasks, human movement is often not actually 
continuous at all, but made up of a series of intermittent small 
movements. ACT-R instantiates this idea.

However, this is not to say that we could use the ACT-R 
motor system unmodified; several modifications were 
necessary. First, ACT-R’s movement output is quite coarse. The 
behavior of ACT-R when making any kind of aimed movement 
was to compute the duration of movement (via Fitts’s Law) and 
simply alter the location of the hand/finger/cursor once that 
amount of simulated time had elapsed. This does not work for 
simulated environments such as this one; this essentially 
generates instantaneous movement which wreaks havoc on the 
physics-based simulation. ACT-R could previously be set to 
output movements in 50 ms increments, but even that is far too 
coarse for this environment. Thus, we modified ACT-R to allow 
for more flexible updates to the output position. For the model 
runs reported here, we updated the motor output location (the 
tool position) every 3 ms. Note that this was not a change to the 
cycle time for either cognition or motor modules, but simply a 
change in how often the system updates the simulated position 
of the moving hand.

We also had to modify the velocity profile for the 
movement. ACT-R previously assumed constant velocity for 
the entire duration of the movement until the movement was 
complete, at which time the velocity was set to zero. While this 

is perfectly adequate for many circumstances, it again caused 
no end of problems for the physics-based simulated 
environment, because the acceleration of the tool jumped from 
zero to a constant instantaneously at the beginning of the 
movement and then from that constant back to zero at the end 
of the movement. These huge accelerations and decelerations 
imparted a great deal of force to the coupled disk, causing 
excessive motion. The solution to this was to alter the function 
controlling ACT-R’s output position over time. The simple 
linear function was replaced with a “minimum jerk” movement 
profile (Hogan, 1984). This profile minimizes the derivative of 
acceleration throughout the movement, resulting in a very 
smooth movement. This is almost certainly a little too smooth 
relative to actual human aimed movement (cf. Jagacinski & 
Flach, 2003) which tends to involve many very small velocity 
corrections over the course of the movement, but it has the 
advantage of being not too far off from real human movement 
profiles and is fast and easy to compute.

The final, and most theoretically interesting, problem here 
is that all the movements in ACT-R other than some very 
simple ballistic moves (e.g., punch the key directly below a 
finger) are aimed movements. That is, they require a visual 
target for the movement. This target is required in order to 
compute a target width for the computation of index of 
difficulty in Fitts’s Law. However, this creates a problem in that 
the only visual objects on the display are the tool, the disk, and 
the two actual targets, and none of those are appropriate as 
movement targets.

Fortunately, we were able to co-opt an existing piece of 
ACT-R functionality to solve this problem. ACT-R has the 
ability to form new representations on the fly through a system 
termed the “imaginal” system. This imaginal system is typically 
used by ACT-R models to store a representation of some part of 
the current problem, such as a mental marker for a carry 
operation in multi-column arithmetic. In our model, ACT-R 
uses this same system, but imagines a visual representation—a 
virtual movement target—and the spatial properties (location, 
size) of that imagined target can be passed along to the motor 
system just as if an actual visual object were the target. In this 
way, ACT-R can move to virtual “objects” that do not actually 
exist on the display. Using the imaginal system takes some 
time, however, as the representation must be constructed in the 
imaginal system, and that takes some 200 ms. 

RESULTS

With these pieces in place, it is possible to construct a 
relatively straightforward ACT-R model of expert performers in 
the spring-target task. Essentially, the model generates 
(imagines) a virtual object in the upper right, shifts visual 
attention to that object, and moves the tool to it. Following that, 
it imagines a virtual target in the lower left, shifts visual 
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attention to that object, then moves the tool to it. The cycle then 
repeats.  

This cycle repeats at approximately 1 Hz on average for 
both the model and for human subjects. There are two sources 
of stochasticity in the model. First, the durations of all the 
primitive operations are noisy (drawn from a rectangular 
distribution), which generates noise in both the timing of the 
model and the velocity of the tool. Second, the actual endpoint 
of each movement is non-deterministic. The targeted point is 
the center of a two-dimensional Gaussian distribution, with the 
width of that distribution being proportional to the target 
object’s width; the final move endpoint is drawn from this 
Gaussian. These are standard noise settings in ACT-R; no 
parameter tuning was done here to improve data fits.

Over 200 runs of the model it produces a mean hit count of 
23.96 hits per 20-second trial; the largest mean for the human 
subjects (high performers in session 10; see Figure 2) was 
25.35; the model is off by about 5%. We had to set the values of 
two free parameters in order to produce this performance, but 
both of those parameters were set in principled ways and were 
not set by empirical data-fitting.

The first parameter is the location of the imagined or 
virtual target objects. (Technically there are two locations but 
these were set symmetrically along the target axis.) These 
locations were set based on the physics of the resonant 
frequency of the system. The location of the virtual target 
objects is determined based on the dynamics of the sprung mass 
system. The ratio of the output amplitude to the input amplitude 
depends on the excitation frequency and the damped properties 
of the system. The stiffness and damping parameters are chosen 
such that the behavior of the system is slightly underdamped. 
For underdamped behavior, when the system is excited in a 
sinusoidal manner at or near its natural frequency (which is a 
function of the mass of the tool and the stiffness of the spring), 
the output amplitude will be greater than the input amplitude. 
Therefore, the best excitation strategy for this system is to 
move the disk between two points that are located at the precise 
distance from the origin for which the motion of the tool will 
just reach the targets. For example, if the output amplitude to 
input amplitude ratio at the natural frequency is 2, then the 
virtual targets should be half-way between the origin and the 
actual targets. Slight overshoot of the virtual targets will not 
adversely affect performance in terms of hit count, but the 
increased travel will require greater energy input in order to 
keep the input excitation near the natural frequency, or will 
result in excitation slightly below the natural frequency of the 
system.

There is one small complication here. The very first 
movement made by human subjects is larger than all 
subsequent movements. The system starts with all objects 
stationary, so getting the system ramped up to its natural 
frequency takes some time. In order to impart a higher early 

velocity, subjects make one initial move that is larger than other 
movements. There are substantial individual differences in the 
exact location of this initial movement; we approximated this 
by visually examining the data from a few expert subjects. This 
is, in a sense, a free parameter, but the ultimate performance of 
the model is not particularly sensitive to the exact location of 
the target for the first movement, only that the first movement is 
large enough to impart some additional velocity.

The other parameter was the size of the virtual target 
objects. Both the tool and disk are circles with 20-pixel 
diameters so the natural choice would be to use a virtual target 
that is the same effective size as the visible objects on the 
display. By default, visual objects in ACT-R are square or 
rectangular and the effective width of an object is the length of 
the chord running through the center of the object based on the 
line from the starting position to the object center. Since the 
virtual object was set as a square and target axis is on a 45° 
angle, the approach chord is 1.41 times larger than the height/
width of the object. Thus, the target was set to be 14 pixels 
wide, giving it an effective width of 20 pixels, which is the 
same as the size of the controlled objects.

It is interesting to note that we did experiment with 
different sizes for the virtual targets, but found 14 pixels  to be 
the optimal setting. Using a larger target sped up the system 
(wider targets have a lower index of difficulty in Fitts’s law and 
therefore result in more rapid movements), but introduced too 
much off-axis error and would cause the model to occasionally 
miss a target, hurting performance. Using a smaller target 
slowed down the movement such that the model could not 
achieve the speed necessary to maintain the resonant frequency 
of the system. 

There are some subtleties in the data that the model does 
not address. For example, the noise added by ACT-R to the 
movement endpoints uses the same variance for on-axis error as 
for off-axis error. This appears not to be true for human 
subjects; off-axis error appears to be slightly smaller than on-
axis error. This may contribute to the model’s slight 
underperformance relative to the best experts; perhaps the 
virtual targets could be slightly larger, and therefore the moves 
slightly faster, if the off-axis noise were reduced relative to the 
on-axis noise. Overshoot of the virtual targets has a limited 
impact on score since the tool still passes through the target 
(see above), as opposed to deviation from the target axis which 
is more likely to lead to missed target hits.

DISCUSSION

What the model demonstrates is that it is possible to get 
ACT-R to perform approximately as well as human experts at a 
continuous, dynamic motor task. This is encouraging in that it 
leads to the possibility that ACT-R could learn to become an 
expert at this task, which may shed light on how to train human 
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subjects on the task. This is an interesting issue in part because 
it is not clear how to train subjects on this task; past attempts 
using visual guidance and haptic feedback have not met with 
much success (Li, Patoglu, & O’Malley, 2009; Li, et al., 2009). 

It is not entirely clear that ACT-R can learn this task 
without outside assistance. The model presented here “knows” 
both a particular strategy (oscillate between two imagined 
targets) as well as as a set of parameter values (the size and 
locations of the virtual targets). We are currently exploring 
methods by which the model could learn the size and locations 
of the virtual targets through simple reinforcement learning. If 
this is successful, we will be able to claim, at best, that we have 
a model of the high performers.

However, how the other two groups of subjects could be 
modeled is not as clear. An examination of the low performers’ 
movement profiles indicates it is likely that they are using an 
entirely different strategy since they tend to make oval-shaped 
movements, even after many sessions, rather than adopting a 
strict back-and-forth strategy. This is challenging for ACT-R 
since it does not presently handle curved movement paths well, 
though extending it to do so is not impossible. 

The particularly difficult group is the the third group. 
Subjects in this group appear to transition from oval-shaped 
movements to the back-and-forth strategy exhibited by experts. 
In some sense having ACT-R learn this is trivial; if ACT-R is 
initially provided both strategies it can certainly learn to prefer 
the better strategy over time, and we would certainly explore 
such an approach. 

However, this is not entirely satisfying as an explanation 
on two fronts. First, from what source would ACT-R get these 
two strategies in the first place? Second, if ACT-R can learn to 
prefer the better one, why don’t all the actual human subjects? 
Unless, of course, this is exactly what separates the low 
performers from the fast learners; the fast learners are simply 
subjects who have both strategies available. Even still, this 
leaves as an open research question how subjects would have 
acquired these strategies to begin with. Inducing entirely new 
strategies has not traditionally been ACT-R’s strength, though 
there are some recent ACT-R models which are able to do 
essentially this (Anderson, 2007). This kind of induction is a 
very different kind of learning than the kind of simple tuning 
associated with later motor learning and, to the best of our 
knowledge, has not been systematically explored in the context 
of a difficult motor learning problem. 

It may be the case that what humans learn when 
transitioning is an internal model of the dynamics of the 
system, much like the Kalman filters found in optimal control 
models (again, see Jagacinski & Flach, 2003, for an overview). 
ACT-R does not, at present, have dynamic motor system 
models, so this is a rich area for future research.

That research has important potential long-term benefits. 
Difficult motor domains are precisely the kinds of domains 

where a deeper understanding of the learning process is 
valuable. Training in such domains is traditionally both difficult 
and time-consuming. Our ultimate goal in trying to understand 
skill acquisition in this task is to be able to provide training 
support—perhaps haptic or visual guidance, perhaps 
instructions—to help the low performers transition into high 
performers. We will then to attempt to generalize that to other 
complex motor domains such as mediated surgery or remote 
piloting. This research is the first step down such a path.
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