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Velocity-Domain Motion
Quality Measures for Surgical
Performance Evaluation
and Feedback
Endovascular navigation proficiency requires a significant amount of manual dexterity
from surgeons. Objective performance measures derived from endovascular tool tip kine-
matics have been shown to correlate with expertise; however, such metrics have not yet
been used during training as a basis for real-time performance feedback. This paper eval-
uates a set of velocity-based performance measures derived from guidewire motion to
determine their suitability for online performance evaluation and feedback. We evaluated
the endovascular navigation skill of 75 participants using three metrics (spectral arc
length, average velocity, and idle time) as they steered tools to anatomical targets using
a virtual reality simulator. First, we examined the effect of navigation task and experi-
ence level on performance and found that novice performance was significantly different
from intermediate and expert performance. Then we computed correlations between
measures calculated online and spectral arc length, our “gold standard” metric, calcu-
lated offline (at the end of the trial, using data from the entire trial). Our results suggest
that average velocity and idle time calculated online are strongly and consistently corre-
lated with spectral arc length computed offline, which was not the case when comparing
spectral arc length computed online and offline. Average velocity and idle time, both
time-domain based performance measures, are therefore more suitable measures than
spectral arc length, a frequency-domain based metric, to use as the basis of online per-
formance feedback. Future work is needed to determine how to best provide real-time
performance feedback to endovascular surgery trainees based on these metrics.
[DOI: 10.1115/1.4049310]

1 Introduction

Minimally invasive endovascular procedures are increasingly
becoming the intervention of choice, given their numerous post-
operative and functional advantages over open surgery. These pro-
cedures are especially preferable for individuals who are either
ineligible for open surgery or who face high risk due to comorbid-
ities or advanced age [1–3]. Endovascular procedures cover a
wide range of diagnostic and therapeutic interventions, such as
aortic valve placement, carotid artery stenting, and aortic aneu-
rysm repair [2,4–7], and can result in significantly shorter opera-
tion times and hospital stays, lower complication rates, less blood
loss, and lower rates of postoperative mechanical ventilation and
atrial fibrillation than the equivalent open procedures [3,8].

Surgeons perform endovascular procedures by navigating flexi-
ble tools inserted into the body at a small incision. These proce-
dures generally involve guidewires to provide and maintain access
to anatomical structures, such as the site of an aneurysm. Surgeons
can then introduce catheters to visualize anatomical structures
using radiographic contrast and deploy devices such as endografts
or replacement heart valves [4,8]. Depending on the procedure,
surgeons may navigate these tools within a sheath to further
improve vessel access and reduce the risk of vascular injury [4].
The flexible nature of these tools gives rise to complex interac-
tions within the vascular environment characterized by a nonlinear

mapping between proximal motions made by the surgeon and
resultant tool tip motions. These elements of endovascular naviga-
tion require surgeons to undergo a substantial amount of training
to acquire proficiency.

Ensuring surgeons’ proficiency in endovascular navigation is
central to improving postoperative outcomes. Repeated practice is
necessary for skill acquisition, and minimally invasive procedures
like endovascular surgery may require more or specialized practice.
For example, despite observing lower amounts of blood loss and
atrial fibrillation during endovascular aortic valve replacement
compared to traditional surgical methods, Smith et al. attributed
observations of a higher rate of stroke, transient ischemic attacks,
and major vascular complications to a protracted learning curve [3].
Similar observations in valvuloplasty and pulmonary valve replace-
ment indicate a relationship between experience level and lower
procedure times, as well as a longer time before reoperation is nec-
essary [9,10]. Such findings highlight the need for surgical training
that incorporate objective assessment and performance feedback.

Traditional approaches for assessing surgical performance con-
sist of checklists and global rating scales such as the objective
structured assessment of technical skill and the Imperial College
evaluation of procedural skill for measuring general and proce-
dural skills [11,12]. For endovascular performance assessment,
the recommended tool for assessing procedural efficiency and
autonomy, fluoroscopic imaging and contrast use, device deploy-
ment, and tool manipulation is the global rating assessment device
for endovascular skill [13]. These approaches remain subjective
and retrospective in nature and require time and resources from
several examiners, usually senior-level attending physicians [14].
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To address these challenges, there is a growing body of
research exploring the use of tool motion data from instrumented
or simulated surgical tools as the basis for quantitative and objec-
tive performance assessment [15–17]. Kinematic and force data
obtained directly from surgical procedures can provide a basis for
more comprehensive assessment frameworks, with techniques
ranging from validating global performance metrics to developing
probabilistic models with motion data from experienced surgeons
[18–20]. Virtual reality simulators, such as the one shown in
Fig. 1, provide a means to acquire tool motion data and test meth-
ods for real-time performance feedback.

While there has been a considerable effort along these lines for
laparoscopic and robotic surgery, application to the endovascular
domain remains underdeveloped. Previous studies have estab-
lished that movement smoothness, a performance metric used in
human motor control research that strongly indicates healthy and
coordinated movement, provides a promising means for objective
performance evaluation in endovascular procedures, given its
strong correlation with experience level determined by global rat-
ing scales across manual, simulation, and robotic platforms
[16,21]. In these works, data analysis was performed after collect-
ing data from the entire navigation task, as challenges in extract-
ing tool tip motions from the various platforms and substantial
data processing efforts precluded real-time or near real-time
analysis.

1.1 Motivation for Online Performance Feedback. Train-
ing and practice can improve manual dexterity, and the provision
of performance feedback can improve training outcomes [22].
Most endovascular training uses offline feedback, or feedback that
is provided after the conclusion of a surgical task or procedure.
For example, the results of assessment with global rating scales
are often presented after the completion of navigation tasks.
Online performance feedback, defined as feedback that is pro-
vided to trainees as they train, either in real-time or in near real-
time, remains underexplored. In our prior work, we surveyed
trainees performing a set of endovascular navigation tasks on a
commercial surgical simulator and found that they were interested
in receiving both offline and online performance feedback [23].
Over 50% of novice participants indicated their preference for
receiving online feedback as a feature included in future iterations
of the system. Intermediate and expert participants also showed a

desire for receiving online feedback, although the number of sur-
vey responses for these groups were much smaller than that of the
novice group. Overall, novices and intermediates indicated a pref-
erence for some form of feedback over none, while experts prefer-
ring either online feedback or no feedback [23].

Online performance evaluation techniques are being tested in
other surgical disciplines such as assessment of bone surgery
training using virtual reality, real-time assessment of tissue trauma
during laparoscopic surgery, and for robotic surgery [22,24–26].
To date, automatic performance evaluation for endovascular tech-
niques has used hidden Markov models as a basis for online evalu-
ation and haptic guidance using proximal guidewire and tool tip
motions [20,27].

An alternative technique to using generative models for training
and evaluation is to use global performance measures known to be
correlated with surgical expertise as a basis for performance feed-
back. In Jantscher [28], a frequency-domain movement smooth-
ness measure known as spectral arc length (or SPARC [29]) was
calculated online and provided to trainees during a mirror-tracing
task that emulates endovascular navigation. Performance was
evaluated by calculating SPARC for short time intervals through-
out the task and intermittently providing a vibrotactile cue to the
trainee that corresponded to their level of task performance (good,
fair, or poor). Individuals who received this feedback adapted
their task performance strategy in beneficial ways, reducing their
task completion time while improving their accuracy in tracing
the complex shape using the joystick device. Still, it was noted
that trainees faced difficulties in interpreting and understanding
the movement smoothness-based performance feedback that was
provided.

Endovascular navigation occurs in an environment constrained
by vessel walls that allow surgeons to generate different motion
trajectories that are equally suitable for achieving successful ves-
sel cannulation. This task is fundamentally different than the
mirror-tracing task used by Jantscher [28] that resulted in all par-
ticipants generating the same motion trajectory. It is unclear if the
methods for real-time performance assessment and feedback that
were successful in the case of the mirror-tracing task can be
extended to a less-constrained and longer duration task like endo-
vascular surgical navigation.

1.2 Contributions. Online performance assessment and feed-
back based on tool movement smoothness have the potential to
positively impact endovascular surgical navigation training. In
our previous findings, described in detail by Murali et al. [23] and
Belvroy et al. [30], we determined that average velocity and idle
time (the proportion of the motion profile consisting of idle tool
movements [31]) of guidewire motion showed significant differ-
ences between experience level. These time-domain metrics also
exhibited high linear correlations with SPARC and serve as indi-
rect measures of frequency-domain movement smoothness [23].
However, we did not account for potential differences across our
four different navigation tasks, and our analysis was based only
on offline (end of trial) computation of metrics for a small number
of participants.

This paper makes two primary contributions. First, we demon-
strate the effect of task and experience level on two time-domain-
based performance measures (average velocity and idle time) and
one frequency-domain-based performance measure, SPARC, a
variant of the frequency-domain measure of movement smooth-
ness used for offline performance assessment in Estrada et al.
[16,21] and online in Jantscher [28]. We show that there is a sig-
nificant effect of task and experience level for all three metrics
calculated offline. The second major contribution of this paper is
an examination of the suitability of online estimation methods for
each of these metrics since we are interested in providing real-
time performance feedback to endovascular trainees. We explore
different methods of online estimation by varying time-domain
window length and type, and examine correlations between online

Fig. 1 Participant performing endovascular navigation tasks
on an ANGIO Mentor simulator at the MITIE
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estimates of each metric to the “gold standard” measure, SPARC,
calculated offline.

2 Method

Participants completed a series of endovascular navigation
tasks using the ANGIO Mentor system. We computed three per-
formance measures from the velocity profile of guidewire motion
(SPARC, average velocity, and idle time) collected during four
different navigation tasks. We then applied a linear mixed effects
model to verify the validity of each metric as offline measures of per-
formance. We first tested to see if these metrics reflected differences
in experience level among our participants, and then whether they
reflected differences among the navigation tasks. Next, we examined
how well each metric correlated as an online measure of performance
with our gold standard metric, offline SPARC. We calculated each
metric online by segmenting the tangential velocity profile of the
guidewire tip during each navigation task over time using a series of
discrete, sliding, and overlapping windows. The series of values cal-
culated during these windows were then averaged and compared to
SPARC calculated over the entire velocity profile.

2.1 Participants. Participants of all experience levels were
recruited at various professional meetings of vascular and endo-
vascular surgeons, as well as at the Houston Methodist Institute
for Technology, Innovation and Education (MITIE). A total of 75
individuals, (57 male, 18 female, 31 novices, 25 intermediates,
and 19 experts) participated in our study.

The number of endovascular procedures performed with and
without supervision determined the experience level of each par-
ticipant, as we have done in our prior work [16,23,30]. Novices
were defined as individuals who had performed less than 50 cases;
intermediates were defined as individuals who had performed
between 50 and 500 cases; and experts were defined as individuals
who had performed over 500 cases. This division of experience
level by caseload is supported by evidence of a sharp change in
procedural success rates after approximately 50–65 consecutive
cases for abdominal aortic aneurysm repair, after which there was
little appreciable change in success rates [7]. A similar result was
observed in carotid artery stenting cases, in which a noticeable
decrease in neurological complication and 30-day mortality rates
occurred after the first 50 consecutive cases [5].

The novice group consisted of 19 students, seven residents, four
fellows, and one industry professional. The intermediate group con-
sisted of 11 residents, 10 fellows, and four attendings. The expert
group consisted of six residents, 11 attendings, one fellow, and one
physician assistant with experience in vascular surgery. Participants
represented a wide range of medical specialties, including anesthesi-
ology, general surgery, cardiology/cardiothoracic surgery, and vascu-
lar/endovascular surgery. All subjects provided informed consent for
their participation and the study was approved by the Rice Univer-
sity Institutional Review Board (IRB-FY2019-302, Houston, TX).

2.2 Materials. We used the ANGIO Mentor Flex endovascu-
lar simulator (3D Systems, Littleton, CO) at the professional
meetings and an ANGIO Mentor Ultimate simulator (3D Systems,
Littleton, CO) at MITIE to collect motion data (see Fig. 1). The
preloaded module containing the virtualized training model used
by the fundamentals of endovascular and vascular surgery (FEVS)
platform [13] was loaded on the simulator. Various tool geome-
tries and interactions within the virtual environment were simu-
lated using the tool motions recorded at the input by the ANGIO
Mentor. The module streamed kinematic data of each tool tip over
a TCP network connection at varying sampling rates between 15
and 60 Hz, which was used to compute each performance measure
from the tangential velocity profile, as in Fig. 2.

2.3 Procedure. After consenting to participate in the study
and prior to starting the first task, participants completed a short

survey that collected information on their level of medical train-
ing, specialty, familiarity with cardiovascular procedures and with
using the commercial simulator, and the number of supervised
and unsupervised endovascular cases performed. Participants
recruited at the professional society meetings approached a booth
containing a simulator, arriving in 15–20 min rotations during
which they completed between one and four target navigation
tasks depending on the time available with each participant. Par-
ticipants recruited from MITIE in Houston completed all four nav-
igation tasks.

The FEVS module consists of a set of eight possible tasks that
test various procedural and dexterous tool manipulation abilities.
Tasks required either direct navigation to targets or navigation to
targets followed by additional procedural steps such as exchang-
ing and introducing various catheters and sheaths. We analyzed
performance for only those tasks described in Table 1, since these
tasks required participants to directly navigate to targets without
any additional tool exchange or tool introduction elements. This
set of tasks, illustrated in Fig. 3, consisted of navigating a guide-
wire and catheter over a right-angle bifurcation, navigating a
guidewire, catheter, and sheath into a third-order vessel with pos-
terior takeoff, cannulating a branch vessel extending from an
aneurysm, and performing gate cannulation through an aneurys-
mal segment [13].

Each task required the user to navigate a guidewire, catheter,
and if present, a sheath to the color-coded targets shown in Fig. 3.
The simulator computer screen displayed basic navigation guide-
lines before each task, and participants were given approximately
1–2 min to familiarize themselves with this information for

Fig. 2 Process of collecting tool tip kinematics and computing
performance metrics from tangential velocity profile. ANGIO
Mentor provides tool tip data of entire motion trajectory for a
given navigation task.

Table 1 Selected tasks from the FEVS module from Ref. [13]
that test endovascular navigation performance without tool
exchange or additional procedural steps

Task Description

1 Navigate up and over a bifurcation
3 Navigate into a third order vessel with posterior takeoff
5 Cannulate a branch vessel extending from an aneurysm
7 Gate cannulation
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navigating each tool to its respective target. The ANGIO Mentor
provides some limited haptic feedback to simulate physical inter-
actions between tools and the virtual environment. No other haptic
feedback was provided during the execution of the navigation
tasks. After participants were ready to proceed with assessment,
they performed the navigation task until either successfully reach-
ing the targets or until the simulation timed out (at between 3 and
5 min, depending on task). Almost all participants completed the
right angle bifurcation task (task 1, see Fig. 3), and then (time per-
mitting) proceeded to complete additional tasks (tasks 3, 5, 7, see
Table 1) [13]. The time limit for task 3 was 5 min while the other
tasks had a time limit of 3 min. Most novice and intermediate par-
ticipants performed one or two tasks while most experts per-
formed two to four tasks. Tasks were not repeated and each
session did not exceed 15 min.

After finishing their final navigation task, participants com-
pleted an additional custom questionnaire that gathered informa-
tion on their perceived experience level and differences between
experienced and inexperienced surgeons, as well as the amount of
cognitive engagement necessary to correctly manipulate endovas-
cular tools. The questionnaire also inquired as to the difficult
aspects of endovascular navigation, and whether participants pre-
ferred receiving feedback, either during or after each task.

2.4 Data Preprocessing. Any performance metric calculated
from motion data containing critical failures, defined as instances
in which the catheter advanced into the branch of interest before
the guidewire during cannulation, was excluded as these can lead
to severe complications in real-life procedures. Critical failures
were detected by determining if the catheter tool tip crossed the
opening of the vessel branch before the guidewire. A total of 199
individual motion trials were generated from participants perform-
ing the endovascular navigation tasks, 173 of which were free of
critical tool manipulation errors and were used for calculating
each performance measure for the online and offline analyses.
Removal of trials containing critical failures resulted in data from
seven subjects (all novices) being removed from analysis. Outlier
removal was not performed.

The FEVS module provided time-series data of X, Y, Z position
and the change in position values for each tool present in the task
environment. The data provided the full trajectory of each tool
from the beginning of the task (illustrated in Fig. 2) until either
successful task completion or timeout.

The change in X, Y, and Z positions for each tool was scaled by
the time interval between samples to calculate velocity. After this
conversion, the data were transformed to a constant sampling fre-
quency of 60 Hz using linear interpolation for frequency analysis
and calculation of SPARC. A third-order Savitzky–Golay filter
with a window length of 21 samples was then implemented to
remove high frequency noise from the tool tip data while preserv-
ing the waveform shape of each signal [16]. From the interpolated
and filtered data, the tangential velocity profile was calculated,
from which each candidate performance measure was calculated.

2.5 Performance Measures

2.5.1 Spectral Arc Length. From the tool tip velocity data, we
computed spectral arc length (SPARC), a measure of movement
smoothness, that was previously shown to be significantly corre-
lated to experience level for endovascular procedures performed
on manual, simulation, and robotic platforms [16,21]. Its robust-
ness to noise and sensitivity to small variations within the physio-
logical range of healthy movement makes it a desirable metric for
evaluating performance in the surgical domain [29]. Additionally,
the relatively low computational burden of calculating SPARC
shows promise for both online and offline performance evaluation
and feedback [32]. SPARC is calculated using Eq. (1)

SPARC ¼ �
ðxc

0

1

xc

� �2

þ dV̂ðxÞ
dx

� �2
" #1

2

dx (1)

where V (x) is the Fourier magnitude spectrum of the velocity
profile v(t) given by the FFT operation. The magnitude spectrum
is normalized with its DC magnitude V (0), expressed as V\

(x). The cutoff frequency xc is determined by an amplitude
threshold, which ensures that the metric produces values inde-
pendent of temporal scaling (i.e., movement profiles of different
duration but same shape) [29].

2.5.2 Average Velocity. Average tool-tip velocity was calcu-
lated for each tool using the tangential velocity profile. Average
tool velocity is another promising metric given its significant corre-
lation to experience level in other catheter-based surgical domains
such as transesophageal echocardiography [33]. Average velocity
for each tool is calculated by taking the discrete sum of tangential
velocity values, given by their index i, which is then divided by the
total number of discrete velocity values N, as in Eq. (2)

Vavg ¼

XN

i¼1

Vi

N
(2)

2.5.3 Idle Time. Idle time is defined as the ratio the time dur-
ing a navigation task in which the surgical tools remain stationary
to the total amount of time the tool was present in the task. Idle
time was shown to correlate to experience level in open surgery
[31], and similar to average velocity, this metric likely provides
another measure of cognitive engagement, with higher values evi-
dent in individuals with less experience [31]. Idle time was calcu-
lated using Eq. (3)

Tidle ¼

XN

i¼1

gðiÞDt

ttool

; g ið Þ ¼
0 vðiÞ > v0

1 vðiÞ < v0

(
(3)

Fig. 3 Four navigation tasks with targets shown as shaded
circles: (a) right angle bifurcation, (b) cannulation of third-order
branch vessel, (c) cannulation of aneurysmal branch vessel,
and (d) gate cannulation through aneurysmal segment
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where the amount of time in which the tools moved at tangential
velocities below a threshold value v0 is provided by a discrete
sum using the binary function g(i) that compares the tangential
velocity value v(i) at index i with the threshold v0. This value was
multiplied by the sampling interval Dt before being divided by the
time between the first instance of the tool entering the simulated
environment and task completion ttool. The value of v0 was defined
as 0.5 mm/s to account for motion artifacts such as deceleration of
flexible tool tips and deformation of tool tips against the vessel
well.

2.6 Data Analysis. After calculating the offline and online
values of each performance metric for each navigation task per-
formed across all participants, we performed our analysis in two
parts. First, we used a linear mixed effects model to explore
whether each offline metric showed significant differences across
experience level and navigation task. We then evaluated the suit-
ability of each metric estimated online by comparing the set of
online metric values generated by each navigation task with the
corresponding value of offline SPARC.

2.6.1 Effects of Expertise and Task. In our previous work, we
performed a series of one-way analysis of variance (ANOVA)
tests to show that SPARC, average velocity, and idle time are
valid offline predictors of surgical expertise [23]. These results,
summarized in Tables 2 and 3, did not consider the potential
effects of navigation task and subject-specific variability on per-
formance. To better account for these factors, in this paper, we
applied a linear mixed effects model using the values of SPARC,
average velocity, and idle time calculated from guidewire motion
data. Experience level and task were modeled as fixed effects fac-
tors and participants were modeled as a random factor. Table 4
provides the between-subject and within-subject factors and their

corresponding levels that formed the model. Degrees of freedom
in the model were approximated using the Kenward–Roger
method.

For each significant main effect, contrasts were applied to
determine differences between experience levels and tasks, again
using the Kenward–Roger method for determining significance
levels. Contrasts compared the novice group with a combined
group of intermediate and expert participants, as well as the expert
group with the intermediate group. Contrasts for task compared
task 1 (right-angle branch cannulation) with task 3 (third-order
vessel with posterior takeoff), task 5 (aneurysmal branch cannula-
tion), and task 7 (gate cannulation). We did not test for interac-
tions between experience level and task.

2.6.2 Online and Offline Metric Comparison. SPARC, aver-
age velocity, and idle time show statistically significant differen-
ces across experience levels as offline measures of performance
(see Table 2). In addition to serving as two candidate metrics from
the time domain, average velocity and idle time may be more suit-
able for online performance evaluation and feedback, given their
strong linear correlations with SPARC and their potential ease of
interpretation compared to SPARC. To show the utility of each
measure as an online indicator of performance, it is necessary to
determine the relationship between each metric calculated online
and experience level. A similar analysis to the ANOVAs per-
formed by Murali et al. [23] can be performed by taking advant-
age of the high correlations between average velocity, idle time,
and SPARC from Table 3. These linear correlations allow for the
use of offline SPARC to establish the corresponding relationship
to experience level.

This comparison can be performed indirectly by exploring the
relationship between each online metric and offline SPARC since
offline SPARC shows the strongest differences with experience
level [23]. If a strong relationship exists between each online met-
ric and offline SPARC, then by extension, the significant differen-
ces across experience level observed with the offline metrics in
our prior work will likely be present with the online metrics. Lin-
ear regression was used to evaluate the online-offline relationship
between each continuous valued metric, with higher Pearson cor-
relation coefficients indicating a stronger online-offline
relationship.

To compute online measures, we used a set of discrete and slid-
ing windows of 5-15 s lengths. Given the average data sampling
rate before interpolation of approximately 20 Hz, each 5 s window
contained approximately 100 samples of data, resulting in a fre-
quency resolution of approximately 0.2 Hz, which is likely suffi-
cient for capturing movement frequencies expected for
endovascular navigation motions. The upper bound of this range
of window sizes was determined by the average completion time
across all trials of 102.6 s, which would allow for at least six dis-
crete windows for providing online feedback. The amount of
overlap between the sliding windows was varied in 0.5 s
increments.

Kinematic data acquired in real time from the virtualized FEVS
tasks were used to calculate each candidate metric over a moving
window of time, similar to our prior work [28]. A real-time per-
formance feedback scenario can be emulated from the tool tip
positions and velocities used for the offline analysis performed
previously [23] by calculating each metric across a subset of the
overall motion profile defined by a window of fixed time interval.
These windows can be either nonoverlapping (discrete) or over-
lapping (sliding) with different amounts of overlap, as detailed in
Fig. 4.

The values for SPARC, average velocity, and idle time from
each window were averaged and compared with SPARC calcu-
lated across the entire trial. This comparison was performed using
robust linear regression to minimize the effect of potential outlier
data. These regression tests provided Pearson correlation coeffi-
cients that relate the average online values of each performance
metric to the offline measure of SPARC shown to correlate with

Table 2 ANOVA results and effect sizes for performance met-
rics calculated from the tangential velocity profile of guidewire
motion data

Metric ANOVA test result Effect size (Cohen’s f )

SPARC F(2, 42)¼ 9.38; p< 0.001 0.67
Average velocity F(2, 42)¼ 10.66; p< 0.001 0.71
Idle time F(2, 42)¼ 8.18; p¼ 0.001 0.62

Statistically significant p-values (in bold) and large effect sizes for each
metric highlight the strong association with experience level. Reproduced
from Murali et al. [23].

Table 3 Pearson’s r correlation coefficients and accompanying
p values from linear regression tests performed in Murali et al.
[23]

Metric Pearson r and p-value

Average velocity r(42)¼ 0.72; p< 0.001

Idle time r(42)¼ 0.70; p< 0.001

Average velocity and idle time are strongly correlated with SPARC and
can serve as indirect time-domain measures. Statistically significant values
in bold.

Table 4 Summary of fixed and random factors and corre-
sponding levels used by the linear mixed model

Factor Type Levels

Task Fixed 1, 3, 5, 7
Experience level Fixed Novice, intermediate, expert
Subject Random 1–68
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experience level from prior studies [23,30,34]. The evaluation of
the online performance of each metric was carried out using
motion trials corresponding to a single task, given the task
dependence of movement smoothness metrics [29]. That each task
likely differs in difficulty may result in certain tasks being more
amenable for online performance feedback than others.

2.6.3 Performance Thresholds for Feedback Cue Design.
Implementation of an online performance feedback protocol simi-
lar to that presented in Jantscher [28] requires appropriate thresh-
olds defining high, medium, and low quality of motion. One
possible method of determining these thresholds is to use the aver-
aged online values corresponding to the different experience lev-
els used to define novice, intermediate, and expert performance.
From the distribution of the online values for each experience
level, namely, from the set of error bars using the mean and stand-
ard deviation, medium motion quality was defined as the region of
values given by the intersection of the error bars of the novice and
expert groups. High- and low-motion qualities were defined as the
regions above and below this intersecting region, respectively.

Using the average online values of each metric, an appropriate
basis for defining performance thresholds requires the assumption
that the values calculated across each window of time do not devi-
ate substantially from the average online value, likely due to a
combination of both uniform task difficulty and participants using
similar motion profiles for performing navigation. This assump-
tion was verified by using the standard deviation of the online val-
ues calculated for each motion trial.

3 Results

Using kinematic data collected from a commercial surgical
simulator while participants performed a set of endovascular navi-
gation tasks, SPARC, average velocity, and idle time were calcu-
lated offline using motion data collected from subjects
representing a wide range of surgical experience levels and medi-
cal specialties. A linear mixed effects model was used to verify
significant group differences across experience level observed in
our prior works, and to quantitatively determine the task depend-
ence of movement smoothness metrics and their indirect meas-
ures. Then, we evaluated SPARC, average velocity, and idle time
of guidewire motion calculated over discrete and sliding windows
of varying duration and overlap amount with SPARC calculated
offline using the entire tangential velocity profile.

3.1 Differences Between Experience Levels. Significant
main effects of experience level were observed for SPARC (F(2,
63)¼ 13.87, p< 0.001), average velocity (F(2, 62)¼ 8.88,
p< 0.001), and idle time (F(2, 63)¼ 15.12, p< 0.001) of the
guidewire motion, as shown in Fig. 5. From the contrasts, the
SPARC values associated with the combined group of intermedi-
ates and experts are significantly lower than those of novices
(t(83)¼ 4.27; p< 0.001). The same trend was present for idle
time (t(88)¼ 4.43; p< 0.001) and the inverse was true for average
velocity (t(89)¼ 3.19; p¼ 0.002). The expert group alone pos-
sessed significantly lower SPARC values than intermediates
(t(50)¼ 3.30; p¼ 0.002), as well as higher average velocities

(t(46)¼ 2.89; p¼ 0.006) and lower idle times (t(47)¼ 3.46;
p¼ 0.001).

3.2 Differences Between Tasks. There exists a significant
effect of task on performance for SPARC (F(3, 124)¼ 13.36;
p< 0.001), average velocity (F(3, 129)¼ 17.80; p< 0.001), and
idle time (F(3, 127)¼ 12.25; p< 0.001), illustrated in Fig. 6. The
contrasts showed significant differences between tasks 1 and 3 for
idle time only (t(128)¼ 2.71; p¼ 0.008). Tasks 1 and 5 showed
significant differences for average velocity (t(128)¼ 5.02;
p< 0.001) and idle time (t(128)¼ 3.40; p¼ 0.001). Significant
differences for SPARC (t(125)¼ 5.05; p< 0.001), average veloc-
ity (t(131)¼ 5.49; p< 0.001), and idle time (t(129)¼ 2.00;
p¼ 0.047) were present between tasks 1 and 7.

3.3 Correlations Between Online and Offline Metrics.
SPARC calculated online resulted in low correlations with SPARC
calculated offline using discrete, sliding, and over-lapping windows,
with correlation coefficient values ranging between approximately
0.1 and 0.5. A maximum correlation coefficient of approximately
0.6 between online and offline SPARC was observed at an approxi-
mately 1–2 s window length using sliding windows.

Discrete windows resulted in a noisy and nonmonotonic trend
between correlation coefficients and increasing window size, with
no one task producing consistently higher or lower values than the
others. Sliding windows resulted in a smoother but nonmonotonic
relationship between correlation coefficient values and window
size, with values for each task increasing from a minimum value of
approximately 0.1 after a window size of approximately 6 s. Corre-
lation coefficients between online and offline SPARC using over-
lapping windows produced trends similar in shape, magnitude, and
noise to those observed using discrete windows. The correlation
coefficients between online and offline SPARC for task 3 remained
consistently low for discrete, sliding, and overlapping windows.

Average velocity and idle time calculated online produced
higher and more consistent correlations with offline SPARC for
discrete, sliding, and overlapping windows. Correlation coefficients
for online average velocity and idle time remained between approx-
imately 0.6 and 0.8 for each window type, with online average
velocity showing an almost constant behavior with increasing win-
dow length. Task 1 exhibited the highest correlation coefficient val-
ues for online average velocity using discrete windows, while tasks
1, 3, and 7 had comparable values across all window lengths for
sliding and overlapping windows. Task 5 produced the lowest cor-
relation coefficients between averaged online average velocity and
offline SPARC for discrete, sliding, and overlapping windows.

Correlation coefficients for idle time calculated online versus
SPARC offline were comparable in value to those for average
velocity calculated online versus SPARC offline for all window
types. The lowest correlation values for each window type were
observed for data from task 3 while the highest values were
observed for data from task 1. Calculating online idle time using
sliding windows resulted in a slightly monotonically increasing
trend between correlation coefficient value and window size.
Tasks 1 and 7 had the highest correlation values using sliding win-
dows, followed by tasks 3 and 5. As with online average velocity,

Fig. 4 Discrete, sliding, and overlapping data windows that were used for segmenting velocity profile and calculating online
performance measures
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sliding and overlapping windows produced similar behaviors and
values with different window lengths and overlap amounts.

4 Discussion

From our offline evaluations of performance, it is clear that
each metric shows significant differences across experience level.
Differences observed across navigation tasks highlight the task
dependent nature of movement smoothness-based performance
metrics. These differences may also imply a learning effect and a
possible increase in difficulty between subsequent tasks. While
SPARC is effective as an offline measure of performance, average
velocity and idle time prove to be more effective as online meas-
ures, given their higher online–offline correlation coefficients.
From the distributions of each online performance metric sepa-
rated first by task and then by experience level, it is possible to
determine performance thresholds that can be used as a basis for
providing online performance feedback.

4.1 Assessing Performance Differences Offline: Effect of
Expertise and Task. SPARC, average velocity, and idle time
each showed significant group differences across different levels

of expertise. The contrasts performed as part of the mixed effects
model suggest that novices, determined by a caseload of less than
50 endovascular procedures, have significantly higher SPARC
and idle time scores, and lower average velocities, than those of
intermediate and expert groups combined. This finding is in line
with prior studies that have shown the effect of surgical expertise
on procedural success rates, complication rates, and completion
times [5,7]. Importantly, our approach using direct tool motion
data offers a quantitative, objective, and automatic method for
assessing expertise.

The significant main effect of task on the values of each per-
formance measure, along with the results of the task-based com-
parisons from Table 5, provides quantitative evidence that
online performance assessment should be conducted on a task-
by-task basis. Also, the task dependencies of each metric are
verified. The significant differences in SPARC, average veloc-
ity, and idle time observed between task 1 and tasks 3, 5, and 7
suggests that a small learning effect may be present between
the first and subsequent tasks. Since the majority of participants
performed task 1 before proceeding to the other tasks, such a
learning effect could reflect the familiarization period that most
subjects experienced regarding the simulation environment, tool

Fig. 6 Bar graphs showing mean of SPARC, average velocity, and idle time calculated from guidewire motion for each naviga-
tion task. Error bars provide standard error of the mean for each navigation task.

Table 5 Results from linear mixed effects model contrasts

Contrast SPARC Average velocity (mm/s) Idle time (%)

Novice versus (intermediate, expert) t(83)¼ 4.27; p< 0.001 t(89)¼ 3.19; p¼ 0.002 t(88)¼ 4.43; p< 0.001

Intermediate versus Expert t(50)¼ 3.30; p¼ 0.002 t(46)¼ 2.89; p¼ 0.006 t(47)¼ 3.46; p¼ 0.001

Task 1 versus task 3 t(125)¼ 1.29; p¼ 0.20 t(129)¼ 0.16; p¼ 0.87 t(128)¼ 2.71; p¼ 0.008

Task 1 versus task 5 t(124)¼ 0.24; p¼ 0.81 t(128)¼ 5.02; p< 0.001 t(128)¼ 3.40; p¼ 0.001

Task 1 versus task 7 t(125)¼ 5.05; p< 0.001 t(131)¼ 5.49; p< 0.001 t(129)¼ 2.00; p¼ 0.047

Statistically significant values in bold.

Fig. 5 Bar graphs showing mean of SPARC, average velocity, and idle time calculated from guidewire motion for each experi-
ence level. Error bars provide standard error of the mean for each experience level.
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interactions within the FEVS module, and the virtualized visual-
ization controls. Alternatively, given the order of tasks in the
FEVS module, it may be possible that tasks are ordered by diffi-
culty level. In our previous work, we observed a linearly increas-
ing trend in SPARC and other movement smoothness metrics
across three sessions of performance assessment that may suggest
the presence of a learning with these navigation tasks [16]; how-
ever, it is unclear whether this trend was due to learning the navi-
gation task itself, or attributable to participants becoming more
comfortable with the simulator interface.

4.2 Comparison of Online and Offline Calculation. Objec-
tive and quantitative performance metrics such as movement
smoothness, average velocity, and idle time have significant
potential for offline evaluation of endovascular surgical perform-
ance [23,30]. To investigate the utility of these metrics for online
performance evaluation, the average value of each metric calcu-
lated during a navigation task using discrete and sliding windows

of different duration and overlap was compared to SPARC calcu-
lated offline across the entire motion trial.

The results of the online-offline linear correlations between
each metric and SPARC clearly indicate that SPARC, despite pro-
viding a robust offline measure of experience level and motion
proficiency, is substantially less effective in capturing perform-
ance when calculated online. Given its frequency-domain compu-
tation and high task dependence [29], SPARC is most effective at
comparing discrete motion profiles that employ similar task exe-
cution strategies and are of comparable difficulty. The motion pro-
file generated by performing each target navigation task in the
FEVS module consists of several smaller subprofiles resulting
from the continuous insertion, retraction, and rotation of the
guidewire and catheter throughout the task. Segmenting the over-
all velocity profile in the time-domain would either omit portions
of a single subprofile or contain portions of adjacent subprofiles,
which would increase the variability of the online SPARC values
calculated throughout a navigation task and ultimately obscure
any trends evident between online and offline SPARC.

Fig. 7 Performance thresholds selected from averaged online values using 15 s window length with
5 s overlap for each navigation task. For SPARC and average velocity, top region represents good per-
formance, while middle and bottom regions represent medium and poor performance, respectively.
For idle time, bottom region represents good performance and top region represents poor
performance.
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In contrast, the higher and nearly constant online-offline corre-
lations associated with average velocity and idle time provide a
stronger basis for their use as online performance measures. As
with the correlations produced by online SPARC, discrete win-
dows produce noisier results, but correlations remain relatively
constant and high-valued. The online computation of average
velocity and idle time can be expected to produce correlation val-
ues roughly equivalent to those observed from their offline com-
putation provided in Table 3. Average velocity shows slightly
higher correlations than idle time, as taking the mean of a set of
average velocities calculated across moving windows of time
would result in a value that correlates highly with the average
velocity of the entire motion profile and, by extension, with offline
SPARC [23]. Idle time calculated online provides the percentage of
the windowed segment in which the tool tip velocity is lower than a
threshold defined to account for motion artifacts from tool tip and
vessel wall interactions. Overlapping motion subprofiles within a
navigation task would likely affect idle time values, but given that its
computation does not require a nonlinear operation as with SPARC,

idle time can be expected to produce high-valued correlations with
offline SPARC. Additionally, the strong correlations exhibited by
online average velocity and idle time suggest that these measures
may also be correlated to the traditional structured rating scales,
given their mutual correlation with offline SPARC [16].

4.3 Future Directions and Recommendations. To support
our broader motivation for providing online performance feed-
back to surgical trainees, our results show that performance
thresholds can be defined using the distributions of online
SPARC, average velocity, and idle time generated by participants
from each experience level. A potential feedback protocol can be
illustrated by using a set of overlapping windows of 15 s length
and 5 s overlap between windows. Such a window configuration
would likely result in trainees receiving an acceptable amount of
feedback cues during a navigation task, as shorter window lengths
and overlap amounts may overload trainees and negatively affect
performance.

Fig. 8 Distribution of online performance measures from novice, intermediate, and expert partici-
pants for FEVS task 1 using 15 s sliding window with 5 s overlap between windows. For SPARC and
average velocity, thresholds for high, medium, and poor performance given by the top, middle, and
bottom shaded regions, respectively. For idle time, high performance corresponds to bottom region
and poor performance corresponds to top region. Averaged online (dashed line) and offline (solid
line) values of each metric are also shown.
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After defining a set of online performance threshold regions for
each metric and each navigation task (Fig. 7), we can demonstrate
the possibility of delivering performance feedback to surgical train-
ees by calculating the online value of each metric from the most
recent data window and determining the appropriate performance
region it falls under (Fig. 8). The best way of delivering this infor-
mation as feedback will likely vary in type (i.e., vibrotactile, visual)
and threshold values computed for each navigation task.

The task-dependent nature of movement smoothness metrics
and their indirect measures implies that the exact values and
thresholds determined for one set of motion tasks will not be
applicable for a different set of tasks. Therefore, comparing the
average value of a performance metric calculated online with
SPARC calculated offline provides a methodology to pinpoint a
set of motion-based candidate metrics and to evaluate their utility
as online performance measures for providing as feedback. The
gold-standard metric to be used for the online–offline correlations
may also vary depending on the application domain.

Given the different navigational elements of each task ranging
from simple tool insertion/retraction to more complex vessel
branch cannulation motions, it is likely that each task is not of
constant difficulty. This observation is supported by the standard
deviation of the distributions of online SPARC, average velocity,
and idle time values within motion tasks, as apparent in Fig. 8,
and warrants further work in determining trends in online values
for subtasks within navigation tasks. Using the averaged online
value of any metric to directly develop performance thresholds for
evaluation or feedback requires the assumption that task difficulty
is constant throughout a motion task and that online values calcu-
lated at each window remains close to the average value across all
windows. Thus, while using the average online values for SPARC,
average velocity, and idle time for the online-offline comparisons
establishes their general utility as online performance measures,
variations in online values corresponding to more difficult sub-
tasks, such as during branch cannulation, may preclude their direct
use for performance feedback.

Performing online evaluation and feedback using performance
thresholds based on the average online values of SPARC, average
velocity, and idle time may still result in positive improvements in
navigation strategies, as was discussed in Jantscher [28]. Unlike
laparoscopic or open surgery, endovascular procedures may be
more amenable for such feedback since they involve constrained
input motions of insertion, retraction, or rotation of the guidewire
and catheter, despite showing large variation in online tool move-
ment smoothness measures within tasks. Difficulties in tool navi-
gation arising from the nonlinear mapping between input and tool
tip motions may still require the identification of smaller subtasks
in which the performance thresholds could be more appropriately
defined.

Given the low and noisy correlations between online and offline
SPARC, this metric cannot be used reliably as a basis for online
performance feedback, especially for motion tasks that consist of
unconstrained movements that generate various types of discrete
motion subprofiles. A special case for online computation in
which SPARC might perform better would be for navigation tasks
that consist of a closed and constrained path, similar to the ones
used in Jantscher [28], which would guarantee that participants
generate a smaller set of motion subprofiles by following similar
motion trajectories. Another possible alternative method of
improving the online calculation of SPARC would be to spatially
segment motion trajectories into their discrete motion subprofiles
[19], in a manner that would guarantee that each value of SPARC
would correspond to a single subprofile, with minimal overlap
between adjacent subprofiles that reflect different motion strat-
egies or are of varying difficulty.

5 Conclusion

Improved postoperative outcomes are linked to surgical exper-
tise, which provides a strong motivation for research on objective

and quantitative performance evaluation. While objective evalua-
tion techniques are more common in other surgical domains, their
application in endovascular surgery is sparse. Frequency-domain
movement smoothness (SPARC), average tool tip velocity, and
idle time are quantitative motion quality metrics calculated from
tool tip motion that show significant differences across experience
level and navigation task. The capability of these metrics in pro-
viding an offline measure of experience level in the midst of dif-
ferences across task is complemented by their potential as online
indicators of performance that can provide a basis for intuitive
and robust feedback.

Average velocity and idle time correlate well with SPARC as
online and offline measures, and offer promising alternatives to
SPARC for delivering to trainees as online feedback of movement
smoothness information. These metrics are more amenable for
online computation and are more effective at conveying move-
ment smoothness information in a more intuitive manner than
SPARC. Transitioning the findings of this paper toward an online
evaluation and feedback paradigm will require additional evalua-
tion of the motion tasks to be used for determining subtasks within
a navigation task in which the online values across experience lev-
els are different from that of the average, in addition to the most
effective method of delivering these performance measures as
feedback to trainees.
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