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Abstract. Despite rapid advancements in dexterity and mechanical de-
sign, the utility of humanoid robots outside of a controlled laboratory
setting is limited in part due to the complexity involved in programming
robots to grasp common objects. There exists a need for an efficient
method to command high degree-of-freedom (DoF) position-controlled
dexterous manipulators to grasp a range of objects such that explicit
models are not needed for every interaction. The authors propose a
method termed geometrical synergies that, similar to the neuroscience
concept of postural synergies, aims to decrease the commanded DoF of
the humanoid hand. In the geometrical synergy approach, the method
relies on grasp design based on intuitive measurements of the object to be
grasped, in contrast to postural synergy methods that focus on the prin-
cipal components of human grasps to determine robot hand joint com-
mands. For this paper, a synergy was designed to grasp cylinder-shaped
objects. Using the SynGrasp toolbox, a model of a twelve-DoF hand was
created to perform contact analysis around a small set of cylinders de-
fined by a single variable, diameter. Experiments were performed with
the robot to validate and update the synergy-based models. Successful
manipulation of a large range of cylindrical objects not previously in-
troduced to the robot was demonstrated. This geometric synergy-based
grasp planning method can be applied to any position-controlled hu-
manoid hand to decrease the number of commanded DoF based on sim-
ple, measureable inputs in order to grasp commonly shaped objects. This
method has the potential to vastly expand the library of objects the robot
can manipulate.
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1 Introduction

Humanoid robots provide the capability to operate in the same space as humans
and use the same tools that humans do. The future of these robots is evident
in the efforts for robots to go into disaster areas unsafe for humans [1] or help
humans complete menial tasks. Perhaps the most fundamental capability nec-
essary to accomplish these human tasks is the ability to manipulate the same
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objects that humans do. For this challenge, designers have created hands capa-
ble of nearly all of the DoF as the human hand [2], [3], [4], [5]. However, while
the hands are able to form many of the same grips and poses as a human hand,
the control of these hands in an intuitive and simple way has yet to be demon-
strated. Until the community can quickly and effectively control these high DoF
humanoid hands, robots will still need to be highly specialized for individual
tasks.

Research shows that humans control their hands not with individual joint po-
sition commands, as dexterous robot hands are typically controlled, but instead
by a single signal that actuates multiple muscle groups. These groups combine
to create the plethora of hand motions humans can form [6] [7]. This approach
gives a method for decreasing the commanded DoF of the hand system to a
more manageable number, and is referred to as synergy-based control. These
synergy schemes represent the principal components of various grasps of the hu-
man hand. These principal components can be difficult to intuitively combine
into useful hand motions, shifting the complexity problem from DoF, to nonin-
tuitive combinations of synergies. In contrast, we propose a method of reducing
the command complexity by developing geometrical synergies that capture the
shape characteristics of the object to be grasped.

The specific contribution of this paper is a methodology to decrease the
commanded DoF from twelve to one for the Robonaut 2 (R2) humanoid robot
hand to manipulate simple cylindrical shapes. The methodology replaces all
unique cylindrical type models with a single model to allow simple manipulation
of common objects. In addition, the single commanded DoF is based on a simple
measurement of the object to allow intuitive control. This enables the robot to
successfully manipulate any cylindrical object found in its environment using a
single model.

2 Background

2.1 Hand Synergies

Dexterous manipulation in robots has developed from a simple parallel gripper
to nearly the complexity of the human hand in the past decades. These devices
are high DoF systems that allow robots to manipulate objects in similar ways
to a human. While the construction of robotic hands with similar DoF as the
human hand has become more prevalent, the control of these complex devices is
anything but intuitive. The computational costs to calculate the correct closing
position around a given object as perceived by a robotic vision system is O(2N )
where N represents the number of DoF, with each DoF controlled individually.
Researchers have focused on analyzing the way that humans control their hands
with hopes of extending that same control scheme to a robotic hand, such as in
the seminal work on postural synergies of human grasping [6].

Neurological studies have demonstrated that the human brain does not plan
and execute specific movements of the individual finger joints. Instead, the hu-
man brain will send high level commands down through the motor cortex to
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execute sets of actions, and these commands will travel down the spine to ac-
tivate sets of muscles in combination, rather than just single muscle groups. In
this way, our brain is grouping and combining sets of commands in different
ways to accomplish the task [7]. Santello et al. performed a Principal Compo-
nent Analysis (PCA) on a large range of everyday grasps, and were able to
model 50% of the variability in the grasps with a single relationship, or synergy.
If a second synergy was added in proportion, roughly 80% of the variability in
grasps could be commanded. Similarly the third synergy resulted in modeling
90% of observed grasp variability. This coupling demonstrates how the human
brain is potentially reducing the 20 DoF problem of hand pose control into only
a few DoF. Thinking in this way greatly reduces the complexity of grasping for
humans and allows smooth control of a very large number of DoF to accomplish
grasping tasks without a large burden on the nervous system.

Engineers can draw inspiration from this structure to design robotic grasping
methods. A synergistic scheme can be implemented in several ways. Human hand
synergies can be used to identify key DoF that are necessary for a simplified
hand design. They can also be used to devise under-actuation schemes such as
the PISA-IIT soft-hand [5]. Finally, they can be used to simplify the control of
fully actuated hands by creating Software Synergies [10].

One of these Software Synergies was demonstrated by Ciorcarlie et al. [11].
The group used the GraspIt software to map the two primary human postural
synergies to fully actuated robotic hands. Roa et al. [12] used a more involved
algorithm to study the contacts on complex objects by partitioning the object
into planar slices, studying form and force closure [13] to determine optimal
hand closure. An interesting aspect of this approach was that it calculated the
optimal thumb and index finger closure, and then used the remaining fingers to
stabilize the grasp. Garcia et. al. demonstrated how human synergy-based mo-
tion planning can be used to decrease the computation time for motion planning
in a humanoid dual arm robot system [14].

SynGrasp, a MATLAB toolbox developed for the purpose of simulating un-
deractuated robot grasping, is another computational tool based on postural
synergies [15]. This toolbox offers three primary capabilities: it allows the user
to model robotic hands, perform grasp simulations and analysis, and map syn-
ergies onto robot hand designs. SynGrasp is well suited to designing and testing
synergy schemes using kinematics [16]. In this work, the authors aim to create
a unique purpose-driven synergy scheme, rather than attempting to replicate
human postural synergies.

The ability to create user-defined hand models and synergies makes SynGrasp
an ideal tool for simulating a synergy based command structure on Robonaut
2 (R2). While the main purpose of this study is to evaluate a geometry-based
synergy command architecture, it has the added objective of evaluating the use
and accuracy of SynGrasp simulations in real-world environments.
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Fig. 1: Robonaut 2 aboard the International Space Station

2.2 Test Platform and Motivation

NASA is actively developing humanoid robots to work in the same environment
as astronauts. To this end, Robonaut 2 is a humanoid robot with two 7 DoF arms
(including the wrist), a 3 DoF neck, 1 DoF waist, two 12 DoF hands, and two 7
DoF legs. R2 is currently on board the International Space Station (ISS) (see Fig
1). The design goal of this robot is to assist astronauts with care-taking tasks
on the ISS like monitoring airflow, cleaning handrails, and unpacking resupply
vehicles [17]. Currently, NASA is actively developing technologies to allow this
robot to behave with more autonomy. This is necessary to allow supervised
control over long time delays as missions progress farther and farther from Earth.

To achieve this level of autonomy and dexterity, it becomes intractible to
set specific values for each robot joint to form every possible hand pose that
R2 might require on board the ISS. Currently, each object to be manipulated
must be modeled, the approach trajectories defined and tested, and the necessary
hand positions constructed and verified. However, if the complexity of commands
to control grasps can be decreased from 12 DoF to 1 DoF, this task becomes
significantly simpler. Instead of modeling and planning grasps for each individual
object, a single shape-based model could be developed and verified. Then, the
robot will have a model to manipulate any similarly shaped object encountered.
The application of synergies in this case will save time and effort while increasing
the capability and usefulness of the dexterous robot.
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2.3 Current Implementation of R2 Pose and Object Feature Based
Grasping

R2’s command structure centers around the concept of multi-loop control with
a series of embedded loops [18]. The lowest level of control is a current loop,
wrapped by a velocity loop, wrapped by a torque loop, and finally wrapped by
a position loop that specifies the desired joint poses. Because the actuators that
position R2’s fingers are not series-elastic and have no direct torque measurement
capability, the control structure of the R2 hand is modified compared to that
used for the series elastic joints in the arms and legs. The torque control loop is
removed and current limiting is added to the lowest control loop to protect the
finger tendons. Without the capability of direct torque control of the finger joints,
the fingers cannot actuate using force closure schemes. For R2 to grasp complex-
shaped objects, models of object geometry and position control are required.
Thus, the postural-syngery based grasp control schemes that have seen success
in control of compliant robot hands [5] may be less effective for control of R2.

Given the necessity to accurately command finger-joint positions in the R2
hand to achieve grasping, the original grasp process used by R2 was based on
the Cutkosky Grasp Taxonomy [19]. This series of 24 position defined grasps
composed the main method of grasping an object. For full manipulation, the
Cutkosky grasps are used in conjunction with the Affordance Template Frame-
work [20] that builds manipulation models for objects to be grasped, similar
to systems used for other humanoid robots [21], [22]. This approach results
in unique pairings of a single object affordance template with an appropriate
Cutkosky grasp. An example affordance template is shown in Fig 2. To grasp

Fig. 2: Robonaut 2 current method for manipulation of a drill using the Affor-
dance Template (AT). This approach requires a CAD model of the object to be
grasped and multiple inputs (grasp position, grasp type) from the user
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the object differently, a new grasp must be created, tested, and verified. To
grasp a new object, even if it differs only slightly from the orignial, the entire
affordance template creation process must be repeated.

This repeated creation of templates and grasp positions can be time con-
suming and application specific, and is intractable at a large scale for robots in
practice. Further, the method of using pose-based synergies of the human hand
are equally non-intuitive to implement in a position control based scheme. A new
approach is needed, one that allows for determination of robot hand positions
based on simple geometric properties of the object to be grasped. In this pa-
per, the authors propose a geometric synergy based on cylindrical type objects.
The finger position can be commanded based on a single variable dictated by
the object, its diameter. This would allow objects such as a flash light, a coffee
cup, a screwdriver, and any other cylinder to be manipulated using the same
cylindrical template based solely on the object’s diameter.

3 Methods

A synergistic command structure can be mathematically defined as

q = Sσ (1)

where q is the vector of joint angles of dimensions [N × 1], N is the number of
synergies, S is the synergy matrix of dimensions [N ×M ], M is the number of
possible synergies that can be activated and σ is the [M × 1] synergy activation
vector which determines which synergy or combination thereof is turned on. The
basis of synergies is that the generic joint displacement, q, can be represented as
a function of fewer elements than the number of DoF of the system. S is a vector
of weights that determines the amount of motion for an individual joint resulting
from a single input. When using a pose-based synergy scheme, these S matrices
are determined by observing a subject grasp and manipulate various objects
and isolating the movements of individual joints. The covariances of the various
joint angles are analyzed and combined using machine learning to identify when
joints are commonly moved in unison, a weighting scalar based on the relative
magnitude of motion.

In contrast, the authors aim to design a geometry-based synergy control
scheme by providing an S matrix such that the finger joints move in unison
to produce a cylinder grasp. To acheive this geometry-based synergy control
scheme, the process for building the commanding infrastructure for R2 to take
the inputs of synergy type (e.g. cylinder) and a single variable (e.g. diameter) and
calculate the synergy matrix from these two inputs is described. The q matrix
of joint angles will then be passed to the robot to move the fingers joints to the
calculated angles.

3.1 SynGrasp Modeling

The first step was to build an initial model for grasping by determining the
finger angles for grasps of cylinders of specific diameters that span the size range
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(a) (b)

Fig. 3: By matching the finger dimensions and rotation frames, a SynGrasp model
of the Robonaut 2 hand was defined (a). SynGrasp uses a kinematics solver to
generate grasps such as those shown in (b).

of objects that might be encountered in the workspace. For this application,
the chosen diameters for grasped objects were 2.54 cm, 3.81 cm, 5.08 cm, and
7.62 cm. For the program, the objects were considered massless. The internal
contact model in SynGrasp was used to design the grip. This model performed
better than traditional inverse kinematic models because it allowed contact with
multiple points on the hand rather than only a single point-of-interest on the
end-effector. The key features of the R2 hand such as the number of DoF, finger
length, joint rotation frames, and actuation scheme were matched. The SynGrasp
toolbox did not allow for representation of the R2 hands physical compliance,
nor could the geometry of the palm be accurately represented.

The SynGrasp model was then provided a synergy matrix that reflected the
R2 hand control scheme and its constraints. The Robonaut hand contains 18
movable DoF but only 12 controllable DoF. The thumb is fully controllable
along every DoF and contains two DoF at the basilar joint with independent
controls for angle at the proximal phalanx and distal phalanx. The index and
middle fingers have two rotation DoF at the metacarpophalangeal joint (MCP),
pitch and yaw. The proximal (PIP) and distal (DIP) interphalangeal joints are
underactuated such that they move at matching angles. The ring and little fingers
only take a single input value that controls pitch in all three joints (MCP, PIP,
and DIP). These two fingers have no yaw DoF at the MCP.

3.2 Model Refinement and Synergy Development

A simple testing method was used to validate the initial SynGrasp models. A
cylindrical object was placed on the table, touching R2’s open palm. All fingers
were fully extended in the starting position. The object’s placement along the
palm was varied from near the base of the fingers to the base of the thumb,
approximately 5 cm. This allowed testing of uncertainty in position that will
be present when the object must be localized. Then, the robot was commanded



8 Simply Grasping Simple Shapes

to close its hand based on the synergy values, lift the object, rotate the object
upside down, return it to straight, and finally, release it back on the table.
Successful completion of this set of motions demonstrates a firm grasp on the
object through a large motion of the robot as shown in Fig 4.

Four cylindrical validation objects were used in the initial testing, each having
a diameter equal to the values provided to the SynGrasp toolbox during the
modeling phase. Since the SynGrasp model was not a perfect replication of
the R2 hand, small adjustments to the grasp model were required to correct
finger and thumb placement (for a detailed discussion, see section 5) Once the
final joint angle values were established, the joint angles for each cylindrical
validation object and each R2 finger were plotted and a polynomial fit to the
data was carried out. The fits were calculated so that the maximum error for each
data point was 4 degrees. The maximum polynomial order used was three. The
resulting relationships between joint angles and object diameters were relatively
simple, which makes sense. As the object gets larger, the hand opens more. The
thumb is the only digit which changed orientations substantially as the diameters
got larger as it has more DoF to move into a suitable position. The graph of
the thumb joint angle fits are shown in Fig. 5. This plot is representative of the
plots generated for each digit of the R2 hand.

3.3 Testing Protocol

After adjusting the grasp models and generating the joint angle fits to data
for the four cylindrical validation objects, fifteen objects typically manipulated
using a cylindrical grasp were grasped using the R2 hand and the SynGrasp
geometrical synergy grasping model. These objects ranged from 2.79 to 8.4 cm in
diameter and 5 g to 1.02 kg in mass. In addition, five non-cylindrical objects were
manipulated using the same action illustrated in Fig 4. These objects included
four shapes resembling rectangular prisms and one hand drill. For a grasp to be
considered successful, the object needed to be grasped by R2, lifted from a table
top and held without slipping as it was rotated by the robot as shown in Fig. 4.

4 RESULTS

The robot was able to successfully manipulate 13 of 15 cylindrical objects in the
experiment using the geometric synergy commanding structure based on object
diameter. All four rectangular prism objects were successfully grasped which
demonstrated the robustness of the geometric synergy control scheme based on
cylinders. Of the 20 objects manipulated, 17 were manipulated with no issues,
1 slipped in the grip, and 2 were dropped outright. A summary of the results is
presented in Fig 6.



Simply Grasping Simple Shapes 9

5 Discussion

5.1 SynGrasp Model Validation

The SynGrasp model provided a useful method to determine a starting point
for grasp refinement, however, the SynGrasp model remains an idealized model
of the robot hand. Many aspects could not be accurately modelled and had to
be adjusted through the model validation process, as discussed below. Future
additions to the software to allow more realistic actuation could include friction

Fig. 4: Manipulation action taken by R2 to determine successful grasps

Fig. 5: Thumb joint angles when grasping cylinders of varying diameter. The
curve fit shows interpolation between collected data points.
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Electric Screwdriver
D = 3.3 cm
Mass = 0.33 kg

Screwdriver
D = 2.79 cm
Mass = 0.11 kg

Rubber Mallet
D = 3.3 cm
Mass = 0.37 kg

Stapler
D = 3.3 cm
Mass = 0.31 kg

Remote Control
5.08 x 2.79 cm
Mass = 0.16 kg

Dewalt Impact Driver
D = 4.32 cm (handle)
Mass = 1.54 kg

Aluminum Rod
2.5 x 5 cm
Mass = 0.33 kg

Large Flashlight
D = 6.35 cm
Mass = 1.02 kg

Flashlight
D = 6.35 cm
Mass = 0.57 kg

Spray Bottle
D = 4.3 cm(handle)
Mass = 0.08 kg

Small Spray Bottle
D = 5.08 cm
Mass = 0.16 kg

Plastic Water Bottle
D = 6.35 cm
Mass = 0.31 kg

Coke Bottle
D = 6.35 cm
Mass = 0.40 kg

Aerosol Can 1
D = 6.6 cm
Mass = 0.16 kg

Aerosol Can 2
D = 6.6 cm
Mass = 0.34 kg

Water Bottle
D = 7.4 cm
Mass = 0.05 kg

Ceramic Mug
D = 7.4 cm
Mass =0.32 kg

Metallic Coffee Cup
D = 7.4 cm
Mass = 0.34 kg

Paper Towel
D = 8.4 cm
Mass = 0.43 kg

Styrofoam Cup
D = 7.9 cm
Mass = 0.005 kg
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Fig. 6: Results from cylindrical synergy testing using the developed curve fits.
The top three rows contain cylindrical objects. The bottom row contains non-
cylindrical objects, and the bottom right cell contains the complex geometry
object, the drill

models and more control over the geometry of the hand, as R2’s palm is larger
than the model allowed.

The SynGrasp model assumes the friction among multiple joints actuated
with a single tendon is equal, allowing all of the joints to move in unison. How-
ever, in practice this is not the case. On the R2 hand, especially on the ring
and little fingers, the first joint will move exclusively until it comes into contact
with the object, then the next joints will begin to actuate. This resulted in poor
finger placement for the ring and little fingers on initial model validation and
the closing values had to be increased to obtain a firm grip using those fingers
(see Fig 7).

Due to a redundant DoF, the 4 DoF thumb has many possible locations
in which it could contact the cylinder in SynGrasp. This resulted in non-ideal
thumb location choices for objects with diameters larger than about 7.6 cm.
Primarily, the thumb would roll too close to the palm, giving a point contact on
the thumb pad rather than a wrap around the cylinder. The thumb position was
adjusted during validation of the SynGrasp model on the R2 hand. The index
and middle finger positions generated by SynGrasp were able to be used with
no modifications. Overall, the initial joint angles generated by the SynGrasp
model resulted in successful grasps of the test objects in a majority of cases,
demonstrating the usefulness of the methodology.
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A result from the grasping tests was that cylindrical objects with diame-
ters over 10 cm were grasped by the robot in a pinch grasp fashion. Future
refinements of this geometric-based synergy scheme might explore alternative
strategies for larger objects. Also, the geometric synergy method was unable to
handle the complex geometry of the drill, which demonstrates that while the
synergy concept is useful, it is not directly applicable to all object types. Typ-
ical manipulation of this tool has the index finger extended, allowing the other
fingers to wrap underneath using the synergy-based cylinder grasp values. This
could be achieved with a second synergy in combination with the cylinder syn-
ergy that weights the extension of the index finger. The combination of these
two synergies could create the Dewalt drill grasp and actuation motions in the
same framework. This concept has been left for future work.

5.2 Grasp Success

The geometric-based synergy model successfully manipulated all of the cylin-
drical objects presented in the experiment, demonstrating the usefulness of the
concept in practice. The testing also highlighted the further abstraction of the
grasp for a cylinder synergy by manipulating four prismatic objects that could be
approximated as cylinders. Finally, it was demonstrated that while this synergy
is useful for cylinders, other methods are still necessary for complex manipula-
tions like that of a drill.

Of the 15 cylindrical objects manipulated by the robot, two failures occured.
In one case, the diameter of the object (hammer) was at the low end of the range
tested. Even with a complete closure grasp, the hammer slid in the grasp, but

(a) (b)

Fig. 7: Initial (a) and final (b) joint angles for ring and little fingers. The initial
round of testing following SynGrasp model generation resulted in no contact
in the ring and little fingers due to tendon friction in the actual system that
reduced the closure angle to a lower value than commanded.
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was not dropped. Friction between R2’s glove material and the object combined
with the kinematic limitations of the finger joints appeared to be the cause of the
failure, rather than the geometric-based synergy model. In the second failure, the
robot was unable to manipulate the large flashlight without dropping it. While
the fingers were positioned in an appropriate orientation relative to the object,
the weight of the object (1kg, the heaviest of the set tested) and friction between
between the glove and object appeared to be the root cause of the failure. In
practice, the Cutkosky grasp plus affordance template method of grasp designed
for the hammer and flashlight for the specific object geometry resulted in the
same failures.

Four prismatic objects were tested to understand the model applicability for
shapes other than a pure cylinder. The robot succeeded in manipulating each of
these four objects. This suggests that this grasp abstracts to more than cylinders,
instead, the geometric-based synergy is effective for ojects that could be closely
approximated as cylinders.

Finally, the robot was unable to grasp the complex shape of the Dewalt
impact driver. As the robot closed its hand, the index finger caught on the
trigger, not allowing the hand to fully wrap around the handle. During the
rotation action, the object was dropped. While the geometric-based synergy
approach to grasping is applicable to shapes beyond those used in design and
validation, the approach has limiations. In cases of complex geometry, other
methods may be preferred.

6 CONCLUSIONS

The authors demonstrated a novel concept to modify the postural synergy frame-
work developed in neuroscience into an intuitive commanding strategy for high
DoF position controlled robot hands that parameterizes the object to be grasped.
The creation of a geometric synergy based on the diameter of a cylindrical object
allowed cylinders of varying sizes to be effectively grasped via a single command
input. The results of this test suggest that this concept could be used to quickly
broaden the library of objects the robot can manipulate from a small, specialized
set into a nearly infinite library of cylinders and other common shapes.
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