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Surgery is a challenging domain for motor skill acquisition. A critical contributing factor in this 
difficulty is that feedback is often delayed from performance and qualitative in nature. Collection of high-
density motion information may offer a solution. Metrics derived from this motion capture, in particular 
indices of movement smoothness, have been shown to correlate with task outcomes in multiple domains, 
including endovascular surgery. The open question is whether providing feedback based on these metrics 
can be used to accelerate learning. In pursuit of that goal, we examined the relationship between a motion 
metric that is computationally simple to compute—spectral arc length—and performance on a simple but 
challenging motor task, mirror tracing. We were able to replicate previous results showing that movement 
smoothness measures are linked to overall performance, and now have performance thresholds to use in 
subsequent work on using these metrics for training.  

INTRODUCTION 

Background 

Training in many motor domains can be a challenge. 
Consider learning to do some motor task with a well-defined 
“success” vs. “failure” outcome metric, such as shooting a free 
throw in basketball. A trainee can shoot repeatedly and easily 
determine for each shot whether the shot was successful, but it 
may be very difficult for the trainee, and even a coach, to 
determine why different shots resulted in success or failure. In 
a domain like surgery, this is even more of a challenge, as 
“success” vs. “failure” may not be known for weeks or even 
months after a procedure is performed. Furthermore, the 
“coach” in surgery is typically one or more other surgeons, 
whose expertise is valuable and time spent training is time 
taken away from other activities. 

Surgical skill is notoriously difficult to assess and 
evaluate (Moorthy, Munz, Sarker, & Darzi, 2003). The 
development of effective metrics to evaluate surgical skill is 
an active area of research (Reiley, Lin, Yuh, & Hager, 2011). 
The need for objective and quantitative assessment tools has 
been a topic of considerable interest and importance (Lin, 
Shafran, Yuh, & Hager, 2006; van Hove, Tuijthof, 
Verdaasdonk, Stassen, & Dankelman, 2010; Tsue, Dugan, & 
Burkey, 2007). Such need is driven by evidence that skill level 
can affect clinical outcomes after surgery (Reznick & 
MacRae, 2006). Assessment is often done informally through 
subjective feedback from other surgeons (Chaer et al., 2006; 
Bech et al., 2011; Riga et al., 2011) or based on a simple count 
of the number of times a procedure has been performed 
(Cronenwett, 2006; Schanzer et al., 2009).  

Collection of high-density motion information, if the 
relevant metrics can be linked successfully with task 
outcomes, offers the opportunity to provide more detailed 
feedback that may speed the learning process. A quantitative 
and motion-based approach to performance assessment in 
manual control tasks is starting to gain traction in the research 
community, especially in the domain of robotic surgery and 
the corresponding simulation environments that are used to 

train surgeons in the use of the robotic technology. 
Specifically, access to higher quantities of more detailed data 
about the human’s control over the task and the task outcomes 
provides the possibility to identify motion-based performance 
metrics that offer multiple advantages: insight into task 
performance, the ability to compare in a detailed manner the 
performance of trainees, and a mechanism to objectively track 
changes in performance as a result of training (i.e., learning 
curves).  

In our prior work (Huegel, Celik, Israr, & O’Malley, 
2009), we identified motion-based performance metrics that 
were associated with successful movement strategies for a 
virtual reality target-hitting task. After demonstrating that 
movement characteristics correlate with successful 
performance of the target- hitting task in terms of outcome 
measures, we were motivated to carry out these analyses for 
another more complicated motor control task. We developed a 
novel rhythmic motor control task in a simulated 3D virtual 
environment that is significantly more difficult to master than 
the target-hitting task (Howie, Purkayastha, Byrne, & 
O’Malley, 2011). This environment utilizes a high fidelity 
physics engine for rendering that task, and is unconstrained in 
that multiple movement strategies can result in successful 
completion of the task. We showed that motion-based 
performance metrics quantifying smoothness and user input 
frequency correlated with expert performance for this complex 
and unconstrained task (O’Malley, Purkayastha, Howie, & 
Byrne, 2014), using techniques similar to those in our prior 
work.  

In our recent work (Estrada, O’Malley, Duran, Schulz, & 
Bismuth, 2014; Estrada, Duran, Schulz, Bismuth, Byrne, & 
O’Malley, 2016), we explored the applicability of motion-
based measures of performance to endovascular surgery 
procedures. We evaluated performance in surgically relevant 
tasks specific to the endovascular domain in order to capture 
the unique characteristics of this specialty. We isolated specific 
tasks so as to reduce the risk of confounding our findings with 
assessment of procedural knowledge, and we evaluated  
performance among domain experts. The metrics were 
compared to structured grading assessments to determine 
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which metrics best captured skill. Our analysis showed that 
motion metrics based on principles of motor control that 
quantified smoothness (and in turn, quality of movement) 
were strongly correlated with the structured grading 
assessment, and were in fact superior to subjective structured 
grading assessments at discriminating expert from novice 
surgeons. 

Motivation for Current Study 

The fact that low-level motion metrics correlate with 
task outcomes is an important advance, but it raises additional 
questions, from theoretical questions about the nature of the 
relationship between those metrics and high-level outcomes to 
applied questions about the design of training systems. The 
ultimate goal of this research is to improve surgical task 
performance and the efficiency of training through motion-
based feedback. The knowledge that motion-based metrics 
correlate with surgical performance is an important start, but it 
is only a starting point. 

While we have established that motion-based metrics 
predict performance in multiple tasks, whether these metrics 
can be useful in training has not yet been established. If that 
can be established, then it raises the question of whether that 
feedback can be useful in surgical training in particular. Thus, 
there is still a long path between the knowledge that motion-
based metrics are related to performance and using them as the 
basis for an intervention in surgical training. 

The research presented here is the first step along that 
path. Before testing the use of feedback based on motion 
metrics on surgeons, we want to first establish that such 
metrics can be used to improve learning in a less specialized 
population with a less specialized task. This also raises 
questions about exactly how to use motion-based metrics to 
provide feedback, and what form that feedback should be and 
when it should be delivered. 

The task: We wanted a task that stressed perceptual-
motor performance like surgery, but one that has lower risk 
and can be attempted by anyone. The task needs to be 
challenging enough that there is ample room for improvement 
but not so daunting that subjects immediately give up. It 
would also be useful if this task is one where there is prior 
research that documented the learning curve so we have some 
idea what to expect. A task that meets all these criteria is 
mirror tracing (Snoddy, 1926). Our implementation of this 
task will be described in detail in the Method section.  

Motion metrics: Our prior research showed that motion-
based metrics based on principles of motor control that 
quantified smoothness—and in turn, quality of movement—
were strongly correlated with the structured grading 
assessment. Submovement based metrics (number and 
duration of submovements) and spectral arc length (which 
evaluates smoothness in the frequency domain) showed the 
strongest and most significant correlations. Unfortunately, 
number of submovements is computationally extremely 
expensive to compute, and may not be suited for real-time 
feedback. Thus, in this experiment we examined only spectral 
arc length. 

What is spectral arc length? Intuitively, consider what a 
smooth movement should entail: primarily low-frequency 
components. Conversely, a jerky movement will have larger 
amounts of high-frequency components. Spectral arc length is 

a method for quantifying this idea by looking at the 
complexity of the Fourier magnitude spectrum for the velocity 
profile of the movement. See (Balasubramanian, Melendez-
Calderon, & Burdet, 2012) for details, including equations. 

The first step to enabling feedback based on spectral arc 
length is that we need some basic data relating global 
performance on our mirror tracing task to the motion metrics 
computed for that task. That is, if we want to give subjects 
feedback on how well they performed the last trial, or last 
portion of a trial, based on the smoothness of movement, we 
need to know “how smooth is smooth?” for this task. More 
specifically, what specific values for spectral arc length should 
we use to trigger positive or negative feedback to subjects as 
they train? Before we can deliver feedback, we need ranges 
for these metrics that correspond to good and bad performance 
on the task. 

Thus, the purpose of this experiment was simply to 
establish (1) that spectral arc length does correlate with 
performance on our mirror tracing task, and (2) what ranges of 
values are observed such that we can set bounds for feedback 
to be given in a subsequent training intervention. 

METHOD 

Subjects 

There were 5 Rice undergraduate subjects, 1 male and 4 
female, age range 18 to 20 years. Subjects were recruited from 
the Psychology subject pool and received credit toward a 
course requirement for participation. 

Task 

Subjects performed a computer version of the classic 
mirror tracing task pioneered by Snoddy (1926). In the 
original task, subjects used a metal stylus to trace around the 
interior of a physical six-pointed star made of brass, but 
subjects could not directly see either their hands or the star. 
Instead, they looked through a mirror, which reversed the left-
right directional relationships between what subjects saw and 
how they actually moved, i.e., moving the stylus physically 
left appeared to move the stylus to the right. 

Our version did not use a mirror, but rather presented the 
star on a computer display, as shown in Figure 1. The task was 
like the original, but rather than a stylus, subjects navigated a 
cursor around the star, and were instructed to keep the cursor 
inside the inner and outer boundaries. We paralleled the mirror 
by reversing the controller, but this time on both axes, so an 
upward movement of the controller moved the cursor down. 
Left and right directions were similarly reversed. 

When subjects moved outside the boundary of the star 
the cursor changed color from green to red and all time spent 
outside the star incurred penalty time. 

Design 

Subjects performed five blocks of ten trials, so block and 
trial within a block were independent variables. There were no 
other variables manipulated. There were two dependent 
variables: time to complete a trial (including penalty time), 
and spectral arc length.  
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Procedure 

Informed consent was obtained prior to the task. Each 
subject then performed 5 blocks of 10 trials each of the mirror 
tracing task, then completed a brief demographic survey and 
were debriefed. 

On each trial, the cursor started in the circle at the left-
hand vertex of the star, as depicted in Figure 1. The circle 
changed color from red to yellow to green, with green 
indicating that the subject should start moving clockwise 
around the star. As noted previously, when subjects moved 
outside the boundary of the star the cursor changed color from 
green to red and all time spent outside the star incurred penalty 
time. Penalty time was that time spent outside the star was 
charged at 3x time. That is, if they spent 3 seconds outside the 
star, 6 penalty seconds was added to their total completion 
time for the trial, meaning 9 total seconds were counted. 

After each block of 10 trials, subjects were encouraged 
to take a short break before proceeding to the next block of 
trials. 

�
Figure 1. Display for the mirror tracing task 

Materials 

A Dell Optiplex 760 running Windows 7 and MATLAB 
2015b was used to present the experiment on a Dell P2217 
LCD monitor (55.87 cm or 22” diagonal) set to display at a 
resolution of 1680 by 1050 pixels. 

Instead of a traditional mouse or joystick, subjects 
provided input via a Novint Falcon three-dimensional 
controller. The Falcon was set to input at only two dimensions 
that had a 10 cm x 10 cm physical workspace. Force feedback 
of approximately 9 Newtons was used to restrict movement to 
the two dimensions.  

RESULTS 

We collected a total of 250 trials of data (5 subjects, 50 
trials each). Results for one trial were lost due to an unknown 

computer error. For the repeated-measures ANOVAs, the 
datum for this trial was replaced with the subject’s mean. 

The first question was whether the subjects showed the 
expected learning in overall task performance. They did; these 
data are presented in Figure 2. Total time on each trial was 
analyzed with a 5 (block) x 10 (trial within block) repeated-
measures ANOVA, which showed only a reliable main effect 
of block F(4, 16) = 8.39, MSE = 865, p = .024 (Huynh-Feldt 
adjusted), Cohen’s ƒ = 1.45. 

The second—and more interesting—question is the 
degree to which the spectral arc length measure was associated 
with improved overall task performance. The overall pattern 
was indeed quite similar; these data are presented in Figure 3. 
Spectral arc length was analyzed with the same 5 x 10 
repeated-measures ANOVA which again showed only a main 
effect of block, F(4, 16) = 7.35, MSE = 14.4, p = .019 (Huynh-
Feldt adjusted), Cohen’s ƒ = 1.36. 

!  

Figure 2. Overall task performance, as measured by total task 
time, as a function of block.  

!  
Figure 3. Spectral arc length as a function of block. Smaller 

values represent smoother movements. 
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These analyses suggest that, at least in relatively coarse 
terms, spectral arc length does indeed show the same pattern 
as overall task performance. However, more fine-grained 
analyses are appropriate here. This takes the form of looking 
at the relationship between task performance and spectral arc 
length on a per-trial basis. A scatter plot of all 249 valid data 
points is presented in Figure 4. As is apparent from the figure, 
as spectral arc length indicates smoother movement, overall 
task performance improves (that is, total time in the trial goes 
down). Overall, the association is fairly strong, r = .75 
(significance testing here is not appropriate as these points are 
not all independent; this is presented simply as a descriptive 
measure).  

!  
Figure 4. Total time in seconds vs. spectral arc length for all 

individual trials 

!  
Figure 5. Total time in seconds vs. spectral arc length for one 

subject, strongest relationship 

We also examined this relationship for each individual 
subject. The strongest relationship is shown in Figure 5, which 
shows r = .89. This subject never achieved particularly fast 

performance overall, and had few trials with an arc length of 
less than 6, but the coupling of arc length and overall 
performance was strong. 

On the other hand, the subject with the weakest 
relationship is presented in Figure 6. This subject was much 
better at the task with about two-thirds of his/her trials 
completed in under 30 seconds and almost all arc lengths 
under 6. Furthermore, the relationship is not particularly 
strong, r = .40.  

One possible explanation for the weak relationship for 
this subject is a range restriction effect. This particular subject 
overall showed little improvement in the task across the 50 
trials, but his/her performance was, relative to the other 
subjects, consistently good—even on the first few trials. (This 
subject’s slowest trial was still under 40 seconds.) 
Correspondingly, all spectral arc lengths were fairly low. In 
the larger picture, if the goal is to train subjects to produce 
good performance, this subject would require little training, 
and perhaps little feedback would be necessary to improve his/
her performance. 

!  
Figure 6. Total time in seconds vs. spectral arc length for one 

subject, weakest relationship 

Overall, the fastest third of the trials performed roughly 
correspond to a spectral arc length of 6 or less, and arc lengths 
of 6–8 indicated middling performance, and spectral arc 
lengths of greater than 8 indicate poor performance. This 
suggests that the criteria for feedback should be at arc lengths 
of 6 and 8. 

DISCUSSION 

We had previously demonstrated a link between overall 
task performance and metrics derived from motion capture in 
several other domains, including endovascular surgery 
(Huegel et al., 2009; O’Malley et al., 2014; Estrada et al., 
2016). Previous efforts, however, relied on using multiple 
motion metrics and seeing whether any of them showed such a 
relationship. This time, based on prior results and technical 
considerations, we selected a single metric. Fortunately, we 

Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting 1534



were able to replicate our previous findings; the motion metric 
showed a clear relationship with overall task performance.  

The next step is to determine whether feedback based on 
this metric accelerates learning. All but one of our subjects 
showed substantial performance improvement over the course 
of the experiment (and the one subject who did not improve 
had rapid performance throughout). Thus, our plan going 
forward is to compute spectral arc length in real time and 
provide vibrotactile feedback either mid-trial (e.g., every 5 
seconds or at every vertex of the star) or end-of-trial. 
Furthermore, we now have an idea of what values for spectral 
arc length should generate feedback: arc lengths of 8 or more 
should result in the sharpest feedback and arc lengths from 6 
to 8 should produce intermediate feedback. Whether arc 
lengths of less than 6 should produce no feedback or positive 
feedback is an open question, as is the exact nature of the 
feedback itself. Vibrations can be varied in amplitude, 
frequency, and duration and so we will need to consider these 
properties as we move forward with the intervention. Of 
course, there are other critical issues that will also need to be 
investigated. 

Feedback timing: In previous research, motion metrics 
were computed after subjects performed the task and then later 
compared to other performance metrics and used to predict the 
level of expertise of subjects. Doing the computation off-line 
and post task completion allows the use of computationally-
intensive algorithms over large datasets. However, for training 
purposes, this is inadequate. Delaying feedback can decouple 
the feedback and the performance in ways that make it 
difficult to learn (Wickens, Hollands, Banbury, & 
Parasuraman, 2013). Thus, we want to deliver feedback close 
to real time, either mid-trial or end-of-trial. 

Feedback delivery: Because surgery is a visually-
intensive task and operating rooms are often loud 
environments, we decided to avoid visual and auditory 
channels for feedback delivery and will deliver performance 
feedback haptically. Our plan is to use a C2 tactile feedback 
device (Engineering Acoustics, Inc.) worn above the elbow in 
a portable music player armband. This will allow us to deliver 
feedback in a modality that should not interfere with other 
modalities critical to surgery. (Note that feedback would be 
delivered to the non-dominant arm in order to not interfere 
with the actual surgical motions.) 

Ultimately, if we can show that the intervention can 
indeed accelerate learning, then we will move away from 
undergraduate subjects and mirror tracing to see whether the 
same kinds of interventions can also speed up the rate of 
acquisition of a much more complicated motor skill, 
endovascular surgery. 
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