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Abstract— We continue to consider the question of what
language features are needed to effectively model cyber-physical
systems (CPS). In previous work, we proposed using a core
language as a way to study this question, and showed how
several basic aspects of CPS can be modeled clearly in a
language with a small set of constructs. This paper reports
on the result of our analysis of two, more complex, case studies
from the domain of rigid body dynamics. The first one, a
quadcopter, illustrates that previously proposed core language
can support larger, more interesting systems than previously
shown. The second one, a serial robot, provides a concrete
example of why we should add language support for static
partial derivatives, namely that it would significantly improve
the way models of rigid body dynamics can be expressed.

I. INTRODUCTION

The increasing computational power embedded in every-
day products promises to revolutionize the way we live.
At the same time, the tight coupling between computa-
tional and physical mechanisms, often described as cyber-
physical systems (CPSs), poses a challenge for the traditional
product development cycles, particularly in physical testing.
For example, car manufacturers are concerned about the
amount of physical testing necessary to assure the safety
of autonomous vehicles. Physical testing has been used to
assess the qualities of new products for many years. One of
its key ingredients is devising a collection of specific test
scenarios. But the presence of even simple computational
components can make it difficult to identify enough test
scenarios to exercise more than a minute fraction of the
possible behaviors of the system. In addition, physical testing
is very expensive because it only detects flaws at the end of
the product development process after physical prototypes
have been constructed. These realities are spurring the CPS
developers to rethink traditional methods and processes for
developing and testing new products.

Computer simulations [2] performing virtual experi-
ments [3] can be used to reduce the cost of physical tests.
Virtual testing can be used to quickly eliminate obviously
bad designs. It can also help build confidence that a new
design can pass test scenarios developed by an independent
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party [4]. However, creating a framework for conducting vir-
tual experiments requires a concerted, interdisciplinary effort
to address a wide range of challenges, including: 1) educating
designers in the cyber-physical aspects of the products they
will develop, both in terms of how these aspects are modeled,
and what types of system-level behaviors are generated; and
2) developing expressive, efficient, and robust modeling and
simulation tools to support the innovation process. At each
stage in the design process, the underlying models should be
easy to understand and analyze. Moreover, it should be easy
to deduce the mathematical relationship between the models
used in successive stages.

Both challenges can be addressed by better language-
based technologies for modeling and simulation. An effective
model should have clear and unambiguous semantics that
can readily be simulated, showing how the model behaves
in concrete scenarios. Engineering methods centered around
a notion of executable or effective models can have profound
positive impacts on the pace of advancement of knowledge
and engineering practice.

A. The Accessibility Challenge

Designing a future smart vehicle or home requires ex-
pertise from a number of different disciplines. Even when
we can assemble the necessary team of experts, they often
lack a common language for discussing key issues — treated
differently across disciplines — that arise in CPS design.

A critical step towards addressing this accessibility chal-
lenge is to discover (and not “invent”) a lingua franca (or
“common language”) that can break down artificial linguistic
barriers between various scientific and engineering disci-
plines. Part of such a common language will be a natural
language that includes a collection of technical terms from
the domain of CPS, and that enables experts to efficiently
express common model constructions; part will be executable
(meaning computationally effective) modeling formalisms
made up from a subset of the mathematical notation already
in use. Language research can be particularly helpful in
discovering the latter part [5]. Examples of such tools exist,
but are usually not available as widely-used, multi-purpose
tools. This is the case for languages such as Fortress [6] and
equational languages [7], [8], as well as specialized, physics-
specific or even multi-physics tools. When they are available
as widely-used, multi-purpose tools, they generally cannot be



viewed as executable formalisms. This is the case for most
symbolic algebra tools.!

B. The Tool Chain Coherence Challenge

Based on our experience in several domains, it appears
that scientists and engineers engaged in CPS design are
often forced to transfer models through a chain of disparate,
specialized design tools. Each tool has a clear purpose.
For example, drafting tools like AutoCAD and Solidworks
support creating images of new products; MATLAB, R, and
Biopython support the simple programming of dynamics
and control; and finally, tools like Simulink support the
simulation of device operation [5]. Between successive tools
in this chain, there is often little or no formal communication.
It is the responsibility of the CPS designer to translate any
data or valuable knowledge to the next tool.

We believe that tool chain coherence should be approached
from a linguistic point of view. Precise reasoning about
models during each step of the design process can readily
be supported by applying classical (programming) language
design principles, including defining a formal semantics.
Reasoning across design steps can be facilitated by applying
two specific ideas from language design: 1) increasing the
expressivity of a language to encompass multiple steps in the
design process; and 2) automatically compiling models from
one step to the next. The latter idea reduces manual work
and eliminates opportunities for mistakes in the translation.

C. Recapitulation of Part I

Part I of this work [1] identifies a set of prominent aspects
that are common to CPS design, and shows the extent
to which a small core language, which we call Acumen,
supports the expression of these aspects. The earlier paper
considers the following aspects:

1) Geometry and visual form

2) Mechanics and dynamics

3) Object composition

4) Control

5) Disturbances

6) Rigid body dynamics
and presents a series of examples illustrating the expressivity
and convenience of the language for each of these aspects.
In this narrative, the last aspect stands out as more open-
ended and potentially challenging. The early paper considers
a single case study involving a rigid body: a single link rod
(two masses connected by a fixed-length bar). Thus, it does
not address the issue of how well such a small language is
suited to modeling larger rigid body systems.

D. Contributions

Modeling continuous dynamics is only one aspect of CPS
designs that we may need to model, but it is important be-
cause it is particularly difficult. This paper extends previous

'Because physical phenomena are often continuous and digital compu-
tation is often discrete, it is important that such languages support hybrid
(continuous/discrete) systems. Part I presents examples of hybrid models,
including examples of modeling quantization and discretization. The focus
of this paper is on issues that relate only to continuous models.

work by considering the linguistic demands posed by two
larger case studies drawn from the rigid body domain. After
a brief review of Acumen (Section II), the first case study
we consider is a quadcopter, which is a complex, rigid body
system that is often used as a CPS example. The quadcopter
case study shows that Acumen can simply and directly
express Newtonian models (Section III). The second case
study is a research robot called the RiceWrist-S. In this case,
developing a Newtonian model is difficult and inconvenient.
It illustrates how the more advanced technique of Lagrangian
modeling can be advantageous for some problems. As a
prelude to modeling the Rice Wrist-S robot, we consider
two ostensibly simple dynamic systems, namely a single
pendulum and a double pendulum. For the second system,
we show that Lagrangian modeling leads to a much simpler
mathematical formalization (Section IV). To confirm this
insight, we show how Lagrangian modeling enables us to
construct a simple model of the dynamics for the RiceWrist-
S (Section V). This analysis provides stronger evidence of
the need to support partial derivatives and implicit equations
in any hybrid-systems language that is expected to support
the rigid body systems domain (Section VI).?

II. ACUMEN

Modeling and simulation languages are an important class
of domain-specific languages. For a variety of reasons,
determining what are the desirable or even plausible features
in a language intended for modeling and simulation of hybrid
systems [2] is challenging. For example, there is not only
one notion of hybrid systems but numerous: hybrid systems,
interval hybrid systems, impulsive differential equations (or-
dinary, partial), switching systems, and others. Yet we are
not aware of even one standard example of such systems
that has a simple, executable semantics. To overcome this
practical difficulty in our analysis, we use a small language
called Acumen [9], [10], and assign it a simple, contant time
step, semantics. We are developing this language to apply
the linguistic approach to the accessibility and tool chain
coherence challenges identified above.

The language consists of a small number of core con-
structs, namely:

o Ground values (e.g., True, 5, 1.3, "Hello")

¢ Vectors and matrices (e.g., [1,2], [[1,2],[3,411])

o Expressions and operators on ground and composite

types (+, —, ...)
e Object class definitions (class C (x,y,z)
end)
e Object instantiation and termination operations

(create, terminate)

o Variable declarations (private end). For con-
venience, we included in the set of variables a special
variable called _3D for generating 3D animations.

o Variable derivatives (x’, x’ ’, ...) with respect to time

2The original design for Acumen supported partial derivatives [5]. So far,
partial derivatives have been absent from the new design [9]. This paper
develops the rational for this construct more systematically, with the goal
of justifying its introduction in a future revision of Acumen.



o Continuous assignments (=)
o Discrete assignments (: =)
o Conditional statements (if, and switch)

It should be noted that derivatives in this core language
are only with respect to an implicit variable representing
global time. In this paper we will consider concrete examples
illustrating why it will be useful (in the future) to introduce
partial derivatives to Acumen.

Continuous assignment is used to express differential
equations, whereas discrete assignments are used to express
a discontinuous (sudden) change. Initial values for variables
(at the time of the creation of a new object) are specified
using discrete assignments. Currently, we take a conservative
approach to initial conditions, which require users to express
them explicitly even for variables where there is a continuous
equation that will immediately override this explicit initial
value. Finaly, for the sake of minimality, Acumen has no
special notation for introducing constants (in the sense of
variables that do not change value over time).

We are using this language for a term-long project in a
course on CPS [11], which has been enthusiastically received
in the first two offerings of this course (see for example [12],
[13]). A parsimonious core language can help students see
the connections between different concepts and avoid the
introduction of artificial distinctions between manifestations
of the same concept in different contexts. This bodes well for
the utility of such languages for addressing this challenge.
However, to fully overcome this challenge, we must develop
a clear understanding of how different features in such a
language match up with the demands of different types of
cyber-physical systems.

The Acumen distribution contains implementations of
multiple different solvers for simulation, accessible from a
“Semantics” menu. For this paper, we use on the “Tradi-
tional” semantics, which simply uses Eulers method and a
constant time step for integration.

Remark about Syntax: Since the writing of Part I of this
paper, a minor change has been made to the syntax, where
: = now describes discrete assignments, and = now describes
continuous assignments. Also, a syntax highlight feature has
been introduced, in order to improve the user experience.

ITII. QUADCOPTER

A rigid body system consists of a set of solid bodies
with well-defined mass and inertia, connected by constraints
on distances and/or angles between the solid bodies. The
dynamics of many physical systems can be modeled with
reasonable accuracy as a rigid body system. It is widely used
for describing road vehicles, gear systems, robots, etc. In this
section, we consider an example of a complex system that
can be successfully modeled as simple rigid body, namely,
the quadcopter.

A. Background

The quadcopter is a popular mechatronic system with four
rotor blades to provide thrust. This robust design has seen use
in many UAV applications, such as surveillance, inspection,

and search and rescue. Modeling a quadcopter is technically
challenging, because it consists of a close combination
of different types of physics, including aerodynamics and
mechanics. A mathematical model of a quadcopter may need
to address a wide range of effects, including gravity, ground
effects, aerodynamics, inertial counter torques, friction, and
gyroscopic effects.

B. Reducing Model Complexity Through Control

Even if we limit ourselves to considering just six degrees
of freedom (three for position and three for orientation), the
system is underactuated (one actuation from each rotor vs.
six degrees of freedom) and is therefore not trivial to control.
Fortunately, controllers exist that can ensure that actuation is
realized by getting the four rotors to work in pairs, to balance
the forces and torques of the system. With this approach, the
quadcopter can be usefully modeled as a single rigid body
with mass and inertia, by taking account of abstract force,
gravity and actuation control torques. This model is depicted
in Fig. 1.

C. Mathematical Model

To generate the equations for the dynamics of our common
quadcopter model [14], we first construct the rotational
matrix to translate from an inertial (globally-fixed) reference
frame to the body-fixed reference frame shown in Fig. 1. This
matrix represents rotation about the y axis (6), followed by
rotation about the x axis (¢), and then rotation about the z

axis ().

CwC@ C¢S@C¢ — ch¢ Cngcd, + SwS¢
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Here, C', S and T refer to cos, sin, and tan, respectively.
Next, summing forces on the quadcopter results in:

ZF:mde—&—RT (2)

where G is the force due to gravity, R is the rotational matrix,
and 7' is the thrust from the motors. This expands to

x 0 T CySeCy + SySe
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Finally, by summing moments about the center of mass, the
equations for the dynamics for each of the rotational degrees
of freedom can be determined as follows:
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Fig. 1: Free body diagram of the quadcopter
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D. Acumen Model for Quadcopter

The equations derived earlier for the dynamics can be
expressed in our core language as follows:

class QuadCopter (P,phi, theta,psi)

private
g := 9.81; m := 0.468;
1 := 0.225; k := 2.98x10" (-6);
b := 1.140%«10"(=7);
IM := 3.357+«107(-5);
Ixx := 4.856%10" (=3);
Iyy := 4.856%107(-3);
Izz := 8.801%x10"(=-3);
Ax = 0.25; Ay = 0.25;
Az := 0.25;
wl := 0; w2:= 0; w3 := 0;
wd := 0; wT := 0; f1 := 0;
f2 := 0; £3 :=0; f4 := 0;
™1 := 0; TM2 := 0; T := 0;
T™M3 := 0; TM4 := 0;
p’ := [0,0,0]; p’’ := [0,0,0];
phi’ := 0; theta’ := 0; psi’ := 0;
phi’’ := 0; theta’’ := 0; psi’’ := 0;
p :=0; g :=0; r :=0; p’ := 0;
q’ :=0; r" := 0; Ch:=0; Sh:=0;
Sp:=0; Cp:=0; St:=0; Ct:=0; Tt:=0
end

T =kx (Wl"2 4+ w2°2 + w372 + wd"2);
fl = k » wl™2; TM1 = b * wl"2;
f2 = k x w272; TM2 = b * w2"2;
f3 = k * w372; TM3 = b * w3"2;
f4 = k « wd"2; TM4 = b * wd"2;

wl = wl — w2 + w3 - w4;

Ch = cos(phi); Sh = sin(phi);

Sp = sin(psi); Cp = cos(psi);

St = sin(theta); Ct = cos(theta);
(

Tt = tan(theta);

P’'" = -g * [0,0,1] + T/m
* [Cp*St*Ch+SpxSh, SpxSt+«Ch—-Cp=*Sh, Ct xCh]
-1/mx* [Ax*dot (P’, [1,0,01),

Ay+dot (P’, [0,1,01),
Azxdot (P, [0,0,11)1;

p’ = (Iyy-Izz)*g*r/Ixx — IMxq/Ixx*wT
+ 1lxkx (wd"2 — w2"2)/Ixx;

q’ = (Izz-Ixx)*p*r/Iyy—IM* (-p)/Iyy*wT
+ 1xk* (w372 —-wl"2)/1Iyy;

r’ = (Ixx — Iyy)*pxq/Ilzz
+ w2°2 —-w3"2 —wd"2)/Izz;

phi’’ = (phi’*«Ch*Tt+ theta’*Sh/Ct"2) xq
+ (-phi’ *Sh*Ct+theta’ *Ch/Ct"2) *r
+ (p’+g’ *ShxTt+r’ xCh*Tt) ;

theta’’ = (-phi’*Sh)xg + (-phi’*Ch)x*r
+ (g’ *Ch+r’ % (-Sh));

psi’’ = (phi’*Ch/Ct+phi’ *Sh*Tt/Ct) *xq
+ (-phi’*Sh/Ct+theta’ *Ch*Tt/Ct) *r
+ (g’ *Sh/Ct+r’*Ch/Ct);

end

+ b*x(wl”2

Fig. 2 presents snapshots of a 3D visualization of the
quadcopter responding to a signal from a basic stabilizing
controller [14]. This example shows that the Acumen core
language can express models for complex mechatronic sys-
tems that are widely used in both research and education
today.

IV. LAGRANGIAN MODELING, AND WHY WE NEED IT

Mathematical modeling of rigid body systems draws heav-
ily on the field of classical mechanics. This field started in the
17th century with the introductions of Newton’s principles
of motion and Newtonian modeling. Newton’s foundational
work was followed by Lagrangian modeling in the 18th
century, and Hamiltonian modeling in the 19th. Today,
mechanical engineers make extensive use of the Lagrangian
method when analyzing rigid body systems. It is therefore
worthwhile to understand the process that engineers follow
when using this method, and to consider the extent to which
a modeling language can support this process.

The Newton method is focused on taking into consider-
ation the forces and torques operating on a rigid body, and
then computing the linear and angular accelerations of the
center of mass of that rigid body. In general, this method
consists of isolating the rigid body of interest in a free body



Fig. 2: The simulation results of the quadcopter model with
PID control. Here the controller is bringing the quadcopter
elevation, roll, pitch, and yaw to zero. Yellow arrows attached
to each rotor indicate the thrust force generated by the rotors.

diagram, selecting coordinate frame and summing forces
and torques on the rigid body with respect to that frame,
then using kinematics to express the linear and angular
acceleration terms, before finally deriving the equations for
the dynamics.

The Lagrangian method is based on the notion of action
L =T —V, which is the difference between the kinetic 7
and potential energy V. The Euler-Lagrange equation is itself
a condition for ensuring that the total action in the system
is stationary (constant). In Lagrangian modeling of physical
systems, this condition should be seen as the analogy of
the combined conditions XF = ma and X7 = Iw” in
Newtonian mechanics. The Euler-Lagrange equation is as
follows:

L L
8) 82@ ®)

d

vi e {1...]q])}, o <5q'¢ o0
Using just this equation, the modeling process is reduced
to specifying the kinetic and potential energy in the system.
Part of the power of the method comes from the fact that this
can be done using Cartesian, polar, spherical, or any other
generalized coordinates. Compared to the classic Newtonian,
force-vector based methods, the Euler-Lagrange equation is

often a more direct specification of the dynamics.
The Lagrangian modeling process consists of four steps:
1) Start with a description of the components of the
system, consisting of rigid bodies and joints. This
description generally comes with a set of variable
names which are collectively called called the gener-
alized coordinates vector ¢. Intuitively, each variable

(b) Double

(a) Single

Fig. 3: Free body diagram for single and double pendulums

represents a quantity corresponding to one of the
degrees of freedom for the system. Usually, all of this
information can be captured in an intuitive way in a
free body diagram.

2) Determine the expression for the total kinetic and
potential energy 1" and V, respectively, of the system,
in terms of the selected set of generalized coordinates
q.

3) Identify and include any “external forces” () such as
friction.?

4) Substitute the values into the Euler-Lagrange equation
(8) for the variables of second the derivative of q.

This process and its benefits can be illustrated with two
small examples. The benefits apply whether or not the
language supports directed or undirected equations. Figure 3
presents a free body diagram marked up with generalized
coordinates (6 in one, and 61,05 in the other) for a single
and a double pendulum system. First, we consider the
single pendulum. A direct application of the angular part
of Newton’s law gives us the following equation:

g = %Cosﬁ 9)

which is easily expressed in Acumen as follows:

class pendulum (1)
private

theta := 0;theta’

g:=9.81;
end

theta’’ =
end

:=0;theta’’ :=0;

g/lxcos (theta);

Lagrangian modeling can be applied to the single pen-
dulum problem, but Newton’s method works well enough
here. However, Lagrangian modeling does pay off for a
double pendulum. It is instructive for language designers
to recognize that such a seemingly small change in the
complexity of the rigid body makes the model most of us
learn about in high-school much more cumbersome than
necessary. Whether or not this difficulty in modeling is due
to weakness in Newtonian modeling or intrinsic complexity
in this seemingly simple example is not obvious: The double

3For this paper, we do not consider any such forces.



pendulum is sophisticated enough to be widely used to model
a human standing or walking [15], or a basic two-link robot
such as the MIT-manus [16].

To derive a model for the double pendulum using La-

grangian modeling, we proceed as follows:

1) We take ¢ = (61,602). Here, because the Euler-
Lagrange equation is parameterized by a generalized
coordinate vector, we could have chosen to use Carte-
sian coordinates (x, z) for each of the two points. Here
we chose angles because they resemble what can be
naturally measured and actuated at joints.

2) The kinetic and potential energies are defined as fol-

lows: 1 1
T = —myvi + —mav3 (10)
2 2
V =migz1 + magzo (11)
where we have introduced shorthands for speeds
2 _ 1242 2 _ .92, 1 2y 2 24 2
vy = 1191 and Vy = vy + 2m2(1101 + 1292 +

2[1[29.19.2 COS(92 — 91)), zZ1 = llsinﬁl and heights
z9 = 21 + lasinf,. Substituting these terms we get:

1 .
T = 57711([191)2

1 9p 2 9,2 ..
+ img(l191 + l292 + 211150105 COS(92 — 91))

(12)
V' = mygly sin 81 +mogls sin O3 +mogly sinfy; (13)

3) We assume frictionless joints, and so there are no
external forces (Q) = 0).

4) By substitution and (manual) symbolic differentiation
we get:

(m1 + mg)l%l + m2l1l29“2 COS (91 — 92)

+ m2l1l2912 sin(6, — 02) + mimagly cos; =0
(14)

mgl§92 + mglllgé.l COS (91 — 92)—
WL2l1l2912 sin (91 — 02) + mgglg (¢{0)] 92 =0 (15)

It is important to note in this case that, while these are
ordinary differential equations (ODEs), they are not in
the explicit form X’ = E. Rather, they are in implicit
form, because the variable we are solving for (X’) is
not alone on one side of the equation. Using Gaussian
elimination (under the assumption that the masses and
length are strictly greater than zero), we get:

6, = mglg(ﬁug cos(fh — 02) + 93 sin(6, — 02)

+ (m1 +ma)gcos(61))/(=l1(m1 + ma)) (16)
92 = m211(91 COS(91 — 92) — 9% Sil’l(@l — 92)
=+ mag COS(GQ))/ — 117712 (17)

The following code shows these equations expressed in
Acumen:

Fig. 4: The RiceWrist-S, with superimposed axes of rotation

class double_pendulum
private
t_1 := 0;
t_1’ := 0;
t_1'" := 0;
g:=9.81;
end
t_ 177 =
(m_2+L_2x(t_2'"%cos(t_1-t_2)
+t_2' "2xsin(t_1-t_2))
+ (m_l+4+m_2) xg*cos(t_1))
*(=1)/ ((m_14m_2)*L_1);
t_ 2’7" =
(m_2+L_1x(t_1"'"+*cos(t_1-t_2)
—t_1""2%sin(t_1-t_2))
+m_2xg*cos (t_2))
*(=1)/ (m_2*L_2);
end

(m_1, m 2, L_1, L_2)

V. THE RICEWRIST-S ROBOT

Equipped with an understanding of Lagrangian modeling
in the manner presented above, engineers model multi-link
robots much more directly than with the Newtonian method.
In this section we present one such case study using the
RiceWrist-S research Robot.

A. Background

With an increasing number of individuals surviving once
fatal injuries, the need for rehabilitation of damaged limbs
is growing rapidly. Each year, approximately 795,000 people
suffer a stroke in the United States, where stroke injuries are
the leading cause of long-term disability. The RiceWrist-
S [17] is an exoskeleton robot designed to assist in the
rehabilitation of the wrist and forearm of stroke or spinal
cord injury patients (Fig. 4). It consists of a revolute joint for
each of the three degrees of freedom at the wrist. Because it
has three rotational axes intersecting at one point, a good
starting point to modeling it is the gimbal, a commonly
studied mechanical device that also features several rotational
axes intersecting at one point.



Fig. 5: Free body diagram of the RiceWrist-S as a gimbal

B. Analytical Model

We can apply the Lagrangian modeling process to deter-
mine the dynamics of a gimbal as follows:

1y

2)

We take ¢ = (61,05,03), where each of the angles
corresponds to one of the three rotations possible in the
RiceWrist-S (Fig. 5). We chose to represent the mass
of the system as centralized to three locations, one at
the origin, one at the bottom of the outermost ring,
and one at the end of the third link. The masses in this
figure correspond to the motors and handle depicted in
Fig. 4.

To describe the energies concisely, it is convenient
to use the following angular velocities of the gimbal
frames in the kinetic energy terms, and the resulting
heights for the potential energy terms:

wlzél'fl (18)
(J.)Q:él'fl +9'2~ZAQ (19)
w3 =0y - &1 + by - Zp + 63 - U3 (20)

where ;9;2; refers to the unit vector and coordinate
frame about which these rotations occur, as shown
in Fig. 5. Here, the w; terms correspond to the m;
masses, and describe the angular velocities of that
mass. Since this is a complex rotational system, many
of the rotations do not occur in the coordinate frames
of the respective gimbal. Therefore, in order to express
each w; in terms of the same coordinate frame, we
applied the following coordinate transforms:

wy =0y - 7 (1)
wy =01 (cos(0y) - 75 — sin(Ba) - 42) + b2 - 2 (22)
w3 = (91 (cos(62) cos(03)) + 92(— sin(f3))) - @3

+ (=01 sin(fy) + 63) - 43 + (=6, sin(63) cos(62)

— 0 cos(63)) - 73
(23)

Next, we express the heights above the predefined
plane of zero potential energy (in Fig. 5, the XY plane)
of each of the masses m1, mo, ms, respectively, as the

following:
hy =13 cos(61) (24)
ha =0 (25)
hg = 13 sin(01) Sin(03) (26)

With this completed, the 7" and V' terms can be quickly
and easily defined. Since this is a rotational only
system, 7" is defined as the sum of the rotational energy
terms, shown below:

T = %(Ilwl - wy + lhws - wa + Isws - wg) 27
Where I; is the rotational inertia corresponding to
0;, and w; is defined as above. And since there are
no potential energy storage elements other than those
caused by gravity, V can be expressed with these
heights:

V = mighy + maghs + msghs
= —mygla cos(b1) + maglzsin(fy) sin(f3) (28)

3) Again, we assumed frictionless joints, so @ = 0

4) After substitution and (manual) symbolic differentia-
tion, we get an implicit set of equations. We solve these
for ¢” to get the equations of the systems dynamics.

1d (Ilawl :wl +I280J2 :(UQ +138w3 :w;»,) +
(991 891 891
maglasin(61) + maglscos(61)sin(f3) =0 (29)

4 2 &
2 dt 96, ° 00,

1 8w2 * W2 aw:; * W3 o
~3 <12 06, o0, ) =0 GO

li Iawg,'w?, _1 16w3~w3
24t \"° o6, 2\ 06,

— maglzsin(f1)cos(63) =0 (31)

1d ( (9(.«}2'602 8&)3'&13)
I

After computing the static partial derivatives, and the time
derivatives, the resulting ODE’s are again, easy to express
in Acumen. But they are too long to include here, as is the
code [18]. What is significant about this situation is that
these equations are linear in ¢ even though the system is
also a non-linear differential equation (when we consider g,
¢ and §). Because the system is linear in ¢, we can use
standard Gaussian elimination to solve for §. This converts
these implicit equations into an explicit form that is readily
expressiable in Acumen. Fig. 6 shows the compound motion
of the RW-S Gimbal model.



(a) Rotation about 6
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(c) Rotation about 03

(b) Rotation about 62

(d) Compound motion

Fig. 6: RiceWrist-S modeled as Gimbal in Acumen.

VI. DISCUSSION

In this section, we step back to reflect on how to interpret
this experience with expressing these various sytems in the
small core language described at the outset of the paper.

A. The Role of a Core Language

At the highest level, Acumen can be seen as an untyped
core formalism for a subset of hybrid systems modeling
and simulation languages such as Modelica [7], Scicos [19]
and Simcape [8]. It is easy to see that the CPS aspects
that Acumen can express should be expressible by “larger”
languages, but it is less clear what finding a weakspot in
the expressivity of Acumen means for larger languages.
In reasoning formally about expressivity limitations, it is
beneficial that Acumen is untyped: any static type discpline
adds restrictions, and whether or not such restrictions affects
expressivity complicates such reasoning. While removing
typing avoids this particular difficulty, it does not remove
all the difficulties. Eventually, we expect to add a typing
discpline to Acumen, but no particular direction has been
decided at this time.

With several annual workshops related to its design and
applications, Modelica is the most actively studied of the
hybrid languages. It is a large language with many constructs.
Acumen is small, with only a few features that are specific to
hybrid systems. For example, Open Modelica’s parser [20]
is roughly four times longer than the parser for Acumen. If
Acumen can be seen as a subset of Modelica, it is reasonable
to assume that the CPS aspects that Acumen can express can
also be expressed in Modelica. At the same time, if features
of CPS models are not easily expressed in Acumen, it is not
immediately obvious wether or not they can be expressed in
Modelica.

Another point that requires care in making the connection
is the relation between Acumen’s notion of an object class
and the abstraction mechanisms found in other languages.

So far, our comparisons focus on issues relating to the
expression and statement parts of these languages.

B. Supporting Lagrangian Modeling

The experience with the RiceWrist-S Robot suggests the
need for Lagrangian modeling, which in turn points out
to the need for two language features. The first feature is
static partial derivatives. It has been observed elsewhere that
the type of partial derivatives used in the Euler-Lagrange
equation for rigid body dynamics can be removed at compile
time (or “statically”) [5]. The pendulum examples show that
CPS modeling languages should support the definition of
explicit Langrangian models (requiring partial derivatives)
because it simplifies the task of modeling rigid body systems,
reducing the amount analysis, description, and algebraic
manipulation the user would have to carry out.

Support for static partial derivatives in larger modeling and
simulation tools seems sparse. While the Modelica standard
(at least until recently) did not support partial derivatives,
one implementation of Modelica, Dymola [21], does provide
this support. Static partial derivatives are clearly an important
feature to include in any DSL aiming to support CPS design.

In response to this observation, we have already introduced
support for static partial derivatives in Acumen. The second
language feature required (but is not sufficient without the
first) to support Lagrangian modeling is implicit equations.
The utility of implicit equations can be seen by reviewing
the double pendulum example. Implicit equations are present
in Modelica and Simscape. The construct does increase the
reusability and flexibility of models, making composite mod-
els more concise. At this point it is not entirely clear to us
how to best introduce implicit equations into a core language.
To address this issue, we are currently implementing and
experimenting with several different approaches from the
literature. While different approaches may be better suited
for different purposes (such as numerical precision, runtime
performance, or others), our purpose behind this activity is
to better understand how to position implicit equations in the
context of other CPS DSL design decisions. A particularly
interesting question here is whether this feature must be a
primitive in the language or whether it can be treated as a
conservative extension [22] of a core that does not include
1t.

VII. CONCLUSIONS

This paper reports our most recent findings as we pursue
an appropriate core language for CPS modeling and sim-
ulation. In particular, we present two examples. Our first
example, a quadcopter, is significantly more sophisticated
than any system considered in the first part. It shows that
the core language proposed in Part I can express more so-
phisticated systems than was previously known. The second
example, the RiceWrist-S, led us to understand the need
for Lagrangian modeling, and as a result, provides us with
concrete justification for introducing support for static partial
derivatives. The most important lesson from this case study
was that a DSL aimed at supporting CPS design should



provide static partial derivatives and implicit equations. In
order to ensure that we can push this line of investigation
further, we have already developed a prototype of the former,
and are working to realize the latter.
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