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Abstract— This paper comparatively evaluates the effect of
real-time velocity estimation methods on passivity and fidelity
of virtual walls implemented using haptic interfaces. Impedance
width, or Z-width is a fundamental measure of performance
in haptic devices. Limited accuracy of velocity estimates from
position encoder data is an impediment in improving the Z-
width in haptic interfaces. We study the efficacy of Levant’s
differentiator as a velocity estimator, to allow passive implemen-
tation of higher stiffness virtual walls as compared to some of the
commonly used velocity estimators in the field of haptics. We first
experimentally demonstrate feasibility of Levant’s differentiator
as a velocity estimator for haptics applications by comparing
Z-width performance achieved with Levant’s differentiator and
commonly used Finite Difference Method (FDM) cascaded with
a lowpass filter. A novel Z-width plotting technique combining
passivity and fidelity of haptic rendering is proposed, and
used to compare the haptic device performance obtained with
Levant’s differentiator, FDM+lowpass filter, First Order Adaptive
Windowing and Kalman filter based velocity estimation methods.
Simulations and experiments conducted on a custom single
degree of freedom haptic device demonstrate that the stiffest
virtual walls are rendered with velocity estimated using Levant’s
differentiator, and highest wall rendering fidelity is achieved
by First Order Adaptive Windowing based velocity estimation
scheme.

I. INTRODUCTION

Impedance width, or Z-width is defined as the dynamic range of
achievable impedances that can be rendered by a haptic interface
device, where achievable impedances mean that impedances
satisfy a robustness property, such as passivity [1]. The upper
limit of Z-width is the maximum impedance that can be rendered
by a haptic interface without any voluntary human motion induced
instabilities [2]. Z-width is a fundamental measure of performance
in haptic interfaces, and a higher Z-width means that a wide
range of haptic environments can be rendered by the device. Z-
width is an important metric to compare performance of haptic
devices used for rendering complex virtual environments for
surgical applications [3]. The haptic device must be able to render
impedances that occur in such virtual environment interactions in
a stable manner. Need for maximal Z-width performance has also
been recognized as one of the essential requirements in haptic
tele-manipulation of surgical robots [4]. Various strategies have
been proposed to increase the Z-width of haptic interfaces, such as
increasing the sampling frequency [5], increasing encoder resolu-
tion, adding physical damping [1], adding electrical damping [6],
[7] and hybrid control algorithms that employ both active and
passive actuators (such as magneto-rheological brakes) [8], [9].
Few researchers, however, have investigated the effect of velocity
estimation accuracy on the Z-width performance. In one case,
Hayward et al. proposed an Adaptive Windowing discrete-time
velocity estimation technique and presented as an example its

application to improve Z-width performance [10]. In other work,
Gil explored the effect of FDM+filter parameters on the Z-width
performance in simulation [11]. Colonnese and Okamura [12] pre-
sented explicit stability and quantization error regions for virtual
spring and damper rendering, offered a software tool to identify
system parameters necessary to satisfy desired haptic display
objectives, and verified their findings experimentally. In [13], we
proposed use of the Levant’s differentiator for estimating velocity,
and presented preliminary results on Z-width improvement.

Finite Difference Method (FDM) is the most widespread
method used for estimating velocity from position encoder data
in haptic applications. As the sampling rates increase, the velocity
resolution deteriorates significantly for FDM [14]. Cascading
FDM with a lowpass filter is a common way of addressing the
issue of poor velocity resolution at high sampling rates [1], but
this comes at the cost of introducing a time-delay in velocity
estimation. Time-delay in velocity estimation acts as another
limiting factor in increasing the Z-width of haptic displays. There
is a trade-off between the noise admitted and the time-delay in
estimation: lower the cutoff frequency, less the noise admitted
into the system, but with greater time-delay in estimations,
and vice versa. This trade-off has been widely explored in the
literature [15] and various velocity estimation schemes have
been proposed to overcome the limitations of FDM+filter with
varying degrees of success, such as adaptive windowing [16], time
stamping [17], Kalman filter based [14], curve breaking velocity
estimator [18] and Least Squares fit based [19] techniques. Tilli
and Montanari discussed the shortcomings of FDM+filtering and
other differentiation techniques, and proposed a switching filter
approach for velocity estimations from discrete position readings
in [20]. In [21], Koul et al. proposed a dual-rate sampling
scheme that decouples the position and velocity control loops,
and employs a slower sampling rate for velocity control loop to
reduce the quantization effects in FDM based velocity estimation
to improve the Z-width performance. Sinclair et al. [22] presented
a comparative experimental evaluation of a variety of velocity
estimation algorithms including several hybrid combinations of
more than one algorithm.

Velocity estimation techniques from position encoder signal
can be broadly divided into two categories: period counting
and frequency counting methods. Period counting methods use
specialized hardware to accurately measure the time elapsed
between consecutive encoder ticks, and use that to estimate
velocity [23], [24], [25]. A primary advantage of period counting
methods is in very accurate estimation at low velocities, but
the resolution degrades at higher velocities. Frequency counting
methods use number of encoder ticks per unit time information
to estimate the velocity. Zhu and Lamarche proposed a velocity
estimation technique using both position and acceleration data, for
damping enhancement in haptic devices [26]. Again, the drawback
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is the need for additional hardware. To circumvent differentiation
induced effects, in [27] and [28] authors propose using fractional
order control that employs differentiation and integration of
arbitrary order. Controller designed using this approach is shown
to enlarge the Z-width as compared to standard integer order
differentiation based control. While this approach provides an
additional degree of freedom in increasing Z-width, limitations
exist due to sensitivity to changes in system parameters and dis-
tortion of effective inertia at higher frequencies. A good derivative
estimation scheme should exhibit zero or minimum time-delay in
estimations, provide increasing accuracy with increasing sampling
frequency, robustness to fluctuations in input signal velocity, and
offer ease of implementation on existing hardware. To that end,
in our previous work [13], we proposed the use of the Levant’s
differentiator for improved velocity estimations and increased Z-
width in haptic interfaces.

Levant’s differentiator is a Second Order Sliding Mode (SOSM)
control based real-time robust exact differentiation technique [29].
It is a nonlinear velocity observer which exhibits finite time
convergence and increasing accuracy with increasing sampling
rates. In [13] we performed a preliminary feasibility study of the
Levant’s differentiator as a velocity estimator for haptic interfaces,
and compared it with the FDM+filter method. Convergence of
Levant’s differentiator is contingent upon the choice of several
parameters, and a crude condition for choosing them was given
by Levant in [29].

In this paper, we use the Lyapunov function analysis technique
for SOSM systems proposed in [30] to extend the range of
acceptable choice of parameters that would ensure convergence
of Levant’s differentiator. Levant’s differentiator implementations
with parameters chosen according to Levant’s recommendations,
Lyapunov analysis and from experimental tuning are compared
with FDM+lowpass filter method in their effectiveness in increas-
ing Z-width performance of a custom one degree of freedom
haptic device. We additionally propose a novel format for Z-
width plots, which present virtual wall stiffness (K) vs. virtual
wall damping (B). A detailed review of performance metrics
for haptic interfaces by Samur in [2] presents the frequency
domain max/min impedance range plotting method proposed by
Weir et al. [7] as the state of art for quantifying the Z-width.
However, frequency domain plots still do not provide information
on accuracy of the rendered impedance. An improved plot was
proposed by Baser et al. [8] where Z-Width is presented together
with transparency bandwidth. In [31], Gil et al. presented a
method of estimating Z-width using the experimental frequency
response computed at different workspace positions, and critical
stiffness values are then plotted as isolines in the workspace.
This method extends the traditional Z-width plot by showing
the dependence on workspace position, however does not inform
about fidelity of the achievable impedances. Our plotting method
simultaneously illustrates the stable K-B region and the fidelity
of the rendering at each stable K-B pair, overcoming limitations
with the traditional time-response based method of plotting Z-
width that fails to capture the device inertia, mechanical res-
onances, and fidelity of the rendered virtual environment, and
provides a more comprehensive fidelity measure. Our fidelity of
rendering measure builds upon the frequency response-based Z-
width plotting method proposed in [7]. Colonnese et al. define
the Average Distortion Error (ADE) as a metric for describing
haptic accuracy and form an objective function to optimally

compute linear system model parameters in [32]. ADE quanti-
fies frequency dependent difference between actual and desired
dynamics, normalized by desired dynamics and multiplied by a
weighting function. The fidelity measure employed in this paper
can be thought of as a simplified ADE without normalization and
a unity weighting function. This combined Z-width plot captures
the practical limitations of haptic devices which are not evident
in time-response based Z-width computation, and also provides
information about fidelity of the commanded virtual environment.
The idea is simple but effectively conveys the information about
both stability and accuracy in an easily recognizable format.
Our proposed Z-width plotting method is employed to compare
the Levant’s differentiator with FDM+lowpass filter, First Order
Adaptive Windowing (FOAW) and Kalman filter based methods
in both simulations and experiments. Results show that among
all the velocity estimation schemes considered, highest stiffness
virtual walls are rendered with Levant’s differentiator, while First
Order Adaptive Windowing enabled rendering virtual walls with
highest fidelity.

II. REVIEW OF VELOCITY ESTIMATION METHODS

In this section we briefly review the velocity estimation
methods considered in this paper. These methods are chosen
based on their widespread use for estimating velocity in haptics
applications.

A. FDM+lowpass filter

Finite Difference Method (FDM) is the most basic method of
estimating velocity by computing the slope of two most recently
sampled position data points, given as:

vk =
yk− yk−1

T
. (1)

where yk is the discrete position signal obtained by sampling the
continuous position signal y(t) at t = kT time instants, where T is
the sampling period. vk is the estimated velocity. However, high
sampling rates (≥ 1 kHz) typically used in haptic applications
will significantly amplify any noise present in yk [16]. The most
commonly used method for removing high frequency noise in
velocity estimations induced by FDM is implementing a low-pass
filter. In our study, we used a second order Butterworth filter
to remove the noise in FDM-based velocity estimations, which
is a well-known and commonly used filter in haptic and other
feedback control systems. The tunable parameter in FDM+filter
method is the filter cutoff frequency ωc, which can be tuned to
achieve best performance. We selected the filter cutoff frequency
ωc to maximize the Z-width performance as detailed in [15].

B. Kalman filter

Kalman filtering of the measured position signal based on
a triple-integrator model to estimate velocity was proposed by
Bélanger in [14]. Although a double-integrator model will suffice
for estimating velocity, Bélanger recommends using a triple
integrator model for increased accuracy. Using the notation in
[16], a linear discrete stochastic model is used to represent the
estimated state xk as:

xk+1 = Axk +Gwk (2)

yk = Hxk + ek (3)
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where xk = (xk, ẋk, ẍk) is a vector of the estimated position xk and
its derivatives, A is the state transition matrix, H is the observation
matrix and yk is the position measured at kth sampling instants.
wk is the process noise and ek is the measurement noise, both of
which are assumed to be zero mean white Gaussian. Since we
have assumed the triple-integrator model, A, G and H are given
as:

A =

 1 T
T 2

2
0 1 T
0 0 1

 , G =

 1 0 0
0 1 0
0 0 1

 , H =
[

1 0 0
]
.

(4)
In the triple-integrator model, wk is viewed as a surrogate for
derivative of acceleration, and therefore its covariance matrix Qk
can be written as

Qk(i, j) =
q

(3− i)!(3− j)!(7− i− j)!
T 7−i− j

where q is a parameter that needs to be adjusted depending
on the motion characteristics. We tuned the parameter q in
simulation to maximize the impedance width performance. Typi-
cally,in commercially available haptic devices, position is sensed
from an optical position encoder, where error in measurement is
predominantly due to quantization, such that −d ≤ ek ≤ d where
d is the encoder resolution. Thus, variance for the measurement
error ek is given as r = var(ek) = d2/3. Based on the above model,
an Adaptive fading Kalman Filter can be written to estimate
velocity as detailed in [16] and [33].

C. Adaptive windowing

Janabi-Sharifi et al. proposed a discrete-time First Order Adap-
tive Windowing (FOAW) method which addresses the noise
amplification issue present in FDM by adaptively changing the
window size for computing the velocity based on the signal
itself [16]. This is equivalent to adaptively changing the sampling
rate. Window size is chosen short when the velocity is high, and
large when velocity is low; thereby providing more precise and
reliable velocity estimates. The goal is to find a straight line that
passes through the sampled data yk,yk−n over a window of length
n where n = max{1,2,3, ...} such that

|yk−i− yL
k−i| ≤ d, ∀i ∈ {1,2, ...,n} (5)

where yL
k−i = an + bn(k− i)T . For Best-fit-FOAW solution, the

coefficients an and bn are given as:

an =
kyk−n +(n− k)yk

n

bn =
n∑

n
i=0 yk−i−2∑

n
i=0 iyk−i

T n(n+1)(n+2)/6
. (6)

Here bn is the slope of the best-fit line computed using least-
square approximation which minimizes the error energy. The
estimated velocity is v̂k = bn. The algorithm for FOAW is given
in [16].

III. LEVANT’S DIFFERENTIATOR FOR VELOCITY ESTIMATION

Levant proposed a robust exact differentiation technique using
SOSM for signals with a given upper bound on the Lipschitz’s
constant of the derivative [29]. Given an input signal f (t), the
Lipschitz’s constant of the derivative is a constant C which
satisfies ∣∣ ḟ (t1)− ḟ (t2)

∣∣≤C |t1− t2| (7)

If the second derivative of the base signal exists, then the
Lipschitz’s constant in (7) satisfies

sup
t≥0

∣∣∣∣ d2

dt2 f (t)
∣∣∣∣≤C (8)

Consider x(t) an estimate of the input signal f (t). Define error
in the estimate as e(t) = x(t)− f (t), then the first order derivative
can be estimated as

ẋ(t) = u(t)

u(t) = u1(t)−λ |e(t)|1/2sign(e(t))

u̇1(t) = −αsign(e(t)) (9)

The solution of the system described by equation (9) is under-
stood in the sense of Filippov [34]. λ and α are strictly positive
constants which determine the differentiation accuracy and must
be chosen properly to ensure convergence. Levant proposed a
homogeneity based approach (HBA) for proving the convergence
of the SOSM based differentiator and recommended conditions
on the gains λ and α such that the differentiator is stable. We
present a Lyapunov function based approach (LFBA) to extend
the stability conditions given by HBA. Both stability criteria are
discussed in the following subsections.

A. Levant’s stability criteria

Levant proposed a sufficient condition [29] for finite time
convergence of u(t) to ḟ (t), given as

α >C , λ
2 ≥ 4C

α +C
α−C

(10)

An easier choice of the parameters given in the same reference
is

α = 1.1C , λ =C1/2 (11)

It should be noted that conditions (10) and (11) result from a very
crude estimation of the convergence criterion.

B. Lyapunov function based stability criteria

Using the Lyapunov function analysis for the second order
sliding mode systems proposed in [30], we can extend the stability
conditions proposed by Levant in (10) to increase the range of
acceptable values of parameters α and λ .

Using the reformulation proposed in [30], the system (9) can
be re-written as follows:

ẋ1(t) = −λ |x1(t)|1/2sign(x1(t))+ x2(t)

ẋ2(t) = −αsign(x1(t))− f̈ (t) (12)

where x1(t) = e(t) = x(t)− f (t) and x2(t) = u1(t)− ḟ (t). We
consider a Lyapunov function candidate given as:

V (x) = 2α|x1|+
1
2

x2
2 +

1
2
(λ |x1|1/2sign(x1)− x2)

2

= ζ
T Pζ (13)

where ζ = [|x1|1/2sign(x1) x2]
T and

P =
1
2

[
4α +λ 2 −λ

−λ 2

]
Using the Lyapunov finction candidate detailed above and

following the analysis detailed in [30], the stability conditions
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Fig. 1. The shaded regions show stable pairs of gains (α,λ ) based upon
the Lyapunov Function Based Approach (LFBA) and the Homogeneity Based
Approach (HBA). The HBA-SC is the special case gain pair proposed by
Levant [29].

derived from the Lyapunov Function Based Approach (LFBA)
are given as:

α > 3C+
2C2

λ 2 ; λ > 0 (14)

The stability conditions obtained from the HBA and LFBA
can be compared by using the parameterization α = µ1C and
λ = µ2C1/2, to eliminate the Lipschitz’s constant C from the
inequalities. The plots of µ1 vs. µ2 give the parameterized stable
regions as shown in Fig. 1. It can be observed that LFBA stability
conditions, while not wholly encompassing the HBA conditions,
do extend the range of choice for the parameters α and λ . It is
observed that the HBA-Special Case (HBA-SC) gain pair given
by (11) lies outside of the both regions. Since both LFBA and
HBA give only sufficient conditions, it is possible to choose a
gain pair which lies outside these stability ranges but still ensures
convergence. For this study, the gains were chosen to satisfy
the stability conditions and maximize Z-width performance in
simulation.

IV. FEASIBILITY OF LEVANT’S DIFFERENTIATOR FOR

INCREASING Z-WIDTH

In this section, we investigate the feasibility of Levant’s dif-
ferentiator as a velocity estimator in increasing the Z-width
performance in haptic interfaces. We followed the automated
Z-width estimation experimental protocol described in [13] to
estimate the Z-width of a custom linear impedance type haptic
device shown in Fig. 2. Control of the haptic device was imple-
mented in Simulink c© and QuaRC c© on a host computer running
Windows c©. The code is compiled and downloaded on a target
computer running QNX c© RTOS, which is interfaced to the haptic
device through a Q4 DAQ from Quanser Inc. The sampling rate
was set at 10 kHz.

A spring-damper virtual wall was implemented and Z-width
was computed using time-response data collected during virtual
wall hit trials. The virtual wall stiffness (K) and virtual wall damp-
ing (B) values were varied and the pairs of (K,B) which presented
a marginally passive virtual wall interaction are recorded. For
evaluating the feasibility of Levant’s differentiator, the Z-width
plot is computed for the following velocity estimation methods:

1) Levant’s differentiator with the HBA-SC gains.
2) Levant’s differentiator with the LFBA gains.

(a) Top view

(b) Front view

Fig. 2. The single degree-of-freedom haptic device used for Z-width
estimation.
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Fig. 3. Experimental time-domain Z-width estimation with various differen-
tiation schemes during automated wall-hitting trials.

3) Levant’s differentiator with experimentally adjusted gains.
4) FDM cascaded with a second order Butterworth filter with

1000 Hz cutoff frequency.
The value of Lipschitz’s constant is calculated by collecting the
position data during a virtual wall hit with velocity estimated
using FDM cascaded with a second order Butterworth filter, and
calculating the analytical double derivative of a sum of sines
function fitted to the position data. The cutoff frequency for the
Butterworth filter was chosen experimentally to get the maximum
Z-width performance.

It is observed in Fig. 3 that use of Levant’s differentiator with
adjusted gains for velocity estimation extends the Z-width of
the device (higher virtual wall stiffness), as compared to using
FDM+filter for the same purpose. Levant’s differentiator with
HBA and LFBA based gains performs better than FDM+filter for
damping values up to 150 Ns/m, but is found to be conservative.
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Fig. 4. Impedance transfer function plots obtained in simulation for a
single degree of freedom linear haptic device with quantization, sampling
and coulomb friction nonlinearities.

We adjusted the gains experimentally, thereby further increasing
the Z-width of the device. FDM+filter with a 1000 Hz cutoff
allowed stable rendering of walls with higher damping values (>
350 Ns/m) but with lower stiffness than those were possible with
Levant’s differentiator at lower damping values. Unlike the Z-
width plots for FDM+filter methods, when Levant’s differentiator
is used, the stable region ends with a sharp drop at a specific
damping value. This value is around 250 Ns/m for Levant’s
differentiator with HBA and LFBA gains and it is around 300
Ns/m for Levant’s differentiator with adjusted gains. The reason
for this sharp drop is as K and B increase, the gains α and
λ selected for the nominal case by estimating C or the ones
found experimentally are no longer proper. This causes significant
increase in chatter at the equilibrium position resulting in an
unstable hit. A different choice of gains can extend the Z-width
to higher B values but may lose stability in the lower range.

V. COMPARISON OF VELOCITY ESTIMATORS

In the previous section we showed the feasibility of Lev-
ant’s differentiator as a velocity estimator for increasing Z-
width performance in haptic interfaces. However, Z-width was
computed based on time-response data recorded during wall-hit
trials with varying K and B values, where passivity was quantified
by absence of sustained or growing oscillations after virtual
wall interactions. A more illustrative method for computing and
plotting Z-width information was proposed by Weir et al. in [7],
where the envelope of passive impedances that can be rendered
by a haptic display is plotted. The haptic device impedance is
estimated by providing an external multi-sine excitation signal
to the device and estimating an impedance transfer function by
considering velocity as input and force as output. Fig. 4 shows
the impedance plots obtained with no virtual wall and when a
virtual wall was being rendered.

This method has the advantage of capturing the practical device
characteristics such as device inertia and mechanical resonances
which are overlooked in Z-width estimation using time-response
data [7]. However, fidelity of the rendered virtual wall is still
not captured. We propose a novel Z-width plotting method which
combines the higher information density of Z-width computed
using frequency-response data with the intuitive nature of K-
B plots based on time-response data. The impedance transfer
functions are estimated for (K,B) pairs in an exhaustive grid-
based scheme, and if the phase of the estimated transfer function

Fig. 5. Grid based search scheme for exploring the virtual wall impedance
space (K,B) and generating the Z-width plots. K is virtual wall stiffness and
B is virtual wall damping.

is between ±90 degrees over the useful range of the device, the
virtual wall corresponding to that particular (K,B) pair is declared
passive. Search begins with nominal initial stiffness and damping
value pair (K,B) for which the virtual wall is passive. Passivity of
the impedance transfer function for various (K,B) values is tested
by incrementing K in steps for a particular value of B until the
system is not passive. Then B is incremented by one step and if
the transfer function is still not passive, K is decremented until a
passive transfer function is obtained; and if the transfer function is
passive then K is incremented until it becomes non-passive. Either
way, once the passivity boundary is reached, B is incremented
and the cycle is repeated. The search terminates when K → 0.
Fig. 5 shows the scheme graphically. Fidelity of the rendered
virtual wall is quantified by computing the Root Mean Square
(RMS) difference between the magnitude plots of the estimated
impedance transfer function and the ideal spring-damper transfer
function as shown in Fig. 6. This RMS difference is a measure
of how well the rendered wall matches the commanded spring-
damper virtual wall. Conventional methods of plotting Z-width
only show the range of impedances that satisfy the passivity
condition (i.e. phase is between ±90 degrees), however this added
metric captures the fidelity of a desired impedance when rendered
by a haptic interface. Quantifying performance of a haptic inter-
face in rendering a given impedance should involve assessing
both the passivity and fidelity of rendered impedance. It can be
observed that at low frequencies the magnitude plot of estimated
impedance matches the ideal wall impedance quite well, but at
higher frequencies the device inertia becomes prominent and the
controller can no longer render the commanded virtual wall. The
slight attenuation in magnitude of the estimated impedance at low
frequencies can be attributed to nonlinearities such as friction,
quantization and sampling.

The velocity estimation methods described in Section II are
compared in simulations and experiments using our proposed
Z-width plotting method. For simulation, the device model pa-
rameters were identified by performing frequency domain system
identification of the haptic device shown in Fig. 2 using a
Schroeder phased input signal [35] and the System Identification
Toolbox c© in Matlab c©. Static and kinetic friction are assumed
to be the same, and was estimated a priori and compensated
before performing frequency domain system identification. A
mass-damper model with Coulomb friction was assumed, and the
estimated parameters were mass m = 0.52 kg, damping b = 13.2
Ns/m and Coulomb friction fc = 0.19 N. The haptic device
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Fig. 6. Estimated impedance of the haptic device compared with the ideal
impedance expected from a spring-damper virtual wall. Note that at higher
frequencies, device inertia becomes prominent and the deviation from ideal
spring-damper virtual wall case increases.

simulation rate was set at 1 kHz and position quantization was
1µm, corresponding to the experimental setup. An external multi-
sine perturbation force was applied to excite the device, and the
velocity and force signals were sampled at 4 kHz. The tfestimate
function in Matlab c© was used to estimate the impedance transfer
function of the rendered haptic environment. The Z-width plots
obtained with various velocity estimation methods are shown in
Fig. 7. The tunable parameters in all velocity estimation methods
were chosen to achieve best possible performance, and were
selected to be ωc = 499 Hz for FDM+filter, q = 2.5×104 for the
AKF method and α = 6.6,λ = 2.45 for the Levant’s differentiator.

Experimental Z-width computation was done by attaching an
external motor to the haptic device as shown in Fig. 2 to apply
a multi-sine perturbation signal to the haptic device. The haptic
environment was rendered at 1 kHz. Velocity and force signals
were sampled at 4 kHz for estimating the impedance transfer
function. Tunable parameters for all velocity estimation methods
were chosen to be same as the simulation. The Z-width plots
computed experimentally are shown in Fig. 8.

It can be observed from the simulation and experimental Z-
width plots shown in Figs. 7 and 8 that highest virtual wall stiff-
ness is obtained with Levant’s differentiator, then AKF, followed
by FDM+filter and FOAW. Several other interesting observations
can be made from the Z-width plots. First, in both simulations
and experiments, accuracy of the rendered virtual wall is higher
for lower values of K and B. This is expected because higher
values of K and B may saturate the actuator over frequency
range near resonance, causing significant deviations from the
expected ideal wall impedance characteristics. Higher B amplifies
the noise and delay present in velocity estimations, which causes
deviations from the ideal wall case before the haptic interaction
is ultimately rendered non-passive. Second, the ranges of Z-width
plots computed experimentally can be observed to be smaller
than the corresponding simulation plots. This can be attributed
to mechanical vibration modes and other nonlinearities that were
not captured in the simplified linear model assumed in the
simulation. Finally, the Z-width plots for Levant’s differentiator
and FDM+filter shown in Figs. 8(a) and 8(d) match the trend
observed with K-B plots shown in Fig. 3. In both cases, the
Levant’s differentiator was able to achieve a higher stiffness value
as compared to FDM+filter, but was limited in displaying higher
virtual damping.

Table I compares the experimental Z-width results for vari-
ous differentiation schemes along following metrics: maximum
rendered stiffness (K-width), maximum rendered damping (B-
width), maximum fidelity error and number of parameters to be
tuned. These metrics are chosen to compare the suitability of
differentiation schemes for any given application. It can be seen
that Levant’s differentiator is able to achieve highest K-width,
but is limited in B-width. Furthermore, Levant’s differentiator
requires two parameters to be tuned and displays second highest
fidelity error. Both FDM+filter and AKF display intermediate K-
widths and require a single parameter to be tuned. FDM+filter is
able to achieve highest B-width, but also has highest fidelity error
of all schemes. FOAW displays smallest K-width, but requires no
parameter tuning and displays smallest fidelity error. None of the
schemes perform best across all the metrics, so depending on the
application, appropriate scheme (or combination thereof) needs
to be selected. For example, if low damping and high stiffness
is desired, then Levant’s differentiator is a good choice, but if
intermediate damping and stiffness are desired, then FOAW is
better. A combination of multiple differentiation schemes, such
as FOAW and Levant’s differentiator could potentially result in
better performance than each of them individually.

In related work, Sinclair et al. [22] experimentally compared a
variety of velocity estimation algorithms. They optimized each
algorithm’s relevant parameters using a pure adaptive search
method to minimize a multi-objective criterion that took into
account both the delay and the error in delay-corrected velocity
estimations. Based on this criterion, third order Kalman estimators
that were hybrid combinations of the Kalman estimator with
Levant’s differentiator or FOAW produced the smallest error in
estimations. The focus of the work was realistic haptic simulation
of stick-slip sensations, therefore virtual-wall specific evaluations
of the estimators were outside the scope of this work. Indeed,
Sinclair et al. pointed to the distinctly different aspects of perfor-
mance that virtual wall and stick-slip haptic simulations require
from velocity estimators. The FOAW method did not perform
well in comparison with the other algorithms in Sinclair et al.’s
work. In our work, however, it has shown the best performance
when viewed from the haptic fidelity perspective.

In this paper, we have only considered the SOSM based robust
exact differentiation technique proposed by Levant in [29]. Other
variations and extensions to this technique have been proposed
since then combine the SOSM and Linear observers and/or
propose variable gain structure where the parameters α and λ

are updated according to a set of relations [36], [37], [38]. These
extensions introduce more parameters which need to be selected
and tuned based on simulation or experiments, thus increasing
the complexity of the implementation. When properly tuned,
these extensions to SOSM based velocity observer may provide
better velocity estimates than the standard Levant’s differentiator
discussed in this paper.

Successful implementation of Levant’s differentiator for veloc-
ity estimation demonstrated increased K-width performance in
haptic interfaces as compared to FDM+filter, AKF and FOAW
velocity estimation methods in both simulations and experiments.
Ease of implementation and finite-time convergence characteris-
tics of the Levant’s differentiator makes it an attractive option for
use as a velocity estimator in haptics and other feedback control
system applications.
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(a) FDM+filter (b) First Order Adaptive Windowing (FOAW)

(c) Adaptive fading Kalman Filter (AKF) (d) Levant’s differentiator

Fig. 7. Z-width plots obtained in simulation for various velocity estimation methods. The colorbar shows the RMS error (in Ns/m) between estimated and
ideal virtual wall impedance. It is observed that highest virtual wall stiffness is obtained with Levant’s differentiator, then AKF, followed by FDM+filter and
FOAW. The fidelity of haptic rendering deteriorates at higher virtual wall stiffness values for all velocity estimation methods.

TABLE I
COMPARISON OF VARIOUS DIFFERENTIATION SCHEMES BASED ON K-WIDTH, B-WIDTH, MAXIMUM FIDELITY ERROR AND THE NUMBER OF TUNABLE

PARAMETERS. THE NUMERICAL VALUES ARE OBTAINED EXPERIMENTALLY.

FDM+filter FOAW AKF Levant’s differentiator
K-width (N/m) 2.4×104 2.1×104 2.7×104 3.6×104

B-width (Ns/m) 160 120 100 100
Tunable parameters ωc None q α ,λ

Max. fidelity error (Ns/m) 894.91 294.3 520.04 614.19

VI. CONCLUSION

In this paper, we investigated the feasibility of Levant’s dif-
ferentiator for estimating velocity from position encoder data to
increase the Z-width performance of haptic devices, and compared
it with Finite difference method + lowpass filter, Kalman filter and
First Order Adaptive Windowing velocity estimation schemes. We
proposed a novel method for plotting Z-width, which combines
the information about fidelity of the rendered haptic environment
and practical device characteristics based on the frequency-
response with the intuitive appeal of traditional Z-width ob-
tained with the time-response of the haptic device. The proposed
Z-width plotting method addresses the shortcomings of time-
response based Z-width plot by capturing the practical device

limitations and also adding another dimension that informs about
the accuracy of rendered virtual wall. Velocity estimation methods
were evaluated using our proposed Z-width plotting scheme.
Simulation and experimental results demonstrate that highest
stiffness virtual walls were rendered using Levant’s differentiator
for velocity estimation, and FOAW was able to render virtual
walls with highest fidelity. Insights gained through this study can
be directly applied to surgical simulators that necessarily render
complex virtual environments with high fidelity, and to haptic
tele-manipulation of surgical robots that must faithfully and stably
transmit a wide range of impedances.
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(a) FDM+filter (b) First Order Adaptive Windowing (FOAW)

(c) Adaptive fading Kalman Filter (AKF) (d) Levant’s differentiator

Fig. 8. Z-width plots obtained experimentally for various velocity estimation methods. The colorbar shows the RMS error (in Ns/m) between estimated and
ideal virtual wall impedance. Similar observations as those in Fig. 7 can be made here.

ACKNOWLEDGMENT

This work was supported in part by the NSF Grant CNS-
1136099.

REFERENCES

[1] J. E. Colgate and J. M. Brown, “Factors affecting the z-width of a haptic
display,” in IEEE International Conference on Robotics and Automation,
San Diego, CA, May 1994, pp. 3205–3210.

[2] E. Samur, Performance Metrics for Haptic Interfaces. Springer Science
& Business Media, 2012.

[3] S. Abeywardena and C. Chen, “Implementation and evaluation
of a three-legged six-degrees-of-freedom parallel mechanism as an
impedance-type haptic device,” IEEE/ASME Transactions on Mechatron-
ics, 2017.

[4] H. Bleuler, M. Bouri, L. Santos-Carreras, S. Gallo, A. Sengül,
G. Rognini, and R. Clavel, “Trends in surgical robotics,” Romanian
Journal of Technical Sciences, vol. 58, no. 1-2, pp. 97–105, 2013.

[5] M. K. O’Malley, K. S. Sevcik, and E. Kopp, “Improved haptic fidelity
via reduced sampling period with an FPGA-based real-time hardware
platform,” Journal of Computing And Information Science In Engineer-
ing, vol. 9, no. 1, 2009.

[6] J. S. Mehling, J. E. Colgate, and M. A. Peshkin, “Increasing the
impedance range of a haptic display by adding electrical damping,” in
IEEE World Haptics Conference, March 2005, pp. 257–262.

[7] D. Weir, J. Colgate, and M. Peshkin, “Measuring and increasing Z-width
with active electrical damping,” in Symposium on Haptic Interfaces for
Virtual Environments and Teleoperator Systems. Reno, Nevada, USA:
IEEE, March 2008, pp. 169–175.

[8] O. Baser, H. Gurocak, and E. I. Konukseven, “Hybrid control algorithm
to improve both stable impedance range and transparency in haptic
devices,” Mechatronics, vol. 23, no. 1, pp. 121–134, February 2013.

[9] O. Baser, E. ilhan Konukseven, and H. Gurocak, “Stability and trans-
parency improvement in haptic device employing both mr-brake and
active actuator,” in 21st IEEE International Symposium on Robot and
Human Interactive Communication. IEEE, 2012, pp. 12–18.

[10] V. Hayward, F. Janabi-Sharifi, and C.-S. J. Chen, “Adaptive windowing
discrete-time velocity estimation techniques: Application to haptic inter-
faces,” in Symposium on Robotic Control, September 1997, pp. 465–472.

[11] J. J. Gil, “Control de dipositivos fisicos de gran espacio de trabajo para la
interaccion tactil con entornos virtuales,” Ph.D. dissertation, Universidad
de Navarra, 2003.

[12] N. Colonnese and A. Okamura, “Stability and quantization-error analysis
of haptic rendering of virtual stiffness and damping,” The International
Journal of Robotics Research, p. 0278364915596234, 2015.

[13] V. Chawda, O. Celik, and M. K. O’Malley, “Application of Levant’s
differentiator for velocity estimation and increased Z-width in haptic
interfaces,” in World Haptics Conference. Istanbul, Turkey: IEEE, 2011,
pp. 403–408.

[14] P. R. Bélanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation
of angular velocity and acceleration from shaft-encoder measurements,”
The International Journal of Robotics Research, vol. 17, no. 11, pp.
1225–1233, 1998.

[15] V. Chawda, O. Celik, and M. K. O’Malley, “A method for selecting
velocity filter cut-off frequency for maximizing impedance width perfor-
mance in haptic interfaces,” Journal of Dynamic Systems, Measurement,
and Control, vol. 137, no. 2, p. 024503, 2015.

[16] F. Janabi-Sharifi, V. Hayward, and C. S. J. Chen, “Discrete-time adaptive
windowing for velocity estimation,” IEEE Transactions on Control
Systems Technology, vol. 8, no. 6, pp. 1003–1009, 2002.



1083-4435 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2018.2805863, IEEE/ASME
Transactions on Mechatronics

9

[17] R. H. Brown and S. C. Schneider, “Velocity observations from discrete
position encoders,” in Proc. SPIE 0858, Signal Acquisition and Process-
ing, 1111, November 1987.

[18] T. Ghaffari and J. Kovecses, “A high-performance velocity estimator
for haptic applications,” in IEEE World Haptics Conference, Daejeon,
Korea, April 2013, pp. 127–132.

[19] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of
algorithms for velocity estimation from discrete position versus time
data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp.
11–19, 1992.

[20] A. Tilli and M. Montanari, “A low-noise estimator of angular speed and
acceleration from shaft encoder measurements,” Automatika, vol. 42, no.
3-4, pp. 169–176, 2001.

[21] M. Koul, M. Manivannan, and S. Saha, “Effect of dual-rate sampling
on the stability of a haptic interface,” Journal of Intelligent & Robotic
Systems, pp. 1–13, 2017.

[22] S. Sinclair, M. M. Wanderley, and V. Hayward, “Velocity estimation
algorithms for audio-haptic simulations involving stick-slip,” IEEE
Transactions on Haptics, vol. 7, no. 4, pp. 533–544, Oct 2014.

[23] P. Bhatti and B. Hannaford, “Single-chip velocity measurement system
for incremental optical encoders,” IEEE Transactions on Control Systems
Technology, vol. 5, no. 6, pp. 654 –661, November 1997.

[24] R. Merry, M. Van de Molengraft, and M. Steinbuch, “Velocity and
acceleration estimation for optical incremental encoders,” Mechatronics,
vol. 20, no. 1, pp. 20–26, 2010.

[25] M. C. Cavusoglu, D. Feygin, and F. Tendick, “A critical study of the
mechanical and electrical properties of the phantom haptic interface and
improvements for high performance control,” Presence, vol. 11, no. 6,
pp. 555–568, December 2002.

[26] W. H. Zhu and T. Lamarche, “Damping enhancement of haptic devices
by using velocities from accelerometers and encoders,” in Joint 48th
IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai, P.R. China, December 2009, pp. 7515–7520.

[27] Y. Aydin, O. Tokatli, V. Patoglu, and C. Basdogan, “Fractional order
admittance control for physical human-robot interaction,” in World
Haptics Conference (WHC). IEEE, 2017, pp. 257–262.

[28] O. Tokatli and V. Patoglu, “Stability of haptic systems with fractional
order controllers,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 1172–1177.

[29] A. Levant, “Robust exact differentiation via sliding mode technique,”
Automatica, vol. 34, no. 3, pp. 379–384, 1998.

[30] J. Moreno and M. Osorio, “A Lyapunov approach to second-order sliding
mode controllers and observers,” in IEEE Conference on Decision and
Control, Cancun, Mexico, December 2008, pp. 2856–2861.

[31] J. J. Gil and I. Dı́az, “Method for estimating the stability boundary of
impedance haptic systems,” in World Haptics Conference (WHC). IEEE,
2017, pp. 569–574.

[32] N. Colonnese, A. F. Siu, C. M. Abbott, and A. M. Okamura, “Rendered
and characterized closed-loop accuracy of impedance-type haptic dis-
plays,” IEEE transactions on haptics, vol. 8, no. 4, pp. 434–446, 2015.

[33] F. Janabi-Sharifi, V. Hayward, and C.-S. J. Chen, “Novel adaptive
discrete-time velocity estimation techniques and control enhancement
of haptic interfaces,” IEEE Trans. Control Systems Technology, vol. 8,
no. 6, pp. 1003–1009, 2000.

[34] A. Filippov and F. Arscott, Differential Equations with Discontinuous
Righthand Sides. Springer, 1988.

[35] R. Pintelon and J. Schoukens, System Identification: A Frequency
Domain Approach. John Wiley & Sons, 2004.

[36] A. Davila, J. Moreno, and L. Fridman, “Variable gains super-twisting
algorithm: A lyapunov based design,” in American Control Conference,
Baltimore, MD, USA, July 2010, pp. 968–973.

[37] I. Salgado, I. Chairez, J. Moreno, and L. Fridman, “Design of mixed
luenberger and sliding continuous mode observer using sampled output
information,” in 49th IEEE Conference on Decision and Control (CDC),
Atlanta, Georgia, USA, December 2010, pp. 5138 –5143.

[38] I. Salgado, J. Moreno, L. Fridman, A. Poznyak, and I. Chairez, “Design
of variable gain super-twisting observer for nonlinear systems with
sampled output,” in International Conference on Electrical Engineering
Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico,
September 2010, pp. 153 –157.

Vinay Chawda received the B.Tech. and M.Tech.
degrees in mechanical engineering from Indian Insti-
tute of Technology, Bombay, India in 2009, and his
Ph.D. in mechanical engineering from Rice Univer-
sity, Houston, TX, USA in 2013. He was a Research
Assistant at the Mechatronics and Haptics Interfaces
(MAHI) Laboratory at Rice University from 2009
to 2013, and R&D Postdoctoral Associate at Disney
Research from 2015 to 2016.

His research and development experience includes
physical human-robot interaction, human interface

devices, control of haptic interfaces and bilateral teleoperation systems.
He was awarded the Best Paper Award at the 2011 IEEE World Haptics
Conference in Istanbul, Turkey, and the Best Robotics Paper Award at the 2013
ASME Dynamic Systems and Controls Conference in Stanford University,
CA, USA.

Ozkan Celik received the B.S. and M.S. degrees
in mechanical engineering from Istanbul Technical
University, Istanbul, Turkey, in 2004 and 2006,
respectively. He received his Ph.D. degree in me-
chanical engineering from Rice University, Houston,
TX, USA in 2011. He was a Research Assistant
at the Mechatronics and Haptic Interfaces (MAHI)
Laboratory at Rice University from 2006 to 2011. He
served as an Assistant Professor of Mechanical En-
gineering at San Francisco State University (2011-
2013) and at Colorado School of Mines (2013-

2017). He is currently a Servo Controls Engineer at the Mechatronics Center
of Excellence within the Commons Solutions Group at Applied Materials,
Inc. His research and development experience spans the fields of haptics,
mechatronics, exoskeletons, rehabilitation robotics and predictive modeling
and simulation.

Marcia K. O’Malley (SM13) received the B.S.
degree in mechanical engineering from Purdue Uni-
versity, West Lafayette, IN, USA, in 1996, and the
M.S. and Ph.D. degrees in mechanical engineering
from Vanderbilt University, Nashville, TN, USA, in
1999 and 2001, respectively. She is currently the
Stanley C. Moore Professor of mechanical engineer-
ing and of computer science and of electrical and
computer engineering at Rice University, Houston,
TX, USA, and directs the Mechatronics and Haptic
Interfaces Laboratory. She is adjunct faculty in the

Departments of Physical Medicine and Rehabilitation at the Baylor College
of Medicine and the University of Texas Medical School at Houston, and
is the Director of Rehabilitation Engineering at TIRR-Memorial Hermann
Hospital. Her research addresses issues that arise when humans physically
interact with robotic systems, with a focus on training and rehabilitation in
virtual environments. Prof. OMalley is a Fellow of the American Society of
Mechanical Engineers and serves as an Associate Editor for the ASME Journal
of Mechanisms and Robotics, the ACM Transactions on Human Computer
Interaction, and the IEEE Transactions on Robotics.


