
ORIGINAL RESEARCH
published: 13 June 2017

doi: 10.3389/fnbot.2017.00026

Edited by:
Ganesh R. Naik,

University of Technology, Sydney,
Australia

Reviewed by:
Roy De Kleijn,

Leiden University, Netherlands
Agnes Roby-Brami,

Institut national de la santé et de la
recherche médicale (INSERM), France

Zhong Jian,
University of California, Davis,

United States

*Correspondence:
Fabrizio Sergi
fabs@udel.edu

Received: 14 March 2017
Accepted: 18 May 2017
Published: 13 June 2017

Citation:
Frullo JM, Elinger J, Pehlivan AU,
Fitle K, Nedley K, Francisco GE,
Sergi F and O’Malley MK (2017)

Effects of Assist-As-Needed Upper
Extremity Robotic Therapy after
Incomplete Spinal Cord Injury:

A Parallel-Group Controlled Trial.
Front. Neurorobot. 11:26.

doi: 10.3389/fnbot.2017.00026

Effects of Assist-As-Needed Upper
Extremity Robotic Therapy after
Incomplete Spinal Cord Injury:
A Parallel-Group Controlled Trial
John Michael Frullo1, Jared Elinger 1, Ali Utku Pehlivan1, Kyle Fitle1, Kathryn Nedley 2,
Gerard E. Francisco2,3, Fabrizio Sergi4* and Marcia K. O’Malley 1,2

1 Department of Mechanical Engineering, Rice University, Houston, TX, United States, 2 TIRR Memorial Hermann, Houston,
TX, United States, 3 Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston,
TX, United States, 4 Department of Biomedical Engineering, University of Delaware, Newark, DE, United States

Background: Robotic rehabilitation of the upper limb following neurological injury has
been supported through several large clinical studies for individuals with chronic stroke.
The application of robotic rehabilitation to the treatment of other neurological injuries is
less developed, despite indications that strategies successful for restoration of motor
capability following stroke may benefit individuals with incomplete spinal cord injury (SCI)
as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial
after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to
motor recovery.

Methods: We developed a novel assist-as-needed (AAN) robotic controller to adjust
challenge and robotic assistance continuously during rehabilitation therapy delivered via
an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist
joint movements. We further enrolled seventeen patients with incomplete spinal cord injury
(AIS C and D levels) in a parallel-group balanced controlled trial to test the efficacy of
the AAN controller, compared to a subject-triggered (ST) controller that does not adjust
assistance or challenge levels continuously during therapy. The conducted study is a
stage two, development-of-concept pilot study.

Results: We validated the AAN controller in its capability of modulating assistance and
challenge during therapy via analysis of longitudinal robotic metrics. For the selected
primary outcome measure, the pre–post difference in ARAT score, no statistically
significant change was measured in either group of subjects. Ancillary analysis of
secondary outcomemeasures obtained via robotic testing indicates gradual improvement
in movement quality during the therapy program in both groups, with the AAN controller
affording greater increases in movement quality over the ST controller.

Conclusion: The present study demonstrates feasibility of subject-adaptive robotic
therapy after incomplete spinal cord injury, but does not demonstrate gains in arm function
occurring as a result of the robot-assisted rehabilitation program, nor differential gains
obtained as a result of the developed AAN controller. Further research is warranted
to better quantify the recovery potential provided by AAN control strategies for robotic
rehabilitation of the upper limb following incomplete SCI.

Frontiers in Neurorobotics | www.frontiersin.org June 2017 | Volume 11 | Article 261

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
https://doi.org/10.3389/fnbot.2017.00026
https://creativecommons.org/licenses/by/4.0/
mailto:fabs@udel.edu
https://doi.org/10.3389/fnbot.2017.00026
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2017.00026&domain=pdf&date_stamp=2017-06-13
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00026/abstract
http://loop.frontiersin.org/people/195577
http://loop.frontiersin.org/people/384825
http://loop.frontiersin.org/people/142535
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Frullo et al. Robotic Rehabilitation for Spinal Cord Injury

ClinicalTrials.gov registration number:NCT02803255.
Keywords: robot-aided rehabilitation, assist-as-needed therapy, motor learning, incomplete spinal cord injury,
adaptive control

1. INTRODUCTION

The annual incidence of spinal cord injury (SCI), not including
those who die at the scene of injury, is approximately 40 cases
per million in the United States or approximately 12,000 new
cases each year (National Spinal Cord Injury Statistical Center,
2012). SCI primarily affects young adults, with an average age at
injury of 41 years and average lifetime costs exceeding a million
dollars per subject in the U.S. Neurologically induced deficits in
motor function are common following complete and incomplete
tetraplegia and result from partial or complete paralysis of mus-
cles. Complete paralysis results in the inability to activate muscles
below the level of injury. Partial paralysis occurs from disruption
to some but not all neural pathways innervatingmuscles. 40.8% of
survivors are subject to incomplete tetraplegia, followed by 21.6%
of survivors categorized as complete paraplegia, 21.4% categorized
as incomplete paraplegia and 15.8% as complete tetraplegia. As a
result of the injury, two-thirds of SCI survivors are left with some
functional deficit to the upper extremity, which contributes to
reduced independence in activities of daily living. Improvements
in arm and hand function may increase independence in self-
care, increase engagement in social activities, decrease caregiver
burden, and improve quality of life.

It has recently been suggested that repetitivemovement exercise
can support recovery after SCI by enhancing some form of plastic-
ity intrinsic in the central nervous system (Raineteau and Schwab,
2001; Cai et al., 2006; Lynskey et al., 2008; Onifer et al., 2011).
Given the association between treatment intensity and potential
for motor recovery, robotic technologies have been used to auto-
mate repetitive movement exercise after incomplete spinal cord
injury lesions. Most of the existing research efforts in SCI rehabil-
itation have addressed gait training (Hornby et al., 2005; Shin et al.,
2014), whereas robotic training of upper extremity function after
SCI is much less developed, with only a few case studies presented
so far (Yozbatiran et al., 2012; Cortes et al., 2013). Such case studies
demonstrated feasibility of robotic training after incomplete SCI,
but could not demonstrate statistically significant gains in motor
function achieved via the intervention. This is in contrast to the
field of robot-assisted stroke rehabilitation, where large-scale trials
have shown that robotic intervention can safely and effectively
induce recovery in upper extremity motor function after stroke
(Lo et al., 2010; Klamroth-Marganska et al., 2014).

Robots are capable of automatingmovement therapy according
to a wide variety of programmable control modes. Numerous

Abbreviations: SCI, spinal cord injury; AAN, assist-as-needed; MAHI,
mechatronics and haptic interfaces; PCGT, parallel-group controlled trial;
ST, subject-triggered; ASIA, American Spinal Cord Injury Association; MAS,
Modified Ashworth Scale; DOF, degree-of-freedom; RBF, Radial Basis Function;
CTR, conditional trajectory recalculation; GRASSP, Graded Redefined Assessment
of Strength, Sensibility and Prehension Test; MAPR, mean arrest period ratio;
ANOVA, analysis of variance; SAL, spectral arc length; FE, flexion/extension; RUD,
radial/ulnar deviation; PS, pronation/supination; MCID, minimally clinically
important difference.

investigators applied dynamic systems and control theory to
formulate robot controllers suitable for poststroke rehabilitation
(Marchal Crespo and Reinkensmeyer, 2009). Different controller
implementations have been proposed, each focusing on a specific
aspect of robotic therapy, such as assisting movements only if
they are not properly timed (Krebs et al., 2003), modulating error
by perturbing movements during therapy (Patton et al., 2005),
guiding joints along predetermined, time-independent trajecto-
ries (Banala et al., 2009), and combining real-time subject force
estimationwith adaptation of feedforward (Wolbrecht et al., 2008)
or feedback and feedforward force assistance (Pehlivan et al.,
2015). Although some details differ with each implementation,
the rationale behind development of a specific control mode for
rehabilitation therapy is mostly inspired by prior human subject
studies (Lewis and Byblow, 2002; Hogan et al., 2006), suggesting
that intensive therapy delivered by robotic interaction modes
aimed at maximizing the active participation of the subject would
be a catalyst for the process of neural plasticity underlying motor
recovery after stroke (Mehrholz et al., 2013).

As robot-aided recovery after incomplete SCI is at a relatively
less mature stage than that of stroke, such reference human
subject studies are not yet present. Despite studies on animal
models suggesting that rehabilitation should leverage plasticity
through stimuli similar to those tested for stroke rehabilitation
(Cai et al., 2006; van den Brand et al., 2012), optimal treatment
regimes for robot-aided rehabilitation are far from having been
identified. Especially in rehabilitation after incomplete SCI, a field
still much in its infancy, early-stage trials should be aimed at
giving inputs for further refinement of robot-assisted therapeutic
protocols.

Such inputs can be provided by parallel-group controlled trials
(PGCT). In a PGCT, the specific effect of a treatment modality is
assessed by measuring a variable (outcome measure) in a group
undergoing treatment, and comparing the outcome measure with
the one obtained in a parallel group, where an alternative treat-
ment is delivered. If a clinical study intends to evaluate the specific
effects of a novel controller, it should compare the effects of
this controller not to the absence of rehabilitation, but instead
to a different, standard of care form of rehabilitation. Through
this methodology, it would be possible to isolate the differen-
tial effects of the investigated treatment and control for a wide
variety of other factors that might have an effect on recovery.
In fields where there is an established standard of care, this
is usually done by comparing the results achievable through a
new treatment with literature data. However, application of this
approach is made difficult by the fact that there are no robust
reference data for robot-assisted upper extremity training after
SCI. In general, testing the efficacy of rehabilitation paradigms is
complicated by the large variability of subject populations, both
in terms of baseline motor function and in terms of pre vs. post
improvement of motor function. High variability of baseline and
improvement variables leads to demand for multicenter studies,
especially in SCI rehabilitation, where low prevalence provides
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FIGURE 1 | Subject using the MAHI Exo-II robotic upper limb exoskeleton.

challenges even in large cities.1 Instead, large-scale clinical studies
such as multicenter studies are not appropriate for early stage
trials where it is desired to test a particular aspect of a ther-
apeutic protocol (e.g., the robot control mode), whose validity
can be tested for later inclusion in larger phase II or phase III
randomized controlled trials, following the framework for staging
motor intervention studies proposed in Dobkin (2008). From the
consideration above, it is indeed not a surprise that most of the
large-scale clinical investigations of rehabilitation robotics could
only test the feasibility of robotic rehabilitation and could not go
more in depth assessing the differential effects of a specific control
mode (Lo, 2012).

In this study, we evaluate the effect of two different interactive
schemes implemented on the MAHI Exo-II robotic upper limb
exoskeleton (Figure 1), on therapy outcomes in a population of
subjects with incomplete spinal cord injury. We hypothesized that
a subject-adaptive controller, capable of continuously adapting
the levels of assistance and challenge provided during movement-
based rehabilitation therapy, enabled achievement of higher gains
in arm function after chronic incomplete spinal cord injury, com-
pared to a non-adaptive, subject-triggered position controller.
This study serves the dual purpose of assessing the potential
of subject-adaptive interaction control schemes for robot-aided
therapy after incomplete spinal cord injury and of guiding the
development of more sophisticated interaction controllers for
upper extremity rehabilitation therapy.

2. MATERIALS AND METHODS

2.1. Study Design
The study followed a PGCT design, where subjects were assigned
to two different robotic interventions, namely, the assist-as-
needed (AAN) and the subject-triggered (ST) controller, detailed
in the following sections. The null hypothesis tested in this study
was that the change in motor function for subjects exposed to the

1Prevalence of incomplete SCI is roughly 0.1% of the population, whereas in stroke
it is 2.9% (Go et al., 2014).

TABLE 1 | Characteristics of recruited subjects.

Subject Group Age range Time since
injury (years)

Baseline
ARAT

AIS

R01 ST 61–65 2 53 C3
R02 ST 46–50 26 47 C6
R03 ST 46–50 14 19 C5–6
R04 ST 56–60 3 16 C3
R05a AAN 21–25 2 35 C7–8
R06a AAN 21–25 1
R07 AAN 61–65 12 41 C6–7
R08 AAN 36–40 23 11 C4
R09b AAN 46–50 2 45 C4
R10 AAN 51–55 8 45 C4
R11 ST 46–50 16 7 C4
R12 AAN 46–50 16 21 C4
R13 AAN 56–60 37 20 C3
R14a ST 26–30 4 18 C3–4
R15 AAN 66–70 2 3 C4
R16 ST 46–50 36 21 C4
R17 ST 51–55 26 6 C4–5

aR05, R06, and R14 dropped during the course of the study.
bR09 dropped after the posttreatment session.

AAN paradigm would be the same as the one obtained through
the ST paradigm.

Participants with cervical motor incomplete SCI were assigned
to either theAANgroup or to the ST group. Inclusion criteria were
age (comprised between 18 and 75 years), diagnosis of chronic
incomplete SCI affecting upper extremity function (American
Spinal Injury Association (ASIA) Impairment Scale (AIS) C-D
levels, with the injury occurring at least 6months prior to enroll-
ment), while exclusion criteria were prior participation in robotic
rehabilitation studies for the upper arm, any planned alteration in
medication for muscle tone for the duration of the study, arthritis,
excessive shoulder pain, joint contracture or excessive muscle
tone (Modified Ashworth Scale >3). Although the inclusion and
exclusion criteria did not target specific locations of injury, the
requirement “incomplete SCI affecting upper extremity function”
resulted in admitted participants with lesion levels comprised
between C3 and C8 (Table 1).

The study was designed to test for significant differences
between the change in functional measures obtained through
AAN control and the one obtained through ST control. Thus, a 2-
sided type I error of 0.05 was used for the primary treatment com-
parison. Sample size was calculated for a 2-sample t-test to detect a
mean difference of 3 points in the primary outcome measure, i.e.,
the ARAT scale (see outcome measures section below), with 90%
power, assuming a common standard deviation of 2 points in the
ARAT score (calculated from the results of a previous study with
8 SCI survivors undergoing resistance training (Fitle et al., 2015)),
and a loss rate of 20%.2 A sample size of 24 admitted participants
was required to detect the hypothesized 3-point difference in the
two treatment groups, resulting in a final population of 10 subjects
per group completing the study (20 subjects in total), given the
20% loss rate expected. When merged together in a comparison
of the overall effects of both rehabilitation modes, the resulting

2The software STPLAN, University of Texas M. D. Anderson Cancer Center,
Houston, TX, was used for the power analysis.
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1-sample t-test with the 20 participants has 90% power to test
significant differences in the increase in ARAT score of 1.5, with a
type I error rate of 0.05.

2.2. Participants
Study participants were recruited by referral from therapists at a
partnering institution (TIRRMemorialHermann inHouston, TX,
USA) or were enrolled after they contacted the PI as a result of
flyers placed in several rehabilitation clinics in the Houston, TX,
USA, area. In total, 37 people were contacted and screened. 17
subjects (46%) were enrolled in the study, with the remaining 20
(54%) either failing to comply with the inclusion criteria or simply
showing lack of interest in the study.

This study was reviewed and approved by the Institu-
tional Review Boards (IRB) of Rice University and our clini-
cal collaborators’ institutions (Rice University IRB 654451, UT
Health/TIRR Memorial Hermann IRB HSC-GEN-13-0315), with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. This study has been retrospectively registered on
Clinicaltrials.gov, registration number: NCT02803255.

Three subjects (18% of the enrolled group, similar to the 20%
loss rate expected) dropped out during therapy due to logistical
reasons, and one subject did not return for the post-treatment
evaluation (this subject is considered in the group analyses
because he only missed the two-week and two-month follow-up
assessments). For the 14 who completed the study, 12 were male
(86%). We did not collect race/ethnicity information. The group
average age was 53.5 years old, the average time since injury was
16 years, and the average baseline ARAT score was 25. See Table 1
for specific subject information.

Assignment of subjects to a specific group was conducted
using the method for covariate minimization described in our
preliminary work (Sergi et al., 2015), which sought to minimize
the imbalance in the two groups of factors potentially associ-
ated with future gains in motor function. For this study, our
subject assignment algorithm sought to minimize the imbal-
ance of age and baseline ARAT score. After the first four sub-
jects were assigned to the ST group, the group assignment
method provided balanced groups in terms of the two prognostic
variables (ARAT and age), (∆ARAT = 1.8 points, σARAT = 17.24
points, ∆age = 1.6 years, σage = 7.2 years), or better than 76% of
the entire set of possible random assignments to both groups,
as demonstrated by a post hoc analysis based on the sys-
tematic assessment of all possible permutations of enrolled
subjects.

2.3. Protocol
Each subject participated in a total of fifteen visits. The first
two visits involved screening for inclusion and exclusion criteria
and a baseline assessment on primary and secondary outcome
measures, in addition to the ASIA upper extremity scale to verify
the diagnosis.Within oneweek after the last baseline visit, subjects
started a program of robotic training, in ten 90-min long sessions,
spread over a period of three to four weeks (the number of
visits per week ranged between 1 and 3, depending on subject
availability and scheduling constraints for baseline and follow-up
visits). After the last training session, three posttreatment clinical
assessment sessions (one week, two weeks, and two months after
treatment) were completed with the therapist. The progression of
subjects through the study is presented in Figure 2.

Group assignment was implemented after the first screening
session based on the result of the pre-therapy ARAT test. Sub-
ject assignment was undisclosed to the occupational therapist
performing the evaluations (KN), who did not participate in
any of the therapy sessions, enabling complete blinding of the
study.

At the beginning of each robotic training session, subjects
underwent an evaluation session, then robotic training, which
took the form of p repetitions of single-DOF movements, with p
adapted to result in sessions of the prescribed duration (90min
total). In evaluation sessions, the subjects’ range ofmotion (ROM)
was calculated by asking the subjects to move a given joint in both
directions to the maximum level that they considered comfort-
able, and recording the maximum and minimum values angles
using the MAHI Exo-II encoders. During evaluation sessions, the
MAHI Exo-II was unpowered, opposing minimal resistance to
motion due to its backdrivable design. Evaluation sessions were
based on point-to-point movements from a center target (placed
at the middle point between the two extremes calculated before)
to the periphery targets defined in the ROM procedure. Although
the MAHI Exo-II allows training of complex movements com-
bining both elbow and wrist joints, we chose to train subjects
in uni-dimensional tasks based on recent literature demonstrat-
ing that training complex movements does not lead to a greater
improvement in motor function in stroke patients (Milot et al.,
2013).

During training sessions, subjects similarly underwent repeated
point-to-point movements per DOF. The number of repetitions
was initially specified as the final value in the previous session,
and then increased based on the availability of time. Training
sessions lasted 90min, with setup taking approximately 5min per
subject.

FIGURE 2 | Flow diagram describing progression of subjects through the study.
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For patients in the AAN controller group, both assistance and
timing parameters estimated from the previous sessions were
retained as an initial guess in the subject-adaptive therapy mode,
whereas for patients in the ST controller group, the therapist
manually set the challenge parameters (force threshold, Fth, and
time allowed for a movement, TST) on a session-by-session basis,
based on the subject’s qualitative assessment of fatigue over the
course of the session and the 90-min duration constraint.

2.4. Exoskeleton and Control Modes
During therapy, subjects interacted with the MAHI Exo-II, a
four degree-of-freedom (DOF) exoskeleton used for isolated
rehabilitation of the elbow (flexion/extension) and the wrist
(pronation/supination—PS, radial-ulnar deviation—RUD, flex-
ion/extension—FE). Details on themechanical design of the robot
are included in prior work (Pehlivan et al., 2011). The robot,
shown in Figure 1, is a unilateral upper extremity exoskeleton
supported by a moving aluminum frame that allows an easy
adjustment to fit the arm of subjects sitting on a chair. The
exoskeleton has four degrees of freedom actuated by DC motors
and cable transmissions and is connected to the subjects’ arm via
thermoplastic cuffs that connect to the subject upper arm, and
forearm, with both contacts secured by velcro straps. The wrist
component of the exoskeleton terminates with a handle, which is
grasped by the subject (or is strapped to the subject’s hand in case
of individuals with limited grasping capabilities), which allows the
device to track and assist the wrist rotation angles after solving
the forward kinematics of the Revolute Prismatic Spherical wrist
component (RiceWrist) (Gupta et al., 2008; Erwin et al., 2015,
2016). Motion of the upper arm is prevented by soft contacts
via velcro straps; however, the subject torso was not constrained
to maximize subject comfort in the intensive therapy program.
Similarly, we found that by using soft constraints and velcro straps,
subjects could operate comfortably the robot without requiring
highly accurate alignment of the robotic degrees of freedom to
the subject joints. The time required for fitting a new subject in
the robot never exceeded 15min, with setup for subsequent visits
being considerably shorter. The MAHI Exo-II was programmed
via two different control modes, the assist-as-needed (AAN)
controller, and the subject-triggered (ST) controller, described in
detail in the following sections.

2.4.1. Assist-As-Needed Controller
For the AAN controller (Figure 3), we adapted the controller
proposed in the study by Pehlivan et al. (2015), which consists
of three main components: subject force estimation, feedback
gainmodification, and online trajectory recalculation. The subject
ability estimation algorithm employed in this study is a model-
based estimator based on the adaptive controller (Slotine and Li,
1987). The controller is based on the general form of the dynamic
equations of a human-interacting manipulator in the task space
(defined by independent generalized coordinates x):

M(x)ẍ + C(x, ẋ)ẋ + G(x) = Fr + Fp, (1)

where M is the manipulator inertia matrix, C is the matrix of
Coriolis/centrifugal terms, G is the gravity vector, Fr = J−TFa is
the vector of equivalent end-effector generalized forces applied
by the actuators, and Fp is the vector of end-effector general-
ized forces applied by the subject. Different from the study by
Slotine and Li (1987), our controller neglects the inertial, Cori-
olis, and centrifugal terms and applies an assistance force/torque
defined as:

Fr = Ĝ(x) − F̂p − KDr, (2)

where Ĝ(x) and F̂p are respectively estimates of the gravitational
term and patient-applied force, and KDr is a feedback corrective
term, based on the sliding variable

r = ˙̃x + Λx̃ = (ẋ − xd) + Λ(x − xd). (3)

In our previous work, we used a linear parameterization based
on the regression matrix Y(x) and unknown parameters θ:

Y(x)θ̂ = Ĝ(x) − F̂p, (4)

and the adaptation law

˙̃
θ = −Γ−1Y(x)Tr (5)

where Γ is an n× n constant, positive definite, symmetric matrix;
Y is a matrix of regressors which contains known functions of
x, based on a set of Gaussian radial basis functions (RBFs) to

FIGURE 3 | Block diagram of the AAN controller implemented in this paper. Blocks with a yellow background include components of the adaptive controller (Slotine
and Li, 1987). The dashed line refers to a discontinuous update of signal variables, i.e., the feedback gain is changed on a task-by-task basis.
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approximate the position dependence of terms in the right side
of equation (4). For this study, considering that an impaired
subject might have different levels of disability on their agonist
and antagonist muscles, we extended our previous formulation
by introducing direction dependency on the regressor matrix
Y =Y(x, ẋ). As in the study by Pehlivan et al. (2015), we use
RBFs as known functions included in the regressor matrix, but we
doubled the set of RBFs for each DOF to account for direction
dependence (i.e., we compute different sets of RBFs for positive
and negative derivatives of the task space controlled variables for
each DOF).

We finally introduced a feedback gain modification logic, a
component required for modulating the amount of motion assis-
tance in a performance-adaptive way. For this study, we discretely
updated the trial-to-trial change of the feedback gain, ∆KD, based
on the measured error in the previous task. ∆KD is defined as

∆KD = ∆KD,max
(ravg − r∗)
(r∗ − rmin)

, (6)

where ∆KD,max is a scaling factor of the trial-by-trial change of
the feedback gain, ravg is the average error for the previous task,
and rmin defines the slope of the gain update curve. The same
gain update logic had been validated in a similar subject-adaptive
controller, tested on healthy individuals, and presented in detail in
the study by Pehlivan et al. (2016).With the gain update law shown
in (6), we introduce an error characteristic term, r*, such that for
errors below the threshold the feedback gain is increased, while
for errors above the threshold the gain is decreased. With this
formulation, we are able to account for the fact that even healthy
subjects’ movements contain natural variability and providing
force support to minimize error beyond such variability might
be detrimental to motor learning (Shadmehr et al., 2010). Both
the values of r* and rmin were defined as a proportion of the
amplitude of the subject range of motion, with values shown in
Table 2.

TABLE 2 | AAN controller parameters.

DOF rmin [%] r* [%] KD,in [Nms/deg] KD,max [Nms/deg] Tin [s]

Elbow 0 0.5 0.5 2.89 2
Wrist PS 0.3 2.5 0.5 1 2
Wrist FE 0.06 10 0.33 0.25 2
Wrist RUD 0.06 10 0.3 0.25 2

The generation of the desired trajectory xd(t) for this controller
is based on our previous work, validated on healthy subjects
(Pehlivan et al., 2015). At the beginning of the movement, a nom-
inal desired trajectory based on a physiological joint movement
profile, and allocated timeTend is defined.During themovement, a
conditional trajectory recalculation (CTR) is implemented, so that
when the position of the subject is ahead of the nominal desired
trajectory, a new desired trajectory is computed as a piecewise
polynomial function. For each recalculation, the parameter Tend is
reduced for the current movement by 1%, and the updated value
of Tend is kept for the next task. In an attempt to differentiate
between intentional subject involvement and unintentional elastic
return due tomuscle stretching, theCTR is here enabled only if the
subject is able to be ahead of the nominal desired trajectory in both
center-to-periphery and following periphery-to-center directions
for a percentage (10%) of the last movement when CTR was
disabled. This helps guarantee active subject input because the
elastic return of stretched muscles typically only aids movement
from periphery-to-center. If the CTR is not activated for a given
task, the algorithm will increase Tend by 0.2 s until the subject is
able to stay ahead of the desired trajectory. During the CTR “off ”
phase, a ghost cursor following the nominal desired trajectory
is displayed to the subject in the GUI to motivate the subject
to be ahead of the nominal trajectory (see Figure 4A). Since a
lead-type error is not possible when the trajectory recalculation
mode is switched on, the RBF amplitude estimates aremostly non-
decreasing (in absolute value) in this condition, resulting in an
overestimate of the feedforward assistance. To avoid this problem,
the adaptation law in equation (5) is modified to include a first-
order decay of the RBF amplitude estimates only when the error
drops below the value rmin.

The initial allotted time for all DOFs was 2 s, and the initial
gains were defined as shown in Table 2 equally for all subjects,
and then free to change as defined by the AAN algorithm. The
AANcontroller was implemented inMatlab/Simulink (TheMath-
Works, Inc.) and data acquisition at a sampling rate of 1 kHz
was achieved using the soft real-time software QuaRC (Quanser
Inc.). A command-line interface allowed specification of control
parameters, such as joint gain values, allotted time, and number
of repetitions for each section.

2.4.2. Subject-Triggered Controller
The subject-triggered controller is implemented to require sub-
jects to initiate therapeuticmovementswith the robot, then having

A B

FIGURE 4 | (A) GUI used in the AAN controller, during the online recalculation “off” phase. The red circle corresponds to the active target, the blue circles are the
other targets (center and periphery). The current subject position is displayed with the yellow ring, while the ghost cursor is the smaller yellow cursor leading the
subject in this center-to-periphery movement (black arrow). (B) Sequence of the two modes of the ST controller. (1) A virtual wall is implemented, and the force
required to keep the desired position (blue circle) is continuously measured. When the force exceeds Fth, the system switches to mode (2), where the robot
implements position control toward the target (red circle).
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the robot carry the passive limb through the desired trajectory.
The controller is identical to one developed for upper-limb robotic
rehabilitation following chronic stroke (Lum et al., 2002) and later
implemented on the MAHI Exo-II rehabilitation robot (Gupta
et al., 2008).

The ST controller is implemented as a two-state machine. In
the first state, the robot is position controlled to keep the start
position (center or periphery), and the subject is visually cued to
apply a force toward the direction of the target position (periphery
or center—Figure 4B, 1). When the force applied by the subject
exceeds a threshold Fth and is sufficient to break through the
virtual wall along the desired direction, the controller switches
to the second state. In this phase (Figure 4B, 2), the robot is
position controlled to reach the target through a minimum-jerk
trajectory with duration tST. Although subject input is required
to trigger the switch to the movement mode, subjects are not
involved in controlling their movements during target reaching.
The values of Fth are increased on a session-by-session basis,
depending on subject ability and comfort (pain and fatigue are
recorded before and after each session to ensure excessive levels
of each are avoided). This is done to progressively increase the
challenge to the subject to encourage active involvement during
training.

2.5. Outcome Measures
2.5.1. Controller Validation
We analyzed several parameters to evaluate the adaptation of
robotic therapy in response to changing patient contribution, both
in terms of task assistance and challenge, and in terms of therapy
intensity.

To quantify task assistance and challenge in the AAN group, we
analyzed the evolution of two controller variables, the feedback
control gain and task allotted time, over the therapy program.
The feedback controller gain was used as a proxy for the amount
of robotic assistance applied during the therapy program, while
the allotted time was used as a proxy for task complexity. We
analyzed the controller gain values Kd over the duration of each
session, calculated for all fourDOFs, and averaged for each subject
in the AAN group. The change in controller gain value ∆K(k)

d
was obtained for session k, for each subject, by subtraction from
the average gain at the first training session K̄(1)

d , i.e., ∆K(k)
d =

K̄(k)
d − K̄(1)

d . The changes in feedback gain were then averaged
over subjects to obtain the average change in controller gain
per session. The allotted time for each session T(k) was measured
as the allotted time for the last task in each session. Then, as in
the controller gain calculation, the change in allotted time ∆T(k)

relative to Session 1was calculated and then averaged over subjects
per session for all four DOFs.

To quantify how therapy intensity was modulated over time
in response to changing patient input, we calculated the change
in number of repetitions per session completed during a ses-
sion ∆rep(k). By analyzing the variable ∆rep(k) over the therapy
program, we could determine the effect of the training on each
subject’s capability of performing repeated exercise, which is asso-
ciated with therapy dose. Finally, for the ST group, we considered
the evolution of the force threshold, as percent of a joint-specific
maximum value, that the subject was required to apply before

triggering the position control mode, a parameter also related to
therapy intensity.

2.5.2. Clinical Measures
The primary outcome measure for this study was the Action
Research Arm Test (ARAT). The test has a variety of nineteen
tasks divided into grasp, pinch grip, and gross arm movement
portions. The subject’s motions are graded on a scale of zero
to three, with three being a normal motion and zero being an
incomplete motion (Lyle, 1981). As secondary outcomemeasures,
the Modified Ashworth Scale (MAS) was used to classify the
subject’s spasticity by extending a joint over 1 s. The increase in
muscle tone is then rated on a scale from zero (no increase in tone)
to four (the affected part or parts are rigid) (Bohannon and Smith,
1987). A third outcome measure was the Grip Pinch Strength
assessment, which measures the subject’s pinch and grip strengths
using dynamometers,measured in units of force (Kalsi-Ryan et al.,
2012). The fourth metric is the Graded Redefined Assessment
of Strength, Sensibility and Prehension Test (GRASSP), which
measures a subject’s strength, sensation, and prehension in tasks
relating to activities of daily life. The test measures a subject’s
level of sensation impairment, with zero being no sensation and 4
being the ability to detect 0.4 g of force. The strengthmeasurement
is done subjectively by the physical therapist with zero being
flaccid and five being a full range with maximal resistance. The
prehension portion involves a rating of the ability to grab and
maneuver a series of objects on a scale of zero to five with five
being the maximal score. The subject is then graded on a scale
from zero to four for the ability to grasp a cylindrical object, a
lateral key pinch, and a tip to tip pinch (Kalsi-Ryan et al., 2012).

2.5.3. Robotic Measures
Movement kinematics measured during the robotic training and
assessment sessionswere sampled at 100Hz for the ST exoskeleton
and at 200Hz for the AAN exoskeleton. Motion data were then
processed to extract relevant parameters describing assisted or
unperturbed human movements. The raw robotic data were first
filtered using a Savitzky–Golay filter with a window length of 21
for the ST exoskeleton and 41 for the AAN exoskeleton. The filter
featured different window lengths for the two devices to result
in roughly equivalent finite impulse responses in the frequency
domain. The datawere then passed to a segmentation algorithm to
divide the continuous time data into point-to-point segments for
data analysis. The segmentation algorithm identified the instants
of movement start and movement end by analyzing the regions
of subject movement between desired target indicator switches.
The algorithm defined t0 as the time when the desired target
indicator changed to initiate subject motion and ttar as the time
when the software acknowledged the subject’s reaching of the
desired target. The time of movement start, tin, was defined as
the instant at which the velocity profile exceeded 5% of the peak
value for the first time within the target region defined from t0
to ttar. The suprathreshold velocity regions were then analyzed to
determine their magnitudes, directions in relation to the desired
target, and proximity to the previous and subsequent suprathresh-
old regions. Analysis of suprathreshold regions after ttar allowed
for the inclusion of regions in the movement toward the desired
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target after the software registers a target reach (i.e., the subject’s
correcting for an overshoot of the target). Finally, the movement
end, tfin, was defined as the last time the velocity exceeded 5% of
the peak value for the last suprathreshold region corresponding
to a movement toward the current desired target. After velocity
profile segmentation, metrics of interest were calculated for the
cropped time series comprised between tin and tfin, to quantify
the quality of movement. The metrics used in this study are the
mean arrest period ratio (MAPR), spectral arc length (SAL), and
normalized speed.

The mean arrest period ratio (MAPR) measures the total
amount of time Ths where the measured velocity is above a pre-
determined percentage of the peak velocity (Beppu et al., 1984).
For this analysis, we used the same threshold used for the def-
inition of movement start (5%) as threshold for the calculation
of MAPR. MAPR is then simply defined as MAPR = 100 Ths

tfin−tin
and defined in the range (0,100]. Aimed movements by healthy
individuals would exhibit consistency without peaks and valleys
in the velocity profile, leading to a higher MAPR value.

The spectral arc length (SAL) is the negative arc length of the
frequency-normalized Fourier magnitude spectrum of the speed
profile (Balasubramanian et al., 2012). The metric is defined as

η = −
∫ ωc

0

√(
1
ωc

)2
+

dV̂ω2

dω dω (7)

where V(ω) is the Fourier magnitude of the speed profile v(t)
and [0, ωc = 10Hz] is the frequency band of the movement (Fitle
et al., 2015). The metric examines the frequency domain of a
movement, with the principle that smoother movements have
more low frequency components, whereas jerky motions contain
more high frequency components. The negative sign is chosen so
that a higher value results in a smoother movement.

The normalized speed operates from the observation that
healthy movements have fewer valleys and near-stops than an
unhealthymotion (Rohrer et al., 2002). This implies that a healthy
motion will have a greater normalized mean speed than an
impaired motion. The normalized mean speed, or normalized
speed, is simply the average speed divided by themaximum speed.

2.6. Data Analysis
2.6.1. Controller Validation
The metrics of AAN gain value and allotted time as well as the
number of repetitions completed per session are used to measure
subject progression over time. To test whether there is a significant
change over time, a linear regression was performed on the value
of the change per session averaged across all subjects within the
group. A 95% confidence interval was generated for the value of
the slope.

2.6.2. Clinical Measures
The clinical measures were recorded at the baseline and follow-
up sessions (post-treatment, 2-week, and 2-month assessments).
There were three cases where the subject did not attend the time-
sensitive follow-up sessions (2weeks post for R11 and 2weeks
and 2months post for R09) which resulted in an additional 12
incomplete sessions. Thus, all clinicalmetrics aremissing for those

assessments. R15 also missed the clinical evaluation in his post-
treatment assessment. Furthermore, in 12 of the therapy sessions,
the number of repetitions of the therapy portion had to be reduced
due to the subject’s late arrival to the session.

The pre–post analysis was performed by comparing the clin-
ical metrics measured during the post-treatment sessions with
the value recorded at baseline. The pre-post change in each of
the clinical metrics was calculated by subtracting the baseline
value from each of the three follow-up values for each subject.
Therefore, a value greater than zero would signify an increase
in the metric with respect to the baseline, while a negative
value would represent a decrease. The changes in the metrics
for the pre–post analysis were then tested for statistical signifi-
cance (p< 0.05) via amixed-design analysis of variance (ANOVA)
with treatment group as the between-subjects variable and the
DOF, session, and metric variables as the within-subject vari-
ables. The Greenhouse-Geisser correction was used when the
sphericity assumption was violated. In the event of a significant
interaction, the interaction was decomposed using simple main
effects. As the analysis technique does not allow missing data,
subjects with missing data had to be removed from the analy-
sis. As such, subjects R11 and R15 were only missing data for
one of the three follow-up sessions. The missing data for these
two subjects were replaced with the subject mean of the other
two follow-up sessions for each missing clinical metric. R09 was
removed from the analysis, having missed two follow-up sessions.
Therefore, the total number of subjects included in the clinical
metrics pre–post analysis was 6 and 7 for the AAN and ST groups,
respectively.

2.6.3. Robotic Measures
We analyzed movement data acquired during free movements
with the robot in the evaluation sessions preceding each therapy
session to determine if therapy had an effect on the quality of
movements produced by participants. A mixed-design ANOVA
was used to analyze the robotic measures collected during the
therapy program. Data were grouped by the between-subjects
factor (group, with two levels, AAN and ST), and by the within-
subject factor (session, with ten levels). The Greenhouse-Geisser
correction was used when the sphericity assumption was violated,
and significant interactions were decomposed using simple main
effects. Due to subject inability to complete the movement or
absence from a session, we do not have data for every subject,
DOF, and session combination. A complete session is defined as
a subject being able to complete an evaluation for a given DOF
in a given session. For this study, an average of 87% of sessions
were complete. The within-subject completion rate ranged from
a maximum of 100% for five different subjects to a minimum of
55% for one subject. Additionally, the within DOF completion
rate ranged from a maximum of 97% for the elbow to a minimum
of 81% for wrist FE and wrist RUD. The major causes for an
incomplete session were the subject being unable to complete an
evaluation session of a givenDOF due to their level of impairment
(10% of all sessions) or a robot hardware failure (1.5% of all
sessions). There were eight instances where a subject who began
the study unable to complete an evaluation for a particular DOF
gained the ability to complete an evaluation before the end of the
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therapy sessions. Given the multitude of measurements for each
subject, we deemed inappropriate to discard data acquired from
a given subject due to a few missing data points. Therefore, we
established to exclude from the analysis a given subject if data
were missing for at least three sessions for that specific subject.
Otherwise, we replaced the subject’s missing data with the subject
mean. This resulted in the replacement of 16 missing data points
(out of a total of 140). The resulting total number of subjects is
as follows, represented as (AAN, ST): (7,7) for elbow, (6,6) for
wrist PS, (6,5) for wrist FE, and (6,5) for wrist RUD. Because
of the rules established for excluding subjects, two subjects were
excluded from the analysis for wrist PS, and three subjects were
excluded for wrist FE and RUD.

We finally conducted an exploratory analysis to determine
whether the effect of the training program in the two groups was
captured by a linear increase over session of the robotic outcome
measures. For this analysis, a change in metric is defined for each
therapy session i as the difference between the outcome measure
obtained in session i and the metric obtained in the first training
session for which the subject has data. As such, the baseline is
taken as the first time the subject is able to perform the motion,
and the change is calculated relative to this baseline through-
out the duration of the therapy sessions. This approach appears
suitable to describe within-subject changes in outcome measures,
as it avoids confounds associated with data replacement with
the mean as done for the mixed-design ANOVA; however, this
approach creates unbalanced groups in both the between-subject
and within-subject factors. To test significance of the effect of the
within-subject repeated measure (i.e., session), a linear regression
was conducted on the change in robotic metric averaged across all
subjects within a group. This was accomplished by two separate
regression analyses, one for the AAN group, and one for the ST
group.

3. RESULTS

We show characteristics of our controller behavior as recorded
during a parallel-group balanced controlled trial with subjects
with incomplete SCI and compare performance differences across
our two treatment groups. We start by describing the behavior
of our AAN and ST controllers over each session of the study to
elucidate how each controller modulates intensity of treatment.
Then, we evaluate changes in subject capability as measured
by standard clinical assessments. Finally, we quantify longitudi-
nal changes in subjects’ movement quality using measurements
provided by evaluation sessions conducted during the therapy
program.

3.1. Validation of the AAN and ST
Controllers
The AAN controller is designed to modulate both the amount
of assistance and challenge for reaching tasks in an automated
way, based on the performance of the subject. The behavior of
the ST controller can be modulated manually by the therapist by
adjusting the threshold level to increase or decrease challenge on
a session-by-session basis. As such, different metrics were used
to test how the two controllers modulated assistance, challenge,

and therapy intensity. In validation of both controllers, no adverse
events (i.e., injury or excessive fatigue reported by subjects) were
reported in this study during the therapy sessions.

3.1.1. Task Assistance and Challenge
Via the linear regression analysis, we determined that the con-
troller gain is significantly decreased over therapy sessions in
all DOFs with the exception of the elbow joint (Figure 5). This
demonstrates that the amount of assistance applied by the con-
troller, expressed by the dynamics of its feedback controller gain,
was decreased through the therapy program. The slope estimates,
expressed asmean± standard deviation, are−0.007± 0.01 for the
elbow, −0.013± 0.002 for wrist PS, −0.003± 0.001 for wrist FE,
and −0.0021± 0.0005 for wrist RUD.

Via the linear regression analysis, we also determined that
allocated time for task completion decreases significantly over
the course of the therapy program in several joints, and it
did not increase in any joint. The slope estimates, expressed
as mean± standard error, are −0.10± 0.02 for the elbow,
−0.009± 0.01 for wrist PS, −0.04± 0.01 for wrist FE, and
−0.009± 0.01 forwrist RUD.The slope estimate intervals indicate
that the decreasing trend in change in allocated time is significant
at the p< 0.05 confidence level for the elbow and wrist FE DOFs,
which demonstrates that for those joints, the challenge offered
by therapy sessions, measured by allocated time, significantly
increased over the duration of the therapy program.

3.1.2. Therapy Intensity
The number of completed repetitions, averaged across all subjects
for each session, were summed and are displayed in Figure 6.
The plot represents the difference in number of repetitions com-
pleted with respect to session 1, such that an increasing trend
indicates a sustained change in completed repetitions from session
to session. Via the linear regression analysis, we demonstrated
that the slope of the measure of number of repetitions completed
per each session is greater than zero at the p< 0.05 confidence
level for all DOFs in both the AAN and ST groups. The slope
estimates, expressed as mean± standard error, for the ST group
are 12.8± 2.4 for the elbow, 16.5± 1.6 for wrist PS, 17.0± 2.0
for wrist FE, and15.7± 2.1 for wrist RUD. The slopes for the
AAN group are 14.2± 1.6 for the elbow, 12.7± 1.5 for wrist PS,
14.9± 1.6 for wrist FEF, and 14.9± 1.9 for wrist RUD. Based on
these estimates, it can be concluded that the number of repetitions
per sessions increased for both the AAN and ST groups.

For the ST group, an additional parameter that was adjusted
to modulate therapy intensity was the force threshold Fth, which
was adjusted on a session-by-session basis depending on subject
ability and comfort on the previous sessions. The percent change
in force threshold Fth, calculated relative to the value used for the
first session, increased for all joints during the therapy program,
as shown by Figure 7.

3.2. Clinical Measures
No significant effect of the within-subject factor (session) was
observed for the primary outcome measure, i.e., the change in
ARAT score (p= 0.128). As such, the null hypothesis of this
study is not falsified. The results of the mixed-design ANOVA
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FIGURE 5 | Change in average controller gain ∆K(k)
d (blue) and allotted time ∆T (k ) (red) per session relative to session T1 for elbow [upper left], wrist PS [upper

right], wrist FE [lower left], and wrist RUD [lower right]. Negative values indicate a decrease in the amount of assistance (gain) received or amount of time allotted for
the task, respectively. The legend indicates the number of AAN subjects who completed the task at each training session. Error bars extend to ± the standard error
for the group.

are presented in Table 3, while the evolution of the subject-
by-subject change in each metric is reported in Figure 8 as a
difference relative to the pre-treatment measurement. Some of
the secondary outcome measures selected for this study, namely,
the GRASSP Strength and GRASSP Sensation metrics showed a
significant result, although the result has not been corrected for
multiple comparisons. No significant interactions, including the
effect of the between-subject variable (experimental group), were
measured neither in the primary outcome measure nor in other
clinical measures.

3.3. Robotic Measures
Via the mixed-design ANOVA, we quantified the longitudinal
evolution of robotic measures of quality of movement over train-
ing sessions in both groups. For themetric SAL, a significant effect
of the factor session was measured in the elbow and wrist RUD
joint. For the metric MAPR, wrist FE and wrist RUD showed a
significant effect of session. For normalized speed, wrist PS and
wrist RUD showed a significant effect of session. The results of
the mixed-design ANOVA are included in Table 4.

All three metrics exhibited significant interactions for
wrist RUD: (F(9, 81)= 3.01, p= 0.004) for normalized speed,
(F(9, 81)= 2.49, p= 0.015) for MAPR, and (F(9, 81)= 3.73,
p= 0.027) for SAL. These interactions were decomposed
using simple main effects to reveal that only the AAN group

exhibited a significant improvement in all of these metrics for
wrist RUD. The AAN and ST results were (F(9, 36)= 5.09,
p< 0.001) and (F(9, 36)= 1.33, p= 0.256) for normalized speed,
(F(9, 36)= 3.39, p= 0.003) and (F(9, 36)= 0.96, p= 0.488) for
MAPR, and (F(9, 36)= 4.04, p= 0.001) and (F(9, 36)= 1.16,
p= 0.352) for SAL, respectively. These results demonstrate both
an overall positive effect of the treatment on the outcomemeasure
measured on a session-by-session basis, and a differential effect
of the experimental group (i.e., AAN or ST). Analysis of the
robotic measures provides results in contrast to those deriving
from clinical measures.

The session-by-session changes in robotic measures can be
visualized in the training session plots, presented in Figure 9
for the SAL metric, and in Figures S1 and S2 in Supplementary
Material for the other robotic measures extracted from the data
(MAPRandnormalized speed, respectively). The plots across each
training session provide a more detailed representation of the
actual progression made by each group to independently move
the robotic device in each DOF, evaluated on the exoskeleton
used during their training. Best fitting regression lines describ-
ing the change over session in robotic metrics were calculated
for each group, and the corresponding slopes were shown to be
significantly different from zero at the p< 0.05 level in all joints
and metrics for the AAN group, while only in 5/16 cases for
the ST group. The entire set of estimated slopes and associated
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FIGURE 6 | Comparison of number of training repetitions completed per session relative to training session T1 for elbow [upper left], wrist PS [upper right], wrist FE
[lower left], and wrist RUD [lower right]. The legend indicates the number of subjects who completed the task at each training session. Error bars extend to ± the
standard error for the group.

confidence interval are displayed in Table 5. Bolded values in the
table indicate that the regression slope is positive at p< 0.05.

4. DISCUSSION

This paper presented a parallel-group, controlled trial (PGCT) to
evaluate the effects of assist-as-needed (AAN) assistance in robot-
aided neurorehabilitation after incomplete spinal cord injury
(iSCI). The study compared the effects of AAN treatment with
those provided by an alternative intervention, subject-triggered
(ST) control, matched in terms of total therapy time. We present
for the first time validation of the AAN robotic controller in
subjects with iSCI and demonstrate feasibility and consistency of
controller performance over a 10-session period with this clinical
population. As far as the clinical results are concerned, difficulties
in the recruitment of the identified population (patients with iSCI

affecting upper extremity function available to participate in a 3-
month long rehabilitation program) prevented achievement of the
sample size that had been identified to detect a significant effect in
the clinical primary outcome measure (i.e., pre–post ARAT score
being greater in the AAN group relative to the control group).
As a result, the null hypothesis of this clinical study could not
be rejected. At the same time, kinematic data measured during
evaluation sessions during the therapy program provide support
for the hypothesis that improvement in quality of movement was
achieved in both groups, with the AAN group showing larger
improvements in smoothness metrics, compared to the control
ST group. While the differential effect of the therapy program on
robotic measurements was demonstrated quantitatively only in
one of the four joints treated (wrist RUD), an exploratory analysis
showed that the slope of the linear change in outcome measure
over sessions was consistently greater in the AAN group than in
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FIGURE 7 | Percent change in ST group force threshold during the therapy program, relative the value used in the first session. Error bars extend to ± the standard
error for the group.

TABLE 3 | ANOVA results for clinical measures.

Metric df Fsession psession Fgroup·session pgroup·session

ARAT (3, 33) 2.04 0.128 1.175 0.334
GRASSP Quant (3, 33) 1.44 0.250 0.467 0.707
GRASSP Strength (3, 33) 3.35 0.031 2.663 0.064
GRASSP Sens (3, 33) 6.42 0.002 0.642 0.594
GripPinch (3, 33) 3.24 0.079 1.943 0184
MAS (3, 33) 0.18 0.752 0.697 0.467

N=6 for AAN and N= 7 for ST for all metrics.
Significance values are included under column “p.” Values are in bold if they are significant
at p < 0.05. The chosen significance level is reported in the Materials andMethods section.

the ST group. The following section will discuss in more detail the
results obtained in this study.

4.1. Validation of the AAN and ST Controller
4.1.1. Task Assistance and Challenge
The AAN controller can modulate both task assistance and chal-
lenge continuously during robot-assisted therapy. Task assistance
and challenge were quantified for the AAN controller by the
feedback control gainKD and allocated time T, whose change over
time relative to session 1 are represented in Figure 5. While the
change in gains ∆KD for the elbow DOF are relatively constant
over the course of sessions, the other three DOFs show a decrease
in value, with wrist PS having the largest decrease over time.
The decrease in gain values with respect to the baseline signifies
the reduced assistance from the controller over time. Thus, the
negative trend of controller gains over sessions implies that the
subjects were more capable of completing the movements as
the study progressed. Conversely, the average changes in allotted

time ∆T(k) show the largest decrease for the elbow. Wrist FE also
exhibited a slight decrease over time, whereas wrist PS and wrist
RUD remain relatively stable. When comparing controller gains
and the allotted time, we see that for someDOFs it is the amount of
assistance (via a reduction in feedback gain) that varies, while for
other DOFs the controller performance variations are dominated
by reductions in allotted time. Reductions in the gainmetric and in
the allotted time over the course of the study both demonstrate an
increase in the subject’s ability to perform themovement and show
the responsiveness of the AAN controller to this performance
improvement, with a resulting increase in task complexity, thereby
keeping “challenge” at constant levels (Zimmerli et al., 2012).

Regression analysis of either controller gain or allocated time
show statistically significant effect of session in all DOFs. For the
wrist FE DOF, the effect is significant for both control gain, and
allocated time metrics. For the elbow, the gain slope included zero
in the confidence interval, and for PS and wrist RUD, the allotted
time slope confidence interval included zero. Since both allocated
time and gain combine to modulate the task difficulty, and at least
one of the two parameters is significantly altered by session for
all DOFs, this analysis supports the role of the AAN in modulat-
ing task assistance and challenge in response to growing patient
input.

These findings are well aligned with our prior demonstrations
of the assist-as-needed controller where healthy subjects were
asked to modulate their compliance with the controller action
and their movement speed to illustrate the behavior of gain and
allotted time modulation algorithms (Pehlivan et al., 2015). In the
current study, a similar behavior is observed in this neurologically
impaired population.
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FIGURE 8 | Comparison of the clinical measures to baseline, measured post-treatment (PT), 2weeks after treatment (2wk), and 2months after treatment (2M). The
AAN values are shown in red, and the ST values are shown in blue. The clinical measures presented are the Action Research Arm Test (ARAT) [upper left], the
quantitative [upper right], strength [middle-left], and sensation [middle-right] portions of the Graded Redefined Assessment of Strength, Sensibility, and Prehension
Test (GRASSP), the Modified Ashworth Scale (MAS) [lower left], and the Grip Pinch Strength assessment [lower right]. The legend indicates the number of subjects
who completed the task at each session for that measure. Error bars extend to ± the standard error for the group.

4.1.2. Therapy Intensity
From Figure 6, there is an observable increase in the number of
repetitions from training session T1 to T10 for both the AAN
and ST groups. For the ST group, the therapist is encouraging
faster movements and shorter pauses between movements, result-
ing in an increase in intensity throughout the therapy protocol.
Similarly, the AAN controller is modulating the assistance (via
feedback gain) and the allotted time, resulting inmoremovements
completed in each session. Both controllers successfully facilitate
the increase of therapy intensity via increased repetitions. There
is some variability between sessions as several factors combine
to affect the number of repetitions able to be completed. Addi-
tionally, subjects were undergoing multiple trainings per week,
so they might be fatigued or stiff on any given day, which would

diminish the number of reps they could complete on a given
day. It is worth noting that data included in Figure 6 represents
the change in number of repetitions with respect to the baseline,
thus a positive value represents an increase in the number of
repetitions completed in a session relative to the first session. Even
with the variability between sessions, all values are positive, which
represents an increase in repetitions compared to their baseline
behavior. This finding suggests that via the training program, both
through the ST andAAN controllers, the subjects are prompted to
complete more repetitions per session.

In addition to the number of movement repetitions, another
parameter that is associated with the intensity of the therapy pro-
gram is the force threshold Fth that the subject is required to pro-
duce for each repetition, in the ST control group. Also this metric
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was shown to be increasing over the therapy program for subjects
in the ST group, further confirming that therapy intensity was
gradually increased on a session-by-session basis in the ST group.

TABLE 4 | ANOVA results for robotic measures: therapy sessions.

DOF Metric df Fsession psession Fgroup·session pgroup·session

Elbow Norm speed (9, 108) 2.43 0.062 0.95 0.444
MAPR (9, 108) 2.22 0.076 1.34 0.265
SAL (9, 108) 3.22 0.034 2.75 0.058

PS Norm speed (9, 90) 2.63 0.009 1.02 0.428
MAPR (9, 90) 2.12 0.122 1.23 0.318
SAL (9, 90) 1.34 0.277 0.53 0.678

FE Norm speed (9, 81) 1.94 0.151 1.16 0.341
MAPR (9, 81) 2.27 0.025 0.73 0.683
SAL (9, 81) 2.36 0.112 0.85 0.456

RUD Norm speed (9, 81) 2.72 0.008 3.01 0.004
MAPR (9, 81) 1.95 0.057 2.49 0.015
SAL (9, 81) 2.15 0.124 3.73 0.027

N= (AAN, ST): N= (7, 7) for elbow. N= (6, 6) for wrist PS.
N= (6, 5) for wrist FE. N= (6, 5) for wrist RUD.
Significance values are included under column “p.” Values are in bold if they are significant
at p < 0.05. The chosen significance level is reported in the Materials andMethods section.

4.2. Clinical Measures
Clinical assessments were conducted prior to the start of the
therapy protocol, then at the conclusion of the therapy ses-
sions. Retention was assessed by conducting these assessments
again at 2 weeks and 2months post-treatment. The impact of the
robotic rehabilitation intervention can be evaluated by comparing
changes in these metrics from pre- to post-treatment, and also by
analyzing the retention at follow-up assessments.

No significant effect of session was extracted in the analysis
of the effect of session in the primary outcome measure, i.e., the
ARAT score, nor of the interaction between session and group.
From analysis of the ARAT clinical metric at each session, it
can be seen that the ST group shows an increase of roughly one
point in ARAT score with respect to the baseline at the post-
therapy time point, which is sustained in the subsequent follow-
ups. Alternatively, the ARAT score in the AAN group initially
decreases, while later increasing to an average change in ARAT
score of 4.33 points at the 2-month mark, a gain that is greater
than that of the ST group. Due to the subjective nature of the
clinical assessments, minimally clinically important differences
(MCID) are introduced to define a clinically significant increase in
ametric.MCIDs attempt to account for variability from test–retest

FIGURE 9 | Longitudinal outcomes for spectral arc length (SAL) showing change in metric for each training session relative to training session T1 for elbow [upper
left], wrist PS [upper right], wrist FE [lower left], and wrist RUD [lower right]. Positive values indicate smoother movements than exhibited in T1. Linearly increasing
trends indicate continuous improvement in movement smoothness during the course of therapy. The legend indicates the number of subjects who completed the
task at each training session. Error bars extend to ± the standard error for the group.
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TABLE 5 | Linear regression slope and confidence interval for robotic metrics.

Normalized speed [1/session] MAPR [%/session] SAL [1/session]

AAN ST AAN ST AAN ST

Elbow 0.0052± 0.0007 0.00071±0.0011 0.57± 0.086 0.058±0.071 0.063± 0.012 0.00102±0.0033
PS 0.0053± 0.00065 0.0018± 0.0017 0.166± 0.068 0.11±0.14 0.021± 0.0085 0.018± 0.0066
FE 0.0078± 0.0009 0.00046±0.0011 0.823± 0.12 0.25± 0.14 0.12± 0.020 0.062± 0.018
RUD 0.0086± 0.0012 −0.00033±0.00144 0.664± 0.13 0.204± 0.1324 0.11± 0.014 −0.0018±0.0055

and inter-rater reliability effects. In stroke, the MCID for ARAT is
5.7 points (van der Lee et al., 2001), while it is not established for
iSCI. Thus, the observed increase in the AANgroup is likely to not
be clinically significant.

The GRASSP Strength and GRASSP Sens metrics were the
only two metrics showing a statistically significant effect of ses-
sion at (p= 0.031 and p= 0.002, respectively); however, no sig-
nificant interaction between group and session was measured.
The significant increase in the GRASSP Strength metric was
expected, as repetitive use over time of muscles should increase
their strength. The increase in the GRASSP Sens metric, however,
was unanticipated, as we are not focusing any of the training
efforts on increasing the subject’s touch perception as a part of the
robotic therapy. A possible explanation would be that the forced
repetitions caused the subject to engage their arms more than
they were used to, which resulted in more familiarity with the
arm and thus a heightened sense of perception. As the GRASSP
Sens metric was not considered as a primary outcome measure,
further research is necessary to draw any conclusions from this
finding.

Changes inMAS relative to baseline are relatively small; neither
group showed any meaningful change at the follow-up sessions
with respect to the baseline. The AAN group had a decrease
in MAS score of 0.11, 0.13, and 0.08 for the post-treatment,
2-week, and 2- month follow-up, respectively, whereas the ST
group demonstrated an increase of 0.16, 0.27, and 0.13. The
MCID for MAS has not been established yet. However, given
that the MAS scale ranges from 0 to 4 and given that in a
comparable study in stroke the minimal detectable change was 1
point (Shaw et al., 2010), these small differences in the pre–post
analysis do not indicate a meaningful change in the metric
over time.

Finally, we observe that both groups increase their grip and
pinch score relative to baseline, and that the increased score is
sustained in subsequent follow-up visits. The ST group begins
at 25.3N and is relatively constant until the 2-month follow-up,
where it decreases to a relative measurement of 17.3N. The AAN
group is relatively stable with an improvement of 17.8N from
the post-treatment to the 2-week follow-up and then increases to
32.2N at the 2-month follow-up.

4.3. Robotic Measures
A richer insight into the impact of robotic controllers on move-
ment quality is provided by the longitudinal analysis of movement
quality data along the therapy program, as provided by the robotic
metrics SAL, MAPR, and normalized speed. Both groups exhibit

an increase in the robotic metrics over the course of the therapy
program, as visible from Figure 9, although the significance of the
factor session in the robotic metric ANOVA varies within a given
joint depending on the specific metric considered. A significant
interaction between group and session was measured only for
wrist RUD movements. From the longitudinal analysis of robotic
evaluation data, it can be observed that the AAN group showed
significant improvement in all DOFs, while the ST group showed
statistically significant improvement in only wrist PS and wrist FE
(Figure 9).

Analysis of repeated measurements obtained during the ther-
apy program illustrate fluctuations in the observed movement
smoothness, which illustrate how subjects can perform differ-
ently depending on fatigue or other factors from one day to the
next. These fluctuations could also be occurring in the baseline
and follow-up analysis, making pre–post comparisons insensi-
tive to trends that can only be observed through the longitudi-
nal analysis. By comparing all of the therapy sessions, we have
many more data points which allow for a general trend to be
observed with diminished influence of day-to-day variations in
performance. These observations are really only feasible if using
assessments that can be gathered as part of the therapy proto-
col, such as via the evaluation trials that we incorporated into
this study design, and computed with readily available data. It
is impractical to conduct clinical assessments such as ARAT
at every training session due to the time constraints of typical
therapy sessions. This observation supports the value of robotic
measures of movement coordination as a practical tool useful
for evaluation of recovery of motor function during robot-aided
therapy.

5. CONCLUSION

This paper presents the results of a parallel-group controlled
trial (PGCT) to test the efficacy of a novel AAN controller
in robotic rehabilitation after incomplete spinal cord injury.
With its design features (presence of an active control condi-
tion, blindness of the evaluator to treatment assignment, and
execution of a power analysis for the primary study outcomes),
this study falls within the category of stage 2, development-of-
concept pilot studies, despite the relatively small sample size
emerging as a result of the power analysis (N = 20). As such,
to the best of our knowledge, this is the first time this type of
study has been conducted in the field of robot-assisted ther-
apy for upper extremity rehabilitation in incomplete spinal cord
injury.
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We present details on the methods of our study, including thor-
ough descriptions of the controllermodes and treatment regimens
implemented on the MAHI Exo-II upper limb exoskeleton robot.
We have introduced methodological features in the study design
which are of interest to the rehabilitation robotics community.
In particular, the presented scheme of sequential group assign-
ment with covariates minimization guarantees the desired level of
balance of covariates in the two groups, a feature that cannot be
reliably achieved with unrestricted randomization in studies with
low (N < 50) sample sizes (Schulz and Grimes, 2002).

The results presented in this paper highlight its two major
contributions. First, we presented data to validate the opera-
tion of our assist-as-needed (AAN) robotic controller to adjust
controller gains and allotted times for movement completion to
modulate the challenge and assistance provided to the subject
in an automated fashion. The automated nature of assistance
modulation via gain adjustment and challenge modulation via
changing of the allotted time for movement completion were
comparable to the progression of challenge achieved manually
with the subject-triggered (ST) controller. With the ST control
approach, the therapist adjusted challenge of treatment delivery by
manually controlling the force threshold for initiating movement
via a GUI, and challenge via coaching and encouragement to
elicit faster movements. The results demonstrate for the first time
in an impaired population the modulation of AAN controller
action in response to subject performance throughout a therapy
regimen.

Our second contribution involves the analysis of the differ-
ential effects of a novel controller for robot-aided rehabilitation
therapy on patients affected by iSCI. This analysis has been con-
ducted using both clinical metrics (collected at baseline, post-
treatment, and at two follow-up sessions) and robotic metrics
(collected longitudinally during the therapy program). Only weak
gains were observed in the clinical outcome measures, with no
support for either controller showing a clinically nor statistically
significant increase in clinical metrics.While some improvements
(such as with the GRASSP metric) were statistically significant,
the observed gains failed to translate into clinically meaningful
findings. Despite this weak result, longitudinal analysis of robotic
measures shed light on the session-by-session changes in subject
performance in terms of the movement quality metrics derived
from robot kinematic data. The AAN group consistently showed
improvement in performance across all DOFs and all roboticmea-
sures of movement quality, while the ST group showed smaller
gains confined to only a subset of the metrics and DOFs. Based
on these findings, further research is warranted to evaluate the
potential of AAN control strategies for robotic rehabilitation of
the upper limb following incomplete SCI. Given the continually

improving performance of the AAN group in our study, ther-
apy protocols incorporating a greater number of therapy ses-
sions may achieve minimally clinically significant differences in
clinical outcomes that we were unable to demonstrate in this
study.
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