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Abstract— Rehabilitation exoskeletons may make use of my-
oelectric control to restore in patients with significant motor
impairment following a spinal cord injury (SCI) a sense of
volitional control over their limb - a crucial component for
recovery of movement. Little investigation has been done
into the feasibility of using surface electromyography (sEMG)
as an exoskeleton control interface for SCI patients, whose
impairment manifests in a highly variable way across the
patient population. We have demonstrated that by using only a
small subset of features extracted from eight bipolar electrodes
recording on the upper arm and forearm muscles, we can
achieve high predictive accuracy for the intended direction of
motion. Five healthy subjects and two SCI subjects performed
voluntary isometric contractions while wearing an exoskeleton
for the wrist and elbow joints, generating six distinct single and
multi-DoF motions in a total of sixteen possible directions. Using
linear discriminant analysis, classification performance was
then evaluated using randomly selected holdout test data from
the same recording session. Commonalities across subjects,
both healthy and SCI, were analyzed at the levels of selected
features and the values of commonly selected features. Future
work will be to investigate group-specific classification of SCI
subjects’ intended movements for use in the real-time control
of a rehabilitation exoskeleton.

I. INTRODUCTION

Rehabilitation after spinal cord injury (SCI) is largely
composed of repetitive movements over long time periods
with the goal of inducing plasticity in the nervous system.
Such training has been shown to increase muscle strength
and coordination [1], [2]. Rice University’s Mechatronics and
Haptic Interfaces (MAHI) Lab has recently demonstrated the
feasibility of their rehabilitation exoskeletons for facilitating
motor recovery after incomplete SCI [3]. Despite these
successes, the reach of this work is limited to individuals
with mild to moderate impairment, since participants must
initiate and sustain movement in order to realize the greatest
benefit from the therapy.

One popular technique for measuring the voluntary muscle
contractions of individuals, healthy or otherwise, is surface
electromyography (sEMG), or simply EMG. Much research
has gone into investigating the complicated relationship
between EMG waveforms and joint torque [4]. Knowing
that this relationship exists suggests that EMG is a useful
measurement for assistive and rehabilitation robotic devices,
and indeed myoelectric control interfaces have been designed
for such devices since their early implementation [5]. We
aim to design EMG-triggered rehabilitation exoskeletons for
patients having an incomplete spinal cord injury (iSCI),
a population that has historically seen less attention from

researchers than, say stroke survivors due to their smaller
numbers. Following recent efforts to characterize the EMG
patterns of patients with iSCI for producing motion of either
the hand [6], or the elbow and wrist [7], we wish to integrate
this new knowledge into a myoelectric control system for the
control of the MAHI Exo-II, an upper-limb rehabilitation
exoskeleton for the elbow and wrist, to better serve the iSCI
patient population.

Fig. 1: MAHI Exo-II rehabilitation exoskeleton with the
user’s arm wrapped in a neoprene sleeve for insulation. The
top-left insert is the target screen with the cursor that is
displayed to the user.

The work presented in this paper is an exploration of the
EMG characteristics of both healthy and iSCI subjects while
wearing and operating the exoskeleton, Fig. 1. The subjects
generated isolated single and multi degree-of-freedom (DoF)
voluntary isometric contractions in sixteen possible direc-
tions. This work is a first step toward achieving EMG control
of multi-DoF, coordinated movements of the upper-limb -
clinically viable implementations of such systems have yet
to be produced in either exoskeletons or smart prostheses.
We have demonstrated that by using a very small subset
of the EMG time domain features, we can achieve average
prediction sensitivity of 82% for healthy subjects and 66%
for SCI subjects when selecting the intended direction of
motion out of all sixteen single and multi-DoF possibilities.
This performance was achieved using a commercial sEMG
recording system with eight bipolar electrodes, suggesting
that this number of electrodes and features may contain suf-
ficient motor control information to support a rehabilitation



protocol for iSCI patients utilizing myoelectric control of the
robot in single and multi-DoF movements.

Powered assistive devices for the ankle [8], the hip and
knee [9], the elbow [10], [11], and even shoulder, elbow,
and wrist [12], [5] have all been designed and implemented
with some form of myoelectric control. Most of these have
been designed specifically for use in rehabilitation of persons
following an injury, such as an iSCI. Though the goal of
designers of rehabilitation robots, as well as the designers of
smart prosthetics, is to achieve simultaneous and proportional
control of multiple degrees of freedom of the arm and/or
hand, creating such a system that is robust and reliable is
still very much an open research question [13].

Problems such as inter-subject variability in the EMG
signal are only amplified when considering a patient pop-
ulation such as SCI. In contrast, there has been considerable
success in using pattern recognition (PR) techniques on EMG
recordings of the muscles in the upper limb to recognize
intended poses or directions of movement from patients
with a wide variety of impairments [14], [15]. As it is our
goal to give voluntary control of the exoskeleton to patients
with a significant level of impairment, the identification of
intended movements from EMG patterns is a worthwhile
pursuit - even though it lacks the fluidity and possibility
for continuous engagement that proportional control could
provide, PR still gives users a sense of voluntary control over
the limb while inside the exoskeleton. Though our stated
goal is to utilize this EMG controller to assist individuals
with no residual movement capability, the individuals with
SCI who could be recruited to participate in this study could
produce forces and motions detectable by the robot. Nev-
ertheless, the SCI participant’s muscle activity, as measured
by sEMG, had been affected by the injury; therefore, by
ignoring any residual motion we are simulating the desired
situation. It should also be noted that the EMG based con-
troller has significant advantage over the residual movement
based controller because it can respond selectively to certain
undesirable muscle activation patterns, e.g. significant co-
contraction of the muscles, to which the movement based
controller is blind.

The pattern recognition approach to myoelectric control
is carried out in discrete steps. During a training phase
subjects make voluntary contractions that are associated with
predefined movements or poses, which constitute the user’s
intention. Next, certain features defined by the investigators
are extracted from the recorded EMG waveforms for each
observation of a user’s voluntary contraction. A classification
algorithm is then trained based on the extracted features
and, in the case of supervised learning, the known labels
of the user’s intention. Parameters of the classifier are tuned
according to the training data so that it may predict the user
intention when presented with future observations of feature
sets.

In [6], Liu and Zhou began investigating the motor control
information that could be extracted from high-density surface
EMG (HD-EMG) recordings on patients following incom-
plete cervical SCI. In their work they showed that indeed

sufficient information could be extracted in order to predict
different desired hand grasp patterns of the user, indicating
that myoelectric pattern recognition techniques held potential
for the control of assistive and rehabilitation devices for
individuals with SCI. Their approach was to classify patterns
using both the linear discriminant analysis (LDA) and k-
nearest neighbor (KNN) classifiers, with results showing that
both methods could achieve average overall classification
accuracy higher than 97 %. Further investigation by Liu et al.
into methods of classification were presented in [16], where
it was shown that there is a great amount of redundancy
amongst the many high-density electrode channels, as well as
redundancy within the features of a single electrode channel.
Therefore, a small fraction of the available features can be
selected to classify the data with minimal losses in accuracy.
This is useful for speed of training and implementation of
classification algorithms, and additionally as a means to
identifying the most relevant information contained in the
EMG signal. In our work, we explore the problem of feature
selection using the easily accessible built-in capabilities
of MATLAB’s Statistics and Machine Learning Toolbox,
specifically, the neighborhood component analysis (NCA)
method of feature selection [17].

Rojas-Martinez et al. have investigated the use of HD-
EMG spatial patterns in learning the intended movements of
the elbow and wrist for both healthy subjects and subjects
with cervical iSCI [18] [19]. They have shown the effective-
ness of LDA and support vector machine (SVM) classifiers
in predicting intended isometric motor tasks from individual
subjects, and for the first time the possibility of group-
specific intention prediction for iSCI patients [7]. Though our
current methods for intention classification are only subject
specific, we present analysis of feature selection and feature
distributions across subjects with the aim of generalizing to
group-specific classification in the future.

Another significant difference between our methods and
those discussed thus far is our use of a more conven-
tional, commercial sEMG recording system with eight bipo-
lar electrodes that we have placed over individual targeted
muscles. One of the factors for this decision is that HD-
EMG recording arrays are still a relatively new technology
and are more challenging to use effectively by those with
limited expertise in the field of neurophysiology. In the
same vein of reasoning, our ultimate goal is to develop a
system that is as easily operated by a physical therapist as
possible. It is therefore pertinent to ask what can be achieved
by a traditional sEMG recording system that requires less
intensive preparation and simpler data processing methods,
despite the potential loss of information that is represented
in the HD-EMG.

II. METHODS

We set out to quantify the sEMG patterns of activity of
eight muscles in the upper limb during four single-DoF and
two multi-DoF movements within our robotic exoskeleton.
Five healthy subjects (4 male, 1 female, ages 22 -50) and two



subjects with cervical-level iSCI (both male, injury level C5-
C7 incomplete, and at least 10 years post-injury) participated
in this study. Using a selected subset of time-domain features
of the EMG waveform, linear discriminant analysis (LDA)
was used to classify the types of movements within single-
DoF, multi-DoF, and combined datasets. LDA is a relatively
simple algorithm that could be used to distinguish between
the various DoFs and directions of motion for a future real-
time controller, and it has become a standard approach in
the literature.

A. EMG-Equipped MAHI Exo-II

The MAHI Exo-II is a robot exoskeleton designed for
the rehabilitation of the elbow, forearm, and wrist [20].
It features capstan driven joints, serial elbow flexion and
extension (EF/EE) and forearm pronation and supination
(FP/FS) joints, and a parallel mechanism for wrist flexion and
extension (WF/WE) and radial ulnar deviation (WR/WU).
The robot is capable of outputting 7.35 Nm of torque for
the elbow DoF, 2.75 Nm for the forearm, and 1.45 Nm for
both wrist axes. It features passive gravity compensation at
the elbow joint. The MAHI Exo-II is equipped with optical
encoders at each of the motors, from which we can extract
position and velocity of all DoFs.

The Delsys Bagnoli EMG system provides us with eight
channels of sEMG data. The variable gain for the channel
amplification was set to 1000. All data was read into our data
acquisition system, the Quanser Q8-USB, sampled at 1 kHz.

B. Experimental Protocol

This experiment was designed to record the subject’s
sEMG signals for selected muscles during elbow, forearm,
and wrist movements while they were held in an isomet-
ric pose by the exoskeleton. This analysis was performed
for six different sets of DoFs. Four of these tests were
done for single-DoF motions corresponding to elbow flexion
and extension (EF/EE), forearm pronation and supination
(FP/FS), wrist flexion and extension (WF/WE), and wrist
radial and ulnar deviation (WR/WU). The other two tests
were performed with multi-DoF combinations of these joints:
combined elbow flexion and extension and forearm pronation
and supination, and combining the two wrist DoFs.

Before the experiment, the height and shoulder abduction
angle of the MAHI Exo-II were adjusted so the subject
could hold their arm in a natural position with the elbow
flexed while seated. The position of the chair relative to the
exoskeleton was adjusted to keep both shoulders at equal
heights and to keep the shoulder in the scapular plane (∼30◦

from the frontal plane). Subjects were instructed not to move
their torsos or shoulders during testing but restraints were not
used to enforce this. The wrist handle location was positioned
to provide a maximum range of motion while the subject held
it in a natural grip. The elbow passive gravity compensation
counterweight was set so that the subject was able to rest
their elbow in the flexed position. The exoskeleton can be
configured for left and right handed individuals, so the user′s
dominant arm was chosen for the experiment.

A Bagnoli-8 sEMG system (Delsys, Inc.) was used to
collect sEMG signals from muscles that control the elbow,
forearm, and wrist. The arm was first cleaned using isopropyl
alcohol wipes. The upper half of the forearm and the lower
half of the upper arm were shaved with a disposable razor to
remove hair and dead skin. The target muscles for the sEMG
electrodes were chosen as agonist-antagonist pairs for each
of the DoFs. Muscles were chosen based on the experiment
performed by Gopura et al. [21] as to minimize the noise
and cross-talks associated with overlapping muscles. Muscles
were located and palpated using guidelines enumerated in
Table I. It should be noted that these muscles contribute to
motion in multiple DoFs and not solely to the motion listed
in the same row of Table I.

TABLE I: Selected Muscles and Corresponding Electrode
Locations

Movement Muscle Location and
Palpation

Elbow Biceps brachii Front of the upper
Flexion (EF) (BB) arm, 1/3 of the way

up from the elbow
Elbow Triceps brachii Posterior side of

Extension (EE) (TB) the upper arm, 1/3
of the way up from

the elbow
Forearm Pronator teres Medial side of the

Pronation (FP) (PT) cubital fossa,
pronating against

resistance
Forearm Supinator Outside of the

Supination (FS) (S) forearm below the
lateral epicondyle
supinating against

resistance
Wrist Flexor carpi On the forearm

Flexion (WF) radialis below the medial
(FCR) epicondyle by

flexing and radial
deviation of the wrist

Wrist Extensor carpi Lateral side of the
Extension (WE) ulnaris forearm, extending

(ECU) and ulnar deviation of
the wrist

Wrist Radial Extensor carpi Top of the forearm
Deviation (WR) radialis longus lateral of the

(ECRL) brachialis, extending
and radial deviation

of the wrist
Wrist Ulnar Flexor carpi Bottom of the

Deviation (WU) ulnaris forearm medial to
(FCU) the ulna, felt during

ulnar deviation of
the wrist

Once inside the exoskeleton the subject was strapped to
the robot at the upper forearm and the hand. The neutral
position of the robot handle was adjusted to match the length
of the subject′s forearm, and the neutral orientation of the
handle was always set to the mid-pronated position and
perpendicular to the forearm. The subject was instructed to
place the back of their upper-arm in contact with the pad
on the back of the exoskeleton. Neoprene wrapping was
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Fig. 2: Approximate locations for each sEMG electrode
labeled by muscle. Following the organization of Table I,
muscles associated with the movement EF/EE are labeled
in blue, FP/FS in red, WF/WE in green, and WR/WU are
labeled in purple.

used to insulate the sEMG electrodes from the metal of the
exoskeleton and the electrical interference from the motors.

Subjects completed blocks of trials with 1 min breaks
in between each block of movements. Each block involved
only one set of the single or multi-DoF movements. Before
testing, subjects were presented with practice sessions for
each DoF to familiarize themselves with the exoskeleton
motion and timing of the isometric contractions. For this
experiment the subjects were instructed to direct effort along
a specified DoF while the robot held their arm in an isometric
pose. There were three different isometric poses for each
DoF: one at the upper end of the range of motion, one
a the midpoint, and one at the lower end of the range
of motion. A flashing target and an arrow pointing from
it prompted the subject to initiate effort in that direction.
Following a 2-second contraction window, the user was
moved by the exoskeleton to the next isometric position
over an approximately 2-second transition, given 1 second
of rest in the new position, and then started the next 2-
second contraction window. Users were instructed to remain
passive as the exoskeleton moved between isometric posi-
tions meaning they should limit voluntary contractions but
no steps were taken to enforce this condition. Each subject
was presented with fifteen repetitions of each direction of
a reaching movement in a pseudo-random order. With two
directions per single-DoF motion and four directions per
multi-DoF movement, this resulted in 60 and 120 trials per
block respectively.

C. Data Analysis

The eight EMG channels all went through the same post-
processing steps that have now become almost standard for
sEMG data, namely, band-pass filtering at 20-450 Hz (fourth-
order butterworth filter) and removal of the mean. The data
from each electrode was also normalized by dividing by
the maximum voltage recorded on that electrode throughout
the entire session, producing a signal referred to as the
electrode excitation. This was chosen instead of normalizing
to the maximum voluntary contraction because the maximum
voluntary contraction value is highly dependent on the task
designed to measure it, and can potentially be exceeded
during experiments.

Data collected from all channels was segmented according
to the automated cues provided to the user through the
visual interface. Each isometric contraction took place within
a 2-second window, within which a 200 ms window was
identified as the time of constant voluntary contraction.
This smaller window was identified from the user’s joint
torque in the appropriate DoF, as estimated by the robot’s
commanded motor currents. This torque measurement also
served as a check to ensure that user’s were producing
contractions in accordance with the on-screen targets and
guard against mislabelling. The segmented data was used to
isolate time-domain features from the sEMG waveforms. The
time domain features that were collected were the normalized
root-mean square (nRMS), normalized mean absolute value
(nMAV), normalized waveform length (nWL), normalized
number of zero crossings (nZC), normalized number of slope
sign changes (nSSC), and the four-order autocorrelation co-
efficients (AR1, AR2, AR3, AR4). Data was partitioned for
10-fold cross validation and the sEMG time-domain features
were analyzed and selected to minimize the classification
error using the MATLAB function fscnca().

Using the selected features, classification of movements
based on EMG features was performed using the built-in
MATLAB linear discriminant analysis (LDA) algorithms.
The prediction error was evaluated by using holdout evalua-
tion to randomly divide the features and labels into a training
and testing set. The training set was 80% of the total data
with the remaining 20% set aside for evaluating prediction
accuracy. The selected features with cross-validation error
and the prediction error from the LDA were reported to
asses the feasibility of developing a real-time controller for
a population of subjects based on that scheme.

III. RESULTS & DISCUSSION
A. sEMG Feature Selection

There were eight channels of sEMG data corresponding to
eight different muscles and 9 time domain features (nRMS,
nMAV, nWL, nZC, nSSC, AR1, AR2, AR3, AR4) totaling
72 features for each movement. To identify the features
that show distinct differences depending on the direction
of movement (class) a Neighborhood Component Analysis
(NCA) was used. This analysis was performed in isolation
for each subject, creating a subject-specific set of features
to be used for classification. For each subject, the NCA
analysis was performed for three different groups: all single-
DoF motions, all multi-DoF motions, and the combined
data from all the single and multi-DoF motions. For single-
DoF classification, the algorithm identified an average of 10
relevant features for each subject to be used for classification.
For multi-DoF classification, the algorithm identified an
average of 11 relevant features for each subject to be used for
classification. For the combined data the algorithm identified
an average 17 features for each subject to be used for
classification. The subject-specific sets of features were used
for the classification algorithm shown in Section III-C. The
selected features for single-DoF and multi-DoF datasets are
shown across all subjects in Fig. 3.
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(b) Multi DoF

Fig. 3: Frequency of selection for features using the NCA
algorithm for single and mutli-DoF movement classification.
Color indicates the percentage of subjects for which a certain
feature was chosen out of all subjects. Feature descriptions
are given in subsection II-C.

The selected features were narrowed further based on
the frequency at which they were selected by the NCA
algorithm. A threshold of being selected at least 70% of the
time was applied to select a set of features for comparison
across populations. This threshold resulted in four features
identified to be used to classify within the single-DoF group,
four for the multi-DoF group, and seven features for the
combined group. These identified features were used to
compare the healthy and SCI populations in Section III-B.
The main features that were selected are nRMS, nMAV, and
AR. If a real-time controller is implemented, nWL, nZC,
and nSSC could be disregarded to improve speed because
they were never selected by the classifier. It should be noted
that nRMS and nMAV are somewhat similar in meaning,
both being a measure of the EMG amplitude. Additionally,
most of the features selected pertained to motion in the
forearm and wrist. The wrist and forearm are active in elbow
movements as well to stabilize the wrist on the handle. This
could be why muscles that primarily flex and extend the
elbow do not seem to be as significant for classification.

B. sEMG Feature Comparison

Multi-DoF data for elbow/forearm and wrist modes are
presented in Fig. 4. The features shown in the plot were
the narrowed NCA features selected from the combined
dataset. An average of each feature across all observations
of a specific movement was taken for each subject. The
data shown in Fig. 4 is a distribution of the means for
each features for the healthy population. The means for each
feature for both SCI subjects are shown as purple and green
dots.

It can be seen in Fig. 4 that the nMAV is higher for
muscles mapped to a motion while the subjects are per-
forming that motion (i.e. high S MAV during supination
movements). This helps to validate our methods in mapping
muscles to motions and our electrode placement scheme.
High variability within the means of features was observed
among healthy population. This is in part because we did not
include a way to monitor or control user effort. A force and
torque sensor will be integrated in the exoskeleton handle

for future studies to monitor this. Some variability is still
anticipated, but equalizing the users’ effort levels should
make these values less variable.

In some instances the means for the two SCI subject’s
features are well outside of of the healthy population’s
distribution. This seems to happen more for the pronator
teres and supinator muscle groups. This could be due to
the difficulty of palpating these smaller muscles for this
population, a higher loss of function in these specific areas,
or a combination of these factors. Co-contraction could be
possible as well (i.e. high PT nMAV during supination).

The two SCI subjects compared closer to the healthy
distribution for wrist movements and were more commonly
within one standard deviation of the healthy population’s
mean. This could potentially be due to the lower effort levels
required to reach these targets.
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Fig. 4: Magnitude of selected features - averaged across trials
- for four different wrist multi-DoF movements that are com-
binations of movements listed in Table I. Box plots represent
distributions of healthy subject data, and SCI subjects 1 and
2 are shown as purple and green dots, respectively.

C. Classification

The performance of the classifier using the subject-specific
NCA selected features is shown in Fig. 5, and was evaluated
using the approach in [7].

Overall, the classifier performed better for the healthy
population than the SCI population, as might be expected.
Accuracy was very high for all groups, making an LDA
classifier a strong candidate for use in future exoskeleton
controllers. The classification sensitivity was 82% for the
healthy population for selecting the intended direction of
motion from 16 possible motions (the most challenging
classification task), and sensitivity was 66% for the two SCI
subjects for a set of the same 16 possible motions.
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(c) Single DoF SCI
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(d) Multi DoF SCI

Fig. 5: Classification performance across subjects is reported
as a confusion matrix for single and multi-DoF motion
classifiers in both healthy participants and those with SCI.
Color indicates the percentage of positive classifications out
of 6 total instances of each class in the testing data set.

IV. CONCLUSIONS

Our integrated robotic exoskeleton and sEMG recording
system for rehabilitation following SCI has been shown
to accurately predict the intended single and multi-DoF
movements of both healthy and SCI subjects using a very
small subset of the EMG waveform features extracted from
only eight bipolar electrodes. This suggests that eight sEMG
channels may contain sufficient motor control information to
support a rehabilitation protocol for iSCI patients utilizing
myoelectric control of the robot in single and multi-DoF
movements, without having to resort to high-density EMG
arrays. A subset of amplitude features and autocorrelation
features from the EMG signal have been identified as par-
ticularly useful for this classification task. Our future work
will be to evaluate the performance of an LDA classifier
that is trained on an entire group, potentially alleviating the
need for intensive classifier training. In order to improve the
consistency of our EMG data collection, we will be incorpo-
rating force/torque sensing into the robotic exoskeleton. In
the future, we will work with more iSCI subjects to evaluate
the efficacy of a real-time EMG-controlled exoskeleton for
rehabilitation.
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