
Acumen: An Open-source Testbed for
Cyber-Physical Systems Research

Walid Taha1, Adam Duracz1, Yingfu Zeng2, Kevin Atkinson2, Ferenc A.
Bartha2, Paul Brauner2, Jan Duracz1, Fei Xu1, Robert Cartwright2, Michal

Konečný3, Eugenio Moggi4, Jawad Masood2, Pererik Andreasson1, Jun Inoue2,
Anita Sant’Anna1, Roland Philippsen1, Alexandre Chapoutot5, Marcia

O’Malley6, Aaron Ames7, Veronica Gaspes1, Lise Hvatum8, Shyam Mehta8,
Henrik Eriksson9, and Christian Grante10

1 School of Information Technology, Halmstad University, Halmstad, Sweden
{name.surname}@hh.se,

2 Department of Computer Science, Rice University, Houston TX, USA
{name.surname}@rice.edu,

3 Computer Science Group, Aston University, Birmingham, UK
m.konecny@aston.ac.uk,

4 DIBRIS, University of Genova, Genoa, Italy
moggi@unige.it

5 ENSTA ParisTech - U2IS, Paris, France alexandre.chapoutot@ensta.fr,
6 Department of Mechanical Engineering, Rice University, Houston TX, USA

omalleym@rice.edu,
7 School of Mechanical Eng., Georgia Institute of Technology, Atlanta GA, USA

ames@gatech.edu,
8 Schlumberger, Houston TX, USA {name.surname}@slb.com,

9 Dependable Systems, SP Technical Research Institute of Sweden, Bor̊as, Sweden,
henrik.eriksson@sp.se,

10 AB Volvo, Gothenburg, Sweden
christian.grante@volvo.com,

Abstract. Developing Cyber-Physical Systems requires methods and
tools to support simulation and verification of hybrid (both continuous
and discrete) models. The Acumen modeling and simulation language is
an open source testbed for exploring the design space of what rigorous-
but-practical next-generation tools can deliver to developers of Cyber-
Physical Systems. Like verification tools, a design goal for Acumen is
to provide rigorous results. Like simulation tools, it aims to be intuitive,
practical, and scalable. However, it is far from evident whether these two
goals can be achieved simultaneously. This paper explains the primary
design goals for Acumen, the core challenges that must be addressed in
order to achieve these goals, the “agile research method” taken by the
project, the steps taken to realize these goals, the key lessons learned,
and the emerging language design.

Key words: Testbed, Cyber-Physical Systems (CPS), Modeling, Sim-
ulation, Hybrid Systems, Open Source Software

This work was supported by US NSF award CPS-1136099, the Swedish Knowledge
Foundation (KK), The CERES Center, and VINNOVA (Dnr. 2011-01819).



2 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

1 Introduction

Developing novel Cyber-Physical and IoT Systems requires methods and tools
to support simulation and verification of hybrid systems models. Hybrid systems
modeling languages are mathematical formalism that support the descriptions of
dynamics that can be continuous in some parts and discontinuous or discrete in
others. Acumen is an open source testbed for exploring the design space of what
rigorous-but-practical next-generation tools can deliver to developers of Cyber-
Physical Systems. Like verification tools, a design goal for Acumen is to provide
correct and mathematically rigorous results. Like simulation tools, it aims to be
intuitive, practical, and scalable. However, it is far from evident whether these
two goals can be achieved simultaneously.

Contributions: The key contributions of this paper are to articulate and report
on the results of a method for addressing a complex set of goals such as those put
for the design of Acumen. We begin by presenting the goals set for Acumen (Sec-
tion 2). Next, we analyze the challenges that face an undertaking of this scope
(Section 3). We then describe the key features of the “agile research method”
to advance towards these goals, the main milestones in applying this method to
date, and some key lessons in the last five years of the project (Section 4). We
briefly describe the emerging language design (Section 5), and conclude with a
summary and an overview of current priorities for the development of Acumen.

We posit that the ambitious goals of the project as well as the challenges
that face it are representative of the goals and challenges of interdisciplinary
paradigms such as CPS and IoT, and see the gradual progress made by the
project as giving assurance about the deep advances that can be expected from
those disciplines. Through this exposition, we hope to interest other academic
and industrial partners to become involved in developing of Acumen.

Related Work: In terms of “final product”, the most closely related tools to our
work are hybrid systems verification tools, such as CHARON [2], KeyMaera [18],
and SpaceEx [10], as well as equational modeling languages such as Modelica [4].
At the highest level, the work described here can be viewed as an e↵ort to
bridge the gap between the first class of (rigorous) tools and the second class
of widely popular tools that are generally viewed as being much more accessi-
ble and broadly applicable (but provide no guarantees of correctness). Technical
comparisons between the tools and Acumen on technical grounds can be found
in the papers on Acumen cited in this paper. The focus of this paper is the pro-
cess through which a rigorous modeling language aimed specifically at the CPS
domain is being developed. Unfortunately, the literature on the development
process for such tools in particular, or domain-specific languages in general, is
relatively sparse. Related work includes commonality and variability analysis [7],
but the CPS domain is much broader than the intended types of problems for
this analysis. The survey by Mernik, Heering, and Sloane [17] suggests that ex-
isting methods require that the domain is much more clearly defined than is
possible for a large and evolving area such as CPS.



Acumen 3

2 Inception and Design Goals

The primary goal for Acumen is to serve as a testbed that facilitates research
into rigorous-but-practical tools for CPS. A secondary goal, which stems from
a necessity for achieving the primary goal in the absence of standard methods
for studying such tools, is to serve as a testbed for programming languages and
software engineering research. A tertiary goal, which stems in part from the need
for developing evaluation methods for the primary goal, is accessibility to users.
This goal entails that Acumen had to prove to be an e↵ective device for teaching.
The rest of this section elaborates these three goals.

Testbed for CPS research: At the very outset of the project the motivation was
simply to develop controllers for horizontal drilling tractors (robots) for oil wells.
Quickly, this concrete problem pointed to a much broader problem of the need for
coherent toolchains for CPS design. Discussions with domain experts suggested
and eventually confirmed that a wide range of di↵erent tools are used to design
and analyze di↵erent components of products such as horizontal drilling tractors,
or any of a wide range of non-trivial robotic systems. The problem of “coherence”
of the existing toolchains is largely due to:

– The need to use di↵erent formalisms and tools for di↵erent subsystems,
– The absence of mechanized methods for checking consistency between the
results of these tools, and

– The absence of methods that ensure the correctness of the results of individual
tools, even for the smallest problems.

Overcoming the “coherence” problem is a central goal for Acumen [24].
Toolchains consist of software applications that support modeling, simula-

tion, and verification of various subsystems. Such tools constitute infrastructure
for supporting virtual prototyping and testing of these subsystems, as well as
tools for visualizations. We were inspired by the power of specialized tools such
as CarSim [3] (for vehicles) or Gazebo [11] (for robotics), but also surprised by
the lack of transparency and user control over underlying dynamical models, as
well as the need for such radically di↵erent tools to support these closely related
domains. Access to such models is essential for allowing users to control the
computational cost (and accuracy) of the models being used for virtual testing,
and to interpret the results of such tests. Out of these observations emerged the
goal of transparency with respect to models, and ensuring that the user has full
access to (and control over) such models, as well as the goal of being a unifying
language that can be used across a wide range of CPS domains.

A practical criterion for an e↵ective testbed is accessibility. We define ac-
cessibility as the ease with which new users from a wide range of backgrounds
can acquire the software and use it to solve a problem that interests them, or
use it to learn something of value to them. First, it should be self-evident that
convenience to users is an integral part of testbeds success, and that this has a
direct impact on the size of audience the tool can reach. But it is also the kind
of goal that is essential to spell out and stress throughout the process of devel-
oping it. As we will see in the rest of this paper, accessibility is both a source



4 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

of stringent requirement on design choices and an easy criteria for members of
the research team to forget as they become engaged in solving much more spe-
cific technical problems. Second, our emphasis on accessibility was driven in part
out of the idea that the ability to model and simulate the world around us is
important to individual and societal well-being. This partly came from Lessigs
“Code is Law” [13] and, in particular, the idea that our society is increasingly
being shaped by codes that only few of us understand and that even fewer truly
consent to incorporating the socially-significant values induced by these codes.

Testbed for language and software engineering research: At the time of starting
the development of Acumen, in the mainstream programming languages com-
munity, the formalism that came closest to providing a modeling language for
Cyber-Physical Systems was Functional Reactive Programming [23] (FRP). It
had been used successfully in a wide range of domains, including robotics and
computer animation. However, its denotational semantics was presented in com-
plete partial orders (CPOs) without giving real numbers detailed treatment. It
therefore remained an open question whether this language could be extended to
incorporate such treatment. Ideas presented in work by Edalat and Pattinson on
the semantics of hybrid systems [9] appeared to provide some or all of the nec-
essary foundations, but the connection between these two lines of work was not
obvious. Developing a semantic foundation that unified these lines of work is a
key goal of the Acumen project. Once such a unifying foundation is established,
it can be used to elaborate various notions of computation for Cyber-Physical
Systems as well as their inter-relations.

There are also more practical goals relating to investigating better methods
for the design and implementation of domain-specific languages. These include
the use of staging [19] (both for implementing the language and as a mechanism
supported by the language) and property-based testing [22] for ensuring the
quality of the code base. A related goal is the use of Acumen to investigate
the possibility of exploiting parallel resources without introducing concurrency
problems [6].

Tool for teaching CPS: Tools that can be used in practice must be accessible to
their users, and waiting to evaluate accessibility at the end of the project entails
unreasonably high risk of failure. There are two natural proxies to evaluating
such accessibility. The first is usability by domain-experts, which we have already
addressed in the discussion of the primary goal of serving as a testbed for CPS.
The second is usability by novice users. Fortunately, this goal is highly synergistic
with well-recognized need for better content, methods, and tools for teaching the
emerging topic of CPS.

Because it is a new and high interdisciplinary area, CPS students come from
a highly diverse set of backgrounds, and with di↵erent goals. We identified from
the outset three di↵erent groups of students: The first group is college-level CPS
students. It includes embedded systems and mechatronics students, who expect
to have a career developing CPSs. The second group is college-level students spe-
cializing in related areas, which could be computer-related, engineering-related,



Acumen 5

science-related, or arts and humanities. Clearly, students in each of these sub-
areas have di↵erent interests. They are seeking a professional degree and will
spend their careers in the context of a world populated by Cyber-Physical Sys-
tems, and may well contribute to solving problems relating to such systems. The
third group is high-school students that have a general interest in science, tech-
nology, engineering, and math (STEM) disciplines. A tool that can address the
toolchain coherence problem should make a positive contribution to the educa-
tion of these three categories of students, but it is far from obvious that one tool
can cater to such di↵erent audiences.

In the next section we discuss the issues that make these goals challenging.

3 Challenges

In this section we describe some of the key challenges, especially in relation to
the CPS testbed goal (and in tool chain coherence in particular). For reasons of
space, we address the programming languages and teaching goals only briefly.

To address the question of how to best support the engineering process we
must understand how engineers carry out their work in practice. This includes
both how engineers go about designing a new product, and the more special-
ized skills of how they think about models of the systems they design. Even the
latter is challenging for someone interested in its computational mechanization.
For example, research papers are a natural source for understanding the nota-
tion and calculations used to reason about models of Cyber-Physical Systems.
However, such papers rarely focus on the mechanics of derivation, and assume
significant knowledge about mathematics, control, and the domain. Developing
a formalism for modeling such systems entails acquiring a deep understanding
of such domains. A somewhat more practical challenge is that research papers
are often incomplete in their specification of concrete examples and rely instead
on the intuition of experts. This complication means that even testing theories
about correctly understanding the mechanics of the computations used in these
papers can be challenging.

In terms of specific simulation tools, it is clear that MATLAB/Simulink is
one of the main tools used in industrial practice. If MATLAB/Simulink was not
just the most popular tool but the only tool, the research question would be sim-
pler: “How do we improve MATLAB/Simulink?” For better or for worse, there
is a myriad of other specialized tools also used by practitioners. The upside of
this multiplicity is that it can be a source of inspiration. The downside is that
it makes the search space of prior work vast and highly fragmented. If we are
interested only in discrete-time simulation we may be able to focus on computer
science and operations research venues. For continuous time simulation, almost
every discipline of science has its own literature. For hybrid continuous/discrete
systems, the literature becomes somewhat sparse, but locating related work re-
mains challenging.

For the goals of transparency of models and user control it is natural to focus
on mathematical notation as the syntax for models. After all, mathematics is the
de facto lingua franca across many technical disciplines. But to make a lingua



6 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

franca of human discourse into a mechanical formalism is a significant challenge.
It helps, of course, that mathematics is a rigorous domain, but mechanical for-
malization rests not just on meaning but also on syntax. Mathematical notation
includes multiple syntactic notations for the same concept, as well assignments
of multiple di↵erent meanings to the same notation. Navigating the space of
possibilities to identify what is intuitive for novices and acceptable across do-
mains is a key language design challenge for this project. Another is defining
mechanical interpretations (semantics) for such notations. Often, especially at
the boundary of integrating continuous and discrete mathematics, we are able to
define an interpretation for two constructs independently, but it is not obvious
how to define an interpretation that allows both to be used together. One of the
most profound challenges is to understand the mathematical space of meanings
(or solutions) for mathematical expressions (problems).

With respect to the correctness of simulation tools (part of the toolchain
coherence problem), a fundamental question is whether it is at all possible to
find or develop rigorous methods for all aspects of simulation. In particular,
working rigorously with just real numbers (not to mention functions over reals)
introduces known computability and decidability issues [20]. This means that
even computability is a fundamental challenge for the development of Acumen.
A more nuanced (but equally important) question is whether, when such meth-
ods exist, they are precise enough, fast enough, and have all the computational
properties that are needed to make for practical tools.

From the point of view of programming languages research, a core challenge
is how to manage the high-dimensional problem of language design. In particu-
lar, a DSL that has not yet been fully specified has a large number of degrees of
freedom. Basic examples include: syntax, semantics, user interface, documenta-
tion and tutorial materials, intended user base, language design and development
team, and intellectual property and licensing issues. While there is significant
literature, tools, and advice on many of these aspects individually or in combi-
nation with some others, literature addressing all these aspects simultaneously is
sparse. Programming languages methods are readily available to identify which
part of a language is broken and how to fix that part; but the more profound
question of what language should exist and how to create it does not seem to
have been su�ciently investigated.

In terms of teaching, the practical challenge is that, as programming lan-
guages researchers, we have limited contact and direct and regular access to
students in CPS-related domains. Of course, at the time the project started,
there were no CPS programs as such. Practical methods need to be found to
address this challenge, so that it is possible to develop a concrete understanding
of the needs of di↵erent types of students and potential users, as well as to have
a basis for evaluating and quantifying the success of Acumen.



Acumen 7

4 Approach and Implementation

In this section we summarize the approach, milestones in the e↵ort to implement
it, and key lessons learned in the process.

An agile research method: Given the complexity of the task of realizing the goals
of Acumen, it was accepted from the outset that decomposing the process into
clearly isolated technical problems may not be e↵ective. For example, separating
the process into selecting a semantics, a type system, and a syntax or even the
reverse order would not be practical, and may not even be possible. There is a
strong interdependence between these choices, as well as in other aspects of the
design goals. It was therefore accepted that the development of Acumen would
be a highly iterative and adaptive process that involves creating prototypes that
would allow us as designers to gradually understand the space of technical design
choices as well as to gain a better understanding of user needs and abilities.

Key features of the approach include frequent interaction between design (or
design-critique) and implementation and close collaboration with potential users,
especially domain-experts in domains that intersect with an evolving notion of
the user base and novice users (often students). These continual activities allow
us as the designers to gradually develop:

A clear understanding of the CPS domain in terms of technical needs from
modeling and simulation tools, A portfolio of concrete example models for eval-
uation of the language and validation of hypotheses about actual engineering
processes, A clear notion of a user base including size, interests, and expertise,
A clear understanding of the semantic foundations and technically feasible func-
tions that modeling and simulation tools can provide, A model of how to plan
and manage a research-oriented, open-source e↵ort that is manned primarily by
researchers, students, and volunteers.

For lack of a better term, this approach can be described as an “agile research
method”, borrowing from the “agile” software development [5] literature. There
is a similar emphasis on maintaining enough structure or “sca↵olding” to enable
reasonable testing of new ideas at all times, as well as on understanding the
“customer” of the software application and engaging continually in the gradual
development of the technical requirements for the final product.

Given the complexity in simultaneously developing these expertise, an obvi-
ous risk is spreading resources too thin. The key mechanisms for mitigating this
risk have been careful consideration of all the possible language development
initiatives (exploration or even addition of seemingly trivial but attractive fea-
tures), and keeping the language and its implementations as small and simple
as possible to reduce the e↵ort of maintaining it.

Milestones and lessons: We followed the above method from the beginning of
work on Acumen (in 2007) to the present. For reasons of space, we focus here
on the second and current prototype of Acumen.

In 2010, and within three to six months, the first version of the current,
Scala-based, implementation was created. It included a GUI, a simple editor, a
reference interpreter and an optimized interpreter, and support for automatic



8 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

plotting. Work on Acumen then took a brief break due to a gap between the end
of one research project and the start of a new one. In 2011, work by a masters
student introduced support for 3D visualization [24]. Students taking the first
instance of our CPS course [21], which used Acumen, showed a strong preference
to using the implementation that supported 3D visualization, as it made working
with virtual CPS design problems noticeable easier than looking only at plots of
individual signals.

In 2012, work began on one of the most significant technical results of the ef-
fort to date: developing a method for the correct simulation of Zeno systems [12].
This included the implementation of the first rigorous, enclosure-based simula-
tor for a subset of Acumen. A problem that faced the implementation, and
which was addressed around the same time, was the responsiveness and inter-
mittent crashing issues with the GUI. Although the fix was seemingly minor,
substantial e↵ort went into understanding, diagnosing, and designing the fix.
As programming languages researchers from a more “theoretical” background,
it was startling to realize that concurrency problems in GUIs are not a solved
problem, even in Javas SWING library. Di�culties in maintaining the integra-
tion between the core language interpreters and the interactive GUI proved to
be a constant sink of engineering e↵ort throughout the project.

As the activity under new funding was ramping up, there was a concerted
e↵ort to find ways to support more concurrent development on the code base. To
avoid dependency on network connectivity and a centralized repository, a deci-
sion was made to move from svn to git. After some initial experience with github,
we found that it had only limited support for external/internal visibility and “is-
sue management”, a decision was made to move to paid services by Atlassian
(bitbucket and JIRA). These tools have played an essential role in facilitating
development by a growing team, and in documenting key open challenges and
the rationale for resolutions made.

In 2013 there was a concerted e↵ort to expand the portfolio of case studies.
This included developing low-order models of vehicle dynamics [16] by a domain-
expert (with a recent PhD in mechanical engineering, specializing in robotics).
Improvements visible to the user were made in the GUI and included syntax
highlighting and code completion. Internally, with the version management and
issue management systems in place, regression testing and continuous integration
were introduced. This paved the way to exploring the use of property-based
testing. In particular, a generator for random Acumen programs was built. It
was not based solely on syntax, but on trying to exhibit interesting behaviour
in order to catch problems when using the generated program to compare two
semantics. Due to performance issues, it has so far only been used on a small
scale. Building this infrastructure did draw our attention to the importance
of carefully planning property-based testing in the context of computationally
intensive codes.

There were also early e↵orts to explore the development of a compiled imple-
mentation; to study the mapping of Acumen to hybrid automata; and to allow
the user to manipulate the textual models indirectly by manipulating the 3D



Acumen 9

rendering of objects. Such explorations were seen as premature by the project
leadership, but it was nevertheless approved as it was in strong alignment with
the interests of the researcher who wished to pursue it. It remains in the code
base but is not actively supported. For a variety of reasons, such investment
in activities with uncertain outcomes are a necessary part of any team e↵ort,
and we hope that there will be opportunities for capitalizing on the experience
gained from these e↵orts at a later time.

A significant e↵ort was made in 2014 to research licensing options, and the
feasibility of shifting from GPL to BSD. The Acumen development team was
fortunate to have a researcher with expertise in open source licensing. The e↵ort
included understanding both the needs/expectations of di↵erent contributing in-
stitutions, as well as the libraries available to enable such a migration. Activities
directly visible to users included developing a new optimized implementation,
more accurate integrators, including line numbers in error messages, and com-
pleting support for vectors and matrices. Development of the second-generation
enclosure-based interpreter also began the same year. A practical problem with
ease of installation was solved, namely, the migration from Java3D/OpenGL to
jPCT [1]. In particular, the former requires the separate installation of a non-
standard library - an additional step that was not easy for novice users, and
can be seen as time consuming by potential expert users. The quality of 3D
rendering was a↵ected, but some interesting new possibilities were introduced.
On the administrative front, a command line interface was introduced to pro-
vide researchers with the ability to access/configure most of Acumens features
through command line, making Acumen scriptable.

In 2015, the development of two generations of enclosure interpreters had
enabled the formalization of the enclosure semantics. This was done using the
techniques of both denotational semantics (which formalized the notion of a so-
lution to a hybrid systems model in the first place) and operational semantics
(which provided a concrete way to compute rigorous over-approximations for
these solutions). Contemporaneously, the methods for processing partial deriva-
tives and bounded quantification (needed for the Euler-Lagrange equation) were
formalized. There were also two key engineering e↵orts, namely, support for real-
time 3D animation and for real-time input from external devices such as smart
phones.

5 Emerging Design

As noted earlier, the purpose of the iterative/agile approach taken is to accumu-
late knowledge relating to multiple complex questions. For reasons of space it is
not possible to cover all that has been learned about these di↵erent questions.
However, we can briefly describe the central concrete artifact of the project,
which is the language design emerging from this process.

Syntax: As noted earlier, the emerging core syntax includes guarded equations,
where equations can specify either behaviors continuous over time or discrete
(discontinuous) transitions over time. Expressions in equations can include arith-
metic operations and derivatives. This way, the language can express ordinary



10 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

di↵erential equations with discontinuities. Partial derivatives are allowed, but
only if they can be eliminated through symbolic di↵erentiation at compile time.
Until recently, equations had to be directed. Recently, through the introduction
of symbolic Gaussian elimination, it is possible to relax this requirement and
allow users to express models as undirected equations as long as the system can
automatically direct them through Gaussian elimination at compile time.

Semantics: Values in Acumen are all functions of real-valued time, and their
co-domain can be atomic constants (strings), reals, vectors, and matrices. In
addition, the language supports an object-like notion of a sub-model [6], which
can be instantiated to model the creation of an object dynamically at a certain
point in simulation (logical) time, and which can also be terminated. Models
are hierarchical in that any sub-model instantiated dynamically by a particu-
lar model is considered a “child” model. Communication only occurs between
“parent” and “child” models. Models can, however, be moved from one parent
model to another. These choices where made in part to facilitate the automatic
parallelization of models.

Support for 3D visualization is provided by allowing any model to contain a
special variable 3D, which can be equated to special constructors that result in
the display of 3D objects in a particular pane in the GUI.

The implementation supports a “traditional” semantics which uses tradi-
tional (non-validated) numerical methods. This is the most complete and most
widely used semantics, and su�ces for basic educational uses. This implementa-
tion has played a crucial role in allowing us to explore the design space and to
converge on an expressive, minimal syntax for modeling hybrid systems, as well
as semantics for solutions. For example, it allowed us to make an early decision
to support the notion of “super-dense” time, first introduced in the verification
literature [15], and later advocated by Edward Lee [14].

The implementation also supports an “enclosure” semantics, which is in-
tended to produce rigorous over-approximations (guaranteed upper and lower
bounds) for all simulations [12]. This is the semantics that we would like Acu-
men, ultimately, to provide. While the current implementation of this semantics
is not perfect, our recent work on the theoretical foundations for this seman-
tics provides evidence that it is, at least in principle, feasible. The enclosure
interpreter supports the use of intervals (closed, compact, connected sets on the
reals) in source programs. As representations of sets (or, in computer science
terminology, non-determinism), enclosures and intervals enabled rigorous anal-
ysis of systems with uncertain parameters. This was particularly important for
the collaboration with partners from the automotive industry [16, 8].

So far, the introduction of a static type system in the implementation has
been actively avoided. This choice is only a temporary one, to facilitate results
on implementation techniques and semantic foundations, and to maintain a low
entry barrier to the language. The language is seen as being in a phase where
requirements for the type system are still being gathered.



Acumen 11

6 Conclusions
This paper presented the design goals for the Acumen, explained the intrinsic
challenges in achieving such ambitious goals, and articulated the research method
taken to advance towards these goals. The complex interdependence between the
individual goals is representative of the challenges that face the ambitious e↵orts
to advance the state of the art by both the CPS and IoT communities. At the
same time, the progress made to date gives us hope that this approach, which is
characteristic of the philosophy of both communities, can be e↵ective at enabling
advances that would not possible through more narrowly focused e↵orts. The
paper also presented several lessons learned in the context of specific activities
in the development of Acumen.

One insight that cannot be placed in the context of a particular milestone
relates to the gap between CPS and IoT. It appears that there is a gap in foun-
dations between CPS (especially based on computer science) and IoT (especially
based on information and communication theory) that is echoed in a disconnect
in tools that support non-deterministic uncertainty and stochastic uncertainty,
respectively. Our awareness of this gap developed gradually as we made several
e↵orts to model networking system and found non-deterministic modeling of
uncertainty insu�cient for typical problems in this domain. Stochastic methods
seem necessary for many of those problems. At the tool level, stochastic models
(such as Markov chains or queueing systems) can seem simpler or independent
from non-deterministic methods. Semantically, however, stochastic models are
more naturally built after non-determinism has been fully treated and notions
of distributions can be overlayed on notions of sets. With this insight in mind,
we anticipate that when distributions can be introduced into Acumen that this
will help bring closer the disciplines of CPS and IoT.

At a more practical level, Acumen is at a stage where performance issues
should be given priority. There are two distinct concerns relating to performance.
The first is with enabling casual users to experiment with larger models that can
be simulated easily (and for many applications, usefully) using the traditional
(non-validated) semantics. The second is with enabling rigorous simulation in
reasonable time. We expect that the latter will be essential for user acceptability
of the ultimate results of the Acumen development e↵ort. A particular problem
for the enclosure semantics that will also need to be addressed is to improve error
messages. They are currently less intuitive compared to the traditional semantics,
mainly because of the less familiar (and maybe less intuitive) process used for
computing enclosures. Finally, we are also working on applying well-understood
mathematical techniques for producing more precise over-approximations.

Acknowledgement. Numerous colleagues have contributed to the development of Acu-
men. We thank in particular the students of the CPS course at Halmstad University.

7 References
1. The jPCT web page. http://www.jpct.net. Accessed: 2015-08-10.
2. Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular

specification of hybrid systems in charon. In Hybrid Systems: Computation and
Control, pages 6–19. Springer, 2000.



12 Taha, Duracz, Zeng, Atkinson, Bartha, Brauner, Duracz, Xu, et al.

3. Ann Arbor. CarSim reference manual, ver. 6.03, 2005.
4. Modelica Association et al. Modelica–a unified object-oriented language for phys-

ical systems modeling. Language Specification, Version, 2, 2005.
5. Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-

ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je↵ries,
et al. Manifesto for agile software development. 2001.

6. Paul Brauner and Walid Mohamed Taha. Globally parallel, locally sequential:
a preliminary proposal for acumen objects. In Proc. of the 9th Workshop on
Parallel/High-Perf. Object-Oriented Scientific Computing, page 2. ACM, 2010.

7. James Coplien, Daniel Ho↵man, and David Weiss. Commonality and variability
in software engineering. Software, IEEE, 15(6):37–45, 1998.

8. Adam Duracz, Henrik Eriksson, Ferenc Ágoston Bartha, Yingfu Zeng, Fei Xu, and
Walid Taha. Using rigorous simulation to support ISO 26262 hazard analysis and
risk assessment. In 12th IEEE Intl. Conf. on Embedded Software and Sys., 2015.

9. Abbas Edalat and Dirk Pattinson. Denotational semantics of hybrid automata.
The Journal of Logic and Algebraic Programming, 73(1):3–21, 2007.

10. Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
SpaceEx: Scalable verification of hybrid systems. In Computer Aided Verification.

11. Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In Intelligent Robots and Systems. Proceedings.
IEEE/RSJ International Conference on, volume 3, pages 2149–2154. IEEE, 2004.

12. Michal Konečný, Walid Taha, Jan Duracz, Adam Duracz, and Aaron Ames. En-
closing the behavior of a hybrid system up to and beyond a zeno point. In Cyber-
Physical Systems, Networks, and Applications, IEEE 1st Intl. Conference on, 2013.

13. Lawrence Lessig. Code is law: On liberty in cyberspace. Harvard Magazine, 2000.
14. Xiaojun Liu, Eleftherios Matsikoudis, and Edward A Lee. Modeling timed concur-

rent systems. In Concurrency Theory, pages 1–15. Springer, 2006.
15. Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In

Real-time: theory in practice, pages 447–484. Springer, 1992.
16. Jawad Masood, Roland Philippsen, Jan Duracz, Walid Taha, Henrik Eriksson, and

Christian Grante. Domain analysis for standardised functional safety: a case study
on design-time verification of automatic emergency braking.

17. Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

18. André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems. In Automated Reasoning, pages 171–178. Springer, 2008.

19. Walid Taha. A gentle introduction to multi-stage programming. In Domain-Specific
Program Generation, pages 30–50. Springer, 2004.

20. Walid Taha and Robert Cartwright. The trouble with real numbers. In INFOR-
MATIK 2011, page 325. Bonner Köllen Verlag, 2011.

21. Walid Taha, Robert Cartwright, Roland Philippsen, and Yingfu Zeng. A first
course on cyber physical systems. In Workshop on Cyber-Physical Sys. Edu., 2013.

22. Walid Taha, Veronica Gaspes, and Rex Page. Accurate programming: Thinking
about programs in terms of properties. arXiv preprint arXiv:1109.0786, 2011.

23. Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. In ACM SIGPLAN Notices, volume 35, pages 242–252. ACM, 2000.

24. Yingfu Zeng, Chad Rose, Paul Brauner, Walid Taha, Jawad Masood, Roland
Philippsen, Marcia O’Malley, and Robert Cartwright. Modeling basic aspects of
cyber-physical systems, part ii. In IEEE 11th Intl. Conf. on Embedded Software
and Sys., 2014.


