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Abstract—In order to derive maximum benefit from robot-
assisted rehabilitation, it is critical that the implemented control
algorithms promote the participant’s active engagement in ther-
apy. Assist-as-needed (AAN) controllers address this need by pro-
viding only appropriate assistance during movement execution.
Often, these controllers depend on the definition of an optimal
movement profile, against which the participant’s movements are
compared. In this paper, we present a novel subject-adaptive con-
troller, consisting of two main components: AAN control algorithm
and online trajectory recalculation. First, the AAN control algo-
rithm is based on an adaptive controller and introduces a novel
feedback gain modification algorithm. Coupled with the uniformly
ultimately bounded stability property of the resulting dynamic sys-
tem, the developed controller is capable of changing the amount of
error allowed during movement execution, while simultaneously
estimating the forces provided by the participant that contribute
to movement execution. Second, we present a real-time trajectory
generation algorithm based on a physiologically optimal and ex-
perimentally validated asymmetric wrist movement profile. The
feedback gain modification and trajectory generation algorithms
are validated with the RiceWrist system in an experimental study
involving five healthy subjects, with the modified AAN adaptive
controller decreasing its feedback control action when a subject
shifts his behavior from passively riding along with the robot dur-
ing movement to actively engaging and initiating movements to the
desired on-screen targets.

Index Terms—Adaptive control, exoskeletons, nonlinear sys-
tems, parallel mechanisms, robot dynamics, robotic rehabilitation.

I. INTRODUCTION

IN the United States, stroke is the leading cause of long-term
disability, with approximately 795 000 individuals experi-

encing a stroke annually. The social and economical impacts
are significant, with an estimated $38.6 billion annual cost [1].
Spinal cord injuries (SCI) also contribute to disability, with ap-
proximately 12 000 incidences in the United States each year
[2]. The average age of an individual experiencing an SCI is
lower than that affected by stroke, leading to total yearly di-
rect and indirect costs of approximately $14.5 billion and $5.5
billion, respectively [3].
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Movement rehabilitation of subjects affected by neurolog-
ical lesions, including stroke and SCI, is delivered with the
goal of improving function leveraging on brain and spinal cord
plasticity. To achieve this objective, therapy must be intensive
[4]. Robotic devices are well suited to offer multiple training
sessions with consistent delivery of therapy, coupled with the
opportunity to perform objective and quantitative performance
evaluation of subjects throughout the course of therapy. This ob-
jective and data-driven assessment is typically not feasible with
clinical tests commonly used to assess the efficacy of classical
rehabilitation. Indeed, robotic devices are being increasingly
included in rehabilitation protocols, and the results of clinical
studies with subjects with both stroke [5] and SCI [6] support
this approach.

One of the most critical areas of research in rehabilitation
robotics is the development of control strategies capable of reg-
ulating physical interaction with the subject in a way that pro-
motes plasticity and, therefore, improves motor recovery [7]. In
assisting control strategies, the robotic device assists a subject
to move along a desired path. As one might expect, the specific
role played by the robot during therapy can significantly impact
the clinical outcomes. Hogan et al. [8] showed that continu-
ous passive motion-based therapy did not produce significant
improvements in poststroke patients, suggesting that plasticity-
mediated motor recovery requires active participation.

To ensure active participation, controllers within the assist-
as-needed (AAN) paradigm [7] have been developed. Such ap-
proaches attempt to minimize the assistance provided by the
robot, based on some online measurements of the subject’s per-
formance, or by defining regions of no-action, in which the robot
does not assist movements. These formulations are well suited to
robotic rehabilitation, given the higher intersubject variability of
human movements. Additionally, such approaches are aligned
with motor control studies showing that error is likely to be a
driving signal for motor learning [9], [10].

Addressing some of the points above, Krebs et al. [11] pre-
sented an impedance control scheme based on a force-field tun-
nel, and a virtual wall which assists the subject by pushing them
along the trajectory if the movement is slower than a predefined
velocity. A fixed wait time before starting delivery of assist-
ing forces or torques is introduced. Such an approach does not
account for the fact that the subject might have heterogeneous
residual motor capabilities in different regions of the workspace
and might require force support only to initiate a movement,
and not to complete it, or vice versa. A similar approach is de-
scribed in [12], where an impedance controller is defined around
a desired trajectory specified in the task space and regulates the
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assisting forces according to the distance of the subject from
the desired trajectory. The fact that the desired trajectory is only
defined in the task space makes this controller independent of
time, thus allowing movement velocity to be completely defined
by the subject. Applying the AAN approach to a wrist rehabil-
itation robot, the algorithm proposed in [13] adapts the desired
range of motion according to the performance of the subject,
and introduces nonlinear feedback control action to minimize
assistance force/torques when the error is small.

In contrast to an impedance control approach, Wolbrecht et al.
[14] modeled the residual functional abilities of the subject and
provided assistance only in the regions of the workspace in
which the subject had insufficient capability. Their assistance
scheme was based on an adaptive controller that used a Gaus-
sian radial basis function (RBF) network for estimation pur-
poses; their controller was implemented on the Pneu-WREX
[15], a pneumatically actuated, 4-degree-of-freedom (DOF), se-
rial mechanism. Inclusion of Gaussian networks in adaptive
control algorithms was previously proposed for both real-time
robot control [16] and for arm movement modeling purposes
[17]. Additionally, to ensure continuous active participation, an
adaptation law was used to decrease the assistance forces when
the position error is low. A drawback of this approach is that
the quality of estimate of the subjects residual capabilities is
perturbed by the forgetting factor law; moreover, this approach
does not allow to directly manipulate the error bounds, as is
possible with force-field tunnel approaches. A required feature
of adaptive controllers is a real-time trajectory recalculation.
In the implementation presented in [18], the recalculated tra-
jectory was based on a nominal minimum-jerk trajectory, exe-
cuted any time the subject was ahead of the desired trajectory.
Hence, the recalculated trajectory was continuous but not time-
differentiable. In particular, the profile had zero velocity at the
time of recalculation, implying that a new trajectory would be
recalculated at the following iteration (the subject had nonzero
velocity if she/he was ahead of the desired trajectory). The
resulting switching action increased the computational burden
and generated a discontinuous desired position profile that was
likely to hinder motor recover of physiological movements.

In this study, we present a subject-adaptive controller, con-
sisting of two novel components: the AAN control algorithm
and the online trajectory recalculation. The AAN control algo-
rithm is based on the adaptive control approach [19] and uses
a Gaussian network for estimation purposes, similar to [14],
and introduces a novel feedback gain modification algorithm
capable of directly manipulating the error bound according to
the performance of the subject. The online trajectory recalcula-
tion is based on an experimentally defined physiological wrist
movement profile and generates a position trajectory that is both
continuous and time differentiable.

This paper is organized as follows. Section II describes the
hardware and its dynamical modeling, useful for subsequent
stability analysis purposes. Section III presents the AAN con-
troller and introduces the feedback gain modification algorithm.
In Section IV, the definition of the nominal desired trajectory
is made, and the online recalculation algorithm is described.
The experimental results for the validation of the developed

Fig. 1. RiceWrist hardware platform with a subject in neutral pose.

Fig. 2. Basic kinematic structure of the 4-DOF serial-in-parallel RiceWrist
which employs a 3-RPS parallel mechanism at the wrist module and a revolute
joint at the forearm. Reference frames 3 and 4 are attached to the base plate and
end effector of the 3-RPS mechanism, respectively. Rotation around x4 with
respect to reference frame 3 corresponds to wrist FE, and rotation around y4
with respect to reference frame 3 corresponds to wrist RUD.

controller are presented and discussed in Section V. Finally,
the conclusions of the study and remarks for future work are
presented in Section VI.

II. HARDWARE DESCRIPTION AND MODELING

The RiceWrist [20] is a wrist and forearm exoskeletal robotic
device (see Fig. 1). The basic kinematic structure of the
4-DOF serial-in-parallel mechanism is depicted in Fig. 2. The
exoskeleton is comprised of a 3-revolute-prismatic-spherical
(RPS) wrist, to support wrist flexion/extension (FE) and ra-
dial/ulnar deviation (RUD), and a revolute joint for forearm
pronation/supination (PS). The final DOF of the platform is
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Fig. 3. Inverse dynamics simulation of the parallel portion of the RiceWrist for combination of FE and RUD movements. The desired angles are calculated as
typical wrist motion profiles, with velocity profile determined by a symmetric beta function, with 30◦ movement extent and variable reaching time, from 4 to 0.5 s.
Instants of target reaching are represented by red dashed lines in (d), and the corresponding torques are calculated in the domain of output coordinates, including
(a) inertial force–torques, (b) gravitational force–torques, and (c) Coriolis/centrifugal force–torques.

translation (distance of bottom plate from top plate) and ac-
counts for minor misalignments of the wrist rotation axes with
the device. The dynamic equations of the system can be repre-
sented in the form

M(x)ẍ + C(x, ẋ)ẋ + g(x) = Fr + Fp (1)

where x is a 4 × 1 vector of end-effector position (independent
coordinates), M is the 4 × 4 inertia matrix, C is the 4 × 4
matrix which represents Coriolis/centrifugal terms, G is the
4 × 1 gravity vector, Fr is the 4 × 1 vector of forces applied
by the actuators, and Fp is the 4 × 1 vector of forces applied
by subject at the end effector (handle) which is mapped to the
joint space by the transpose of the inverse of the Jacobian of the
mechanism.

Using the formulation in [21], it can be shown that the dy-
namical equations of the RiceWrist can be expressed in the
form of (1) and possess identical properties as open-chain serial
mechanisms. The important distinction, however, is that the ob-
tained dynamical model is valid only locally, i.e., the domain of
the generalized coordinates (x) is a bounded and closed set (Ω)
rather than the whole n-dimensional real space (n corresponds
to the number of DOF of the device, in our case n = 4) [21]

x ∈ Ω, where Ω ⊂ �n

In our previous work [22], we determined that a conservative
estimate of the domain of validity of the reduced kinematic
model of the parallel portion of the RiceWrist is well within the
requirements for wrist movement-based rehabilitation therapy.
In particular, we determined that the reduced model is valid
within very large margins, for both FE and RUD movements
with velocities on the order of 30–100 ◦/s.

We developed an accurate dynamical model of the parallel
portion of the RiceWrist, following the formulation presented
in [21], that is valid in this reduced domain. Such an approach

allows obtaining an estimate of inertial and Coriolis torques re-
quired to produce movement profiles such as those required for
wrist rehabilitation therapy, through inverse-dynamics simula-
tions, that will be useful for subsequent stability analysis of the
proposed adaptive controller (see Appendix for details).

The results of the inverse dynamics simulation are shown in
Fig. 3. It can be seen that for physiological wrist pointing pro-
files (30◦ angle extent, minimum reach time of 0.5 s), inertial
and Coriolis components of force/torques are negligible com-
pared to the gravitational torques, and are in general lower than
0.05 N ·m, which is around 2% of the maximum torque delivered
by the RiceWrist during continuous therapy. This simulation
provides a quantitative foundation that enables the quasi-static
approximation that will be used in the adaptive control method,
described in the following section.

III. AAN CONTROLLER

In this section, we introduce the AAN controller which em-
ploys an adaptive control algorithm developed by Slotine and Li
[19], and a feedback gain modification algorithm, which mod-
ifies the amount of permissible error according to the perfor-
mance of the subject. First, we describe the adaptive controller
and conduct the stability analysis in order to show the uniformly
ultimate boundedness of the errors. Then, we build the develop-
ment of the feedback gain modification algorithm on the results
of previous description and analysis.

A. Adaptive Controller

In our formulation, we develop the controller in task space,
because we wish to abide by the formulation in [18], which
confers a clear physical meaning to the regressor matrix, where
the construction of the regressor matrix is an integral step in the
formulation of the controller.
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Having represented the dynamic equations of the system in
the form of (1), we define the tracking error as x̃(t) = x(t) −
xd(t), where xd(t) is the desired end effector trajectory which
is at least twice differentiable. Furthermore, let us define the
sliding-mode variables

r = ˙̃x + Λx̃ = (ẋ − ẋd) + Λ(x − xd)
v = ẋd − Λx̃ = ẋd − Λ(x − xd)
a = v̇

(2)

where Λ is a 4 × 4 constant, positive-definite, symmetric matrix.
Since the system dynamics are linear in terms of system

parameters, they can be represented as a multiplication of a
regressor matrix, which includes the known functions of the
system equations, and an unknown vector. We now assume that
the forces applied by the subject Fp depend primarily on the
orientation of the hand. Hence, the force field Fp is dependent
on the three rotational elements of x, xrot , defining the pos-
ture of the wrist joint. We further assume that Fp is linearly
parameterizable.

In our formulation, different from what Slotine and Li pro-
posed in [19], we use a control law that only estimates the
position-dependent elements (G(x) and Fp ) and does not ac-
count for the inertial and Coriolis/centrifugal terms M(x)ẍ and
C(x, ẋ)ẋ. Through our modification, we relax the requirement
of asymptotic stability in favor of uniformly ultimately bounded
stability (see Section III-A for stability analysis), thereby en-
abling direct modulation of the system error bounds.

Consider the following control law:

Fr = Ĝ(x) − F̂p − KD r (3)

where Ĝ is the estimate of the gravitational term, F̂p is the
estimate of the forces coming from the subject, and KD is a
symmetric positive-definite feedback gain matrix.

As stated above, both G(x) and Fp are linearly parameteriz-
able, and they can be modeled as

Y θ̂ = Ĝ(x) − F̂p (4)

where Y is a 4 × m regressor matrix which contains known
functions of state x, and θ̂ is the m × 1 vector containing esti-
mates of unknown system parameters. We used Gaussian RBFs
to model both G(x) and Fp . The rationale to use Gaussian
RBFs is that any continuous function, not necessarily infinitely
smooth, can be uniformly approximated by linear combinations
of Gaussian RBFs [23]. We partitioned each rotational DOF of
the robot in four equally spaced intervals, yielding five nodes
for every rotational DOF (located at −20◦, −10◦, 0◦, 10◦, 20◦)
and a total number of 125 points in the 3-D space defined by the
RiceWrist rotational DOFs. We then defined 125 RBFs through-
out the workspace of the RiceWrist as

gn = exp(−‖xrot − μn‖2/2σ2) (5)

where gn is the nth Gaussian RBF, xrot is the 3 × 1 current ori-
entation of the RiceWrist’s end-effector, μn is the 3 × 1 location
of the nth Gaussian RBF, and σ is a constant which defines the
width of the function. By keeping the number of functions as
low as possible, we aimed to decrease the expense of compu-
tation and to avoid estimation of unrealistically irregular force

fields [24]. The forces coming from the subject are parameter-
ized using these 125 RBFs. The vector of Gaussian RBFs is
defined as

g = [g1 g2 ... g125 ]T . (6)

Consequently, the regressor matrix is defined as

Y 4×500 =

⎡
⎢⎢⎣

gT 0 0 0
0 gT 0 0
0 0 gT 0
0 0 0 gT

⎤
⎥⎥⎦ . (7)

In order to develop the adaptation law through stability anal-
ysis of the controller, we first choose the Lyapunov function
candidate as

V (t) =
1
2
[rT Mr + θ̃T Γθ̃] (8)

where Γ is a 4 × 4 constant, positive-definite, symmetric ma-
trix, and θ̃(t) = θ̂ − θ. Next, we differentiate (8) and use the
following relations beside the skew-symmetry property:

ẍ = ṙ + a

ẋ = r + v

Y θ̂ = Ĝ(x) − F̂p

in order to obtain following equation:

V̇ (t) = −rT KD r + rT Y θ̃ + θ̃T Γ ˙̃
θ + B (9)

where

B = −rT Cv − rT Ma. (10)

We use the adaptation law suggested in [19]

˙̃
θ = −Γ−1Y T r. (11)

The adaptation law, when substituted into (9), produces

V̇ (t) = −rT KD r + B. (12)

Hence, we show that the controller is uniformly ultimately
bounded, i.e., the error always stays within a certain bound, due
to the existence of B. The condition

|rT KD r| > |B| (13)

has to be verified, for the derivative of V to be negative. Two
important points are worthy of note. First, the term B is fairly
small for rehabilitation applications with low velocity and ac-
celeration values, as shown in Section II. Second, from (12), it is
visible that the error bound can be modulated by the KD term. In
fact, the feedback gain modification algorithm, described in the
following section, exploits the uniform ultimate boundedness of
the controller and modifies the error bound by modulating the
KD term.

Note that the feedback part of the controller (3) is in essence
a PD controller, while the feedforward part of the controller
is the estimate of the forces coming from the subject. In case
of a drastic change in the subject’s force input, the controller is
still providing assistance according to the previously determined
estimate. In this situation, the dynamical system is equivalent to
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a PD controller with disturbance. The disturbance includes the
wrong feedforward estimate and the instantaneous input from
the subject. Hence, considering a possibility of a drastic change
in the subject’s force input, we implemented a software stop
which is based on a threshold error (15◦) between the desired
and actual positions, immediately inactivating the amplifiers
when this condition is met.

B. Feedback Gain Modification Algorithm

Although the adaptive controller described in Section III-
A considers the input from the subject and adjusts the robot
torque input accordingly, the subjects might still let the robot
take control. To address this issue, Wolbrecht et al. [14] propose
a forgetting factor algorithm which decays learned parameter
estimates when error is low. We follow a different approach to
AAN control, that aims at introducing error in the execution
of movements during rehabilitation, through the modulation of
the controller feedback gain. This is motivated by motor con-
trol studies showing that error is likely to be a driving signal for
motor learning [9], [10]. Through the uniform ultimate bounded-
ness of our formulation, the feedback gain modification directly
manipulates the admissible error bounds and the amount of force
support. Hence, instead of requiring the errors to become zero,
our approach tolerates error and manipulates the error bound
according to the performance of the subject. Furthermore, the
proposed approach does not apply any modification to the adap-
tation law of the controller [19]; hence, it does not interfere with
the quality of force estimation.

The algorithm is based on the definition of a minimum and a
maximum feedback gain (diagonal matrices KDM A X , KDM IN ),
which are determined experimentally according to predeter-
mined bounds for average errors (rMIN , rMAX ). This is done
by considering (12) and modifying the gain along the desired
movement trajectory according to the subject’s performance.
The feedback gain is updated in a discrete manner, at the end of
every single-movement task. The following difference equation
was used to update the scalar feedback gain kDi , j

, for the task
i, for the jth DOF:

kDi , j
= (1 − 1/τ)kDi−1 , j

+ A/τ (14)

where τ is an update constant (units of task numbers), and A
is the convergence value of the first-order difference equation,
which is modified according to the relation

A =

⎧
⎪⎪⎨
⎪⎪⎩

kDM IN , j
, if α < 0

(1 − αj )kDM IN , j
+ αjkDM A X , j

, if 0 ≤ α ≤ 1

kDM A X , j
, if α > 1

(15)
where αj is defined with the linear relation

αj =
rav ,j − rmin,j

rmax,j − rmin,j
(16)

where rav ,j is the average error of the subject in DOF j during
a single movement task.

IV. DEFINITION OF A DESIRED TRAJECTORY

Wrist movements have relevant dynamical differences com-
pared to shoulder and elbow movements [25], [26]. It is thus
reasonable to expect that kinematic synergies observed for pla-
nar shoulder and elbow movements might not be fully replicated
in wrist movements. In particular, a recent study [27] measured
velocity profiles of wrist pointing movements involving wrist FE
and RUD, using nonlinear least-square fitting as a benchmark to
compare different analytic forms of velocity profiles. A major
finding of that study was the tendency of asymmetric profiles
to provide improved goodness-of-fit results, compared to pro-
files with inherent symmetry, such as the minimum jerk profile.
Some methodological limitations (i.e., nonunicity of the fit, de-
pendence of the solution on the initial parameters given for the
fit, tendency of estimates to converge to velocity profiles with
nonzero initial and final velocities) and the inherent variability
observed in wrist pointing movements prevent drawing strong
conclusions, such as the definition of a nominal physiological
velocity profile. However, the observed asymmetry in velocity
profiles seems to be a common trait of wrist pointing motion
that needs to be considered when defining a desired trajectory
for robot-aided rehabilitation applications.

A. Experimental Study With Healthy Subjects

In order to define a physiological representation of the desired
wrist movement profile during pointing movements, to be em-
ployed for the adaptive control scheme presented in this paper,
we conducted an experimental study with healthy subjects.

1) Protocol: The experiment involved seven healthy male
individuals, ages 23–29 years, who were asked to perform move-
ments in FE or RUD using the RiceWrist. During the experi-
ment, the RiceWrist was powered OFF and used only in regis-
tration mode, minimally perturbing subjects’ movements due to
its intrinsic backdriveability.1 A graphical display was provided
to visually guide subjects during the execution of a point-to-
point movement. Two experiments were performed with each
subject, allowing separate analysis of wrist FE and RUD move-
ments. For either movement, two target locations were used,
corresponding to a displacement away from the center of the
display either to the right or left (FE), or up and down (RUD).
The center of the display corresponded to the neutral wrist posi-
tion. A target would change color from black to blue to suggest
a movement toward that target. For the first 0.75 s, the target
would remain blue, eventually turning to red, to indicate that
a pointing movement toward that target should last for 0.75 s.
The target remained red for 0.75 s, before turning black as the
next target changed color to blue. Eighty targets per DOF were
presented in a random order; after every peripheral target, the
next movement was always imposed to be toward the central
target. Movement extent was set to 25◦. Subjects were allowed
to practice freely with the device until they felt comfortable with
the device and the visual display, and after this practice session,
data collection began.

1Torques required to back drive the RiceWrist are on the same order of those
of the device used in [27]
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2) Data Analysis: Due to the inherent unidimensionality of
the task (the maximum straight line deviation of successful
movements was lower than 0.5◦), velocity profiles were cal-
culated as time derivatives of the measured Euler angles, us-
ing the X-Y-Z sequence in moving frame. Encoder data were
acquired continuously at 1000 Hz; velocity profiles were ex-
tracted in postprocessing using a Savitzky-Golay filter, per-
forming a local fourth-order polynomial fit, in a moving win-
dow of amplitude 200 ms. Having calculated the instant tmax
with maximum instantaneous velocity vmax , segmentation of
reaching movements was performed by defining the times tin
and tend of movement start and end, respectively, by search-
ing the minimum and maximum times in which the condition
|v(t∗)| > 0.05 · |v(tmax)| was verified in a continuous range
comprising the time tmax . Segmented movement profiles were
then visually inspected in order to ensure evaluation of move-
ment profiles containing a single peak, following the same pro-
cedure reported in [27]. One hundred and four out of 638 tasks
(16%) were discarded for FE, and 187 out of 622 tasks (30%)
were discarded for RUD movements. To account for different
movement durations, computed times (hereafter referred as t′)
were mapped into a normalized temporal [0,1] range.

Two indices of symmetry of the acquired velocity profiles
were considered. The first index was peak location, defined
tpeak = t′max . The second index was skewness, defined for a

probability distribution function as skewness = E[( (X−μ)
σ )3 ].

In order to compute skewness, the velocity profile was normal-
ized to have unitary area and skewness computed numerically
from the acquired velocity profile, assuming the latter as the
probability distribution.

The calculated symmetry indices were subject to statistical
inference tests. A Jarque–Bera test [28] was applied in order
to test the null hypothesis so that the samples come from a
normal distribution with unknown mean and variance. Due to
nonnormality of the measured indices, two nonparametric tests
were then applied: the Wilcoxon signed-rank [29] and the sign
test [30], in order to test whether both indices of symmetry
come from a distribution with a median corresponding to that
of a symmetric profile.

3) Results: Symmetry indices for the 969 completed tasks
are reported in Fig. 4. The mean value of the measured
skewness equals −0.041 (standard deviation: 0.185), while
the mean value of peak location index tpeak equals 0.52 (stan-
dard deviation: 0.078). Both indices suggest the prevalence of
asymmetric profiles with a negative skewed distribution. The
Jarque–Bera test was applied to test the normality of distribu-
tion of both symmetry indices, showing a very high-statistical
significance for the rejection of the hypothesis that the symme-
try indices are normally distributed (p < 0.001 in both cases).
A Wilcoxon signed-rank test was then used to test the null hy-
pothesis that the measured indices of symmetry come from a
distribution with a median corresponding to that of a symmetric
profile (skewness = 0 and tpeak = 0.5). Both tests rejected the
null hypothesis with strong statistical significance (p < 0.001)
in both cases, giving the following ranges for the median of
computed indices of symmetry, at the p < 0.05 confidence
level: skewness = −0.05 ± 0.01, tpeak = 0.528 ± 0.005.

Fig. 4. Histograms of the extracted indices of symmetry, obtained combin-
ing results from the FE and RUD experiments. Skewness distribution mean is
−0.041, standard deviation equals 0.185, while peak percentage mean is 0.52,
with standard deviation 0.078

Ultimately, due to the asymmetric distributions of both indices of
symmetry considered, the sign test was eventually used, reject-
ing the hypothesis of symmetric movement profiles (p < 0.001
in both cases), and giving the following estimate of medians,
at the p < 0.05 confidence level: skewness = −0.06 ± 0.012,
tpeak = 0.53 ± 0.005, thus giving evidence for the asymmetry
of single peak wrist pointing profiles.

B. Definition of a Nominal Trajectory for Wrist
Pointing Movements

Despite the abundance of proposed analytical representation
of wrist pointing movement velocity profiles [31], successful
integration in a robot control scheme introduces several require-
ments, such as continuity and ease of computation, that were
not necessarily considered in previous studies. As a working
hypothesis to demonstrate our control approach, we defined the
desired movement profile using the beta function as

v(t) = P1(t − P2)P3 (P4 − t)P5 , P2 ≤ t ≤ P4 . (17)

As proposed in [32], the beta function is a convenient func-
tion that can be used to accurately describe and synthesize both
human and robot movements: it can represent either symmet-
ric or asymmetric movement profiles, and its parameters can be
tuned very easily in a decoupled fashion. P2 indeed corresponds
to the time of movement start, P4 represents the time of move-
ment end, P1 is a scaling factor that can be used to represent
movements of different extents, and finally, P3 and P5 can be
modified in order to obtain a given degree of (a)symmetry. In
particular, the location of the single peak in the velocity profile
can be calculated as

tpeak,β =
P3P4 + P2P5

P3 + P5
(18)

while the profile skewness can be calculated as

skewnessβ = 2
(P5 − P3)

√
P3 + P5 + 3

(P3 + P5 + 4)
√

(P3 + 1)(P5 + 1)
. (19)
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Fig. 5. Results of least-square fitting between the mean profile obtained from
the 969 successful trials, normalized in amplitude and time, and a beta function
profile defined by (17), with error bounds representing one standard deviation
above and below the mean value. R2 = 0.9998.

Finally, parameter P1 accounts for movements of different ex-
tent, considering the following relation:
∫ P4

P2

v(τ)dτ = P1
(−P2 + P4)1+P3 +P5 Γ(1 + P3)Γ(1 + P5)

Γ(2 + P3 + P5)
(20)

where Γ(·) is the gamma function. Equations (18)–(20), in com-
bination with the initial and final value conditions

v(t = P2) = v(t = P4) = 0, P2 < P4 (21)

show that a generic, asymmetric, single-peaked movement pro-
file of any duration td can be represented as (17), by setting
parameter P2 = 0, parameter P4 = td , parameters P3 and P5 to
verify some conditions on profile symmetry, and finally, modu-
lating parameter P1 in order to generate smooth movements of
different extent (20).

The proposed approach allows the definition of a smooth and
natural desired trajectory for wrist movements in free space.
Fig. 5 shows that the beta function can be successfully used to
represent wrist movements during pointing tasks. Least-square
fitting has been applied to the mean profile extracted during the
experiments reported above (velocity profiles in the normalized
time domain were normalized in amplitude), and a goodness-
of-fit coefficient R2 = 0.9998 was found.

C. Online Recalculation of the Desired Trajectory

Special care was taken to avoid the application of forces re-
sisting directed movements toward the target, in the case in
which the subject is actually “performing better,” compared to
the previously defined “nominal” movement. For this reason,
an explicit real-time trajectory recalculation routine was imple-
mented, which guarantees the recalculation of trajectories re-
specting the asymmetry observed in healthy individuals during
wrist pointing movements and generates a position profile that
is both continuous and time-differentiable. In order to increase
speed of computation with consequent possibility of real-time

implementation, the online recalculation of desired trajectory
was determined through piecewise polynomial functions, whose
parameters can be calculated using algorithms requiring the so-
lution of a set of linear equations.

Defining yp(t) the position of the subject measured by the
device, and ynom(t) the nominal desired trajectory with target
position yt , we define t1 as the time of trajectory recalculation,
i.e.,

t1 : |yp(t1) − yt | < |ynom(t1) − yt |. (22)

If t1 exists, the trajectory ynom(t) is substituted by a new desired
trajectory yrecalc(t). The goal of trajectory recalculation is to
provide a continuous and differentiable function, with zero final
velocity and acceleration, with possibility to control both the
location of the velocity profile peak (occurring at t = t2) and of
movement duration, to provide continuous levels of challenge
to the user.

In the implemented trajectory recalculation scheme, we dis-
tinguish between two cases. In the first case, t1 < t2 , and the
desired trajectory is constructed as a piecewise continuous func-
tion, defined as two fourth-order polynomials S1 and S2 , defined
in the intervals [t1 , t2 ] and [t2 , t3 ], as follows:

yrecalc(t) =

{
S1(t − t1), if t ∈ [t1 , t2 ]

S2(t − t2), if t ∈ [t2 , t3 ].
(23)

The ten constants defining polynomials S1(t) and S2(t) are
defined by solving a linear system deriving from the following
ten constraint equations:

S1(t1) = yp(t1), S ′
1(t1) = ẏp(t1), S ′′

1 (t2) = S ′′
2 (t2) = 0

S2(t3) = yt , S ′′′
1 (t2) = S ′′′

2 (t2), S ′
1(t2) = S ′

2(t2)

S1(t2) = S2(t2), S ′
2(t3) = 0, S ′′

2 (t3) = 0.

The imposed conditions guarantee class C3 of the function in the
interval [t1 , t2 ], zero final (i.e., t = t3) velocity and acceleration,
continuity of the desired position profile with yp(t) measured
before recalculation, and generate a velocity profile with a peak
at the desired time t2 . In the second case, t1 > t2 , and a third-
order polynomial profile S3(t) is defined through interpolation
between the recalculation point t1 and the final point t3 . The
described algorithm can be implemented in real time in a com-
putationally efficient way since it requires solution of a linear
system of equations, with a maximum order of ten (the order
drops to four for the simpler interpolation case t1 > t2).

A simulation experiment (see Fig. 6) shows the performance
of the trajectory recalculation algorithm for t3 = 0.95 (5% re-
duction of allocated time), and tpeak = 0.52 (moderate profile
asymmetry). The required continuity of the profiles in both po-
sition and velocity is achieved.

Real-time implementation also allows for modulation of pa-
rameter t3 (total allocated time), which can be modified at every
recalculation as

t3(k, i) = t3(k − 1, i) − S(k)T (24)

where S is a binary flag, whose value of one at iteration k indi-
cates recalculation at that iteration, and T defines the decrease
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Fig. 6. Trajectory recalculation for random values of t1 and yp (t1 ), (top)
position profile, (bottom) velocity profile. Initial conditions are represented by
circles, with initial derivatives ẏp (t1 ) symbolized by black lines crossing the
circle, around it. Profiles recalculated through piecewise polynomial interpola-
tion (t1 < tp eak ) are reported in blue, while those recalculated through simple
polynomial interpolation (t1 ≥ tp eak ) are reported in red. The green lines re-
port the nominal position and velocity profiles ynom , with target time t3 = 1.
Recalculated profiles have a reduced target reaching time t3 = 0.95, compared
to the nominal profile, and have the velocity peak at tp eak = 0.52.

in t3 introduced by one occurrence of a recalculation. For every
target reaching task i, the initial allocated time t3(1, i) can be
set evaluating a binary flag R(i) that is true when trajectory re-
calculation occurs during target reaching task i, and multiplying
by a constant Δ > 1 that increases allocated time as

t3(1, i) =

{
t3(end, i − 1), if R(i − 1) = 1

Δt3(end, i − 1), if R(i − 1) = 0
(25)

After a successful movement, the resulting value of t3 is
passed for the generation of the new desired trajectory of the
following target by imposing P4 = t3 and calculating the other
constants using (18–20).

The recalculation steps described above were integrated in the
real-time controller as follows. Before each movement starts, a
desired profile is constructed as the integral of the beta func-
tion velocity profile, with t3 determined as in (25), and with
a specified initial time t3(1, 1). The system continuously mea-
sures the position of the handle; when recalculation occurs (i.e.,
condition (22) is verified), the desired trajectory is computed as
a piecewise polynomial function, using (23), and parameter t3
is updated as in (24), until the current movement is completed
and the updated value of parameter t3 is passed for the next task
using (25).

V. EXPERIMENTAL VALIDATION

Experiments have been conducted to validate the developed
controller, taking into special account the novel features intro-
duced in the current implementation: the feedback gain modi-
fication algorithm for the adaptive controller and the trajectory
recalculation. Additionally, demonstration of the simultaneous
implementation of the two modules is presented and a detailed
analysis of the controller performance is provided. The con-
troller was implemented in Simulink (The MathWorks, Inc.),
software translated into real-time code using QuaRC (Quanser

Inc.) and executed at a sampling rate of 1kHz. All experimental
results are presented for isolated movements of one of the DOFs
of the robot, FE of the wrist, since we anticipate rehabilitation
protocols to target individual DOFs of the RiceWrist, rather
than coordinated movements, since studies suggest that repet-
itive isolated movements have positive effect on the results of
the motor rehabilitation of subjects with stroke [4]. This partic-
ular DOF is chosen to demonstrate the feasibility of our control
implementation on the portion of the RiceWrist comprising the
closed kinematic chain.

A. Experiment I: Validation of the Adaptive Controller

We first aimed at assessing whether the modified adaptive
controller presented in Section III-A is able to estimate end-
effector interaction forces Fp . In particular, we sought to deter-
mine if the implemented performance-dependent modification
change in feedback gains affects the quality and accuracy of
force estimation.

In Experiment I, we used a linear extension spring connected
on one side to the robot handle, with the other side of the spring
attached to a fixed frame. This setup was meant to provide a
reproducible model of an impaired subject with stiff tendons.
The spring is connected so that it is at its equilibrium point
when the robot is approximately at its neutral configuration,
and resists movement only in the wrist flexion region (positive
FE), while it is not engaged for extension movements. The
spring provides an approximate rotational stiffness, in robot
end-effector coordinates, of 1.302 N ·m/rad.

For the first part of the experiment, Experiment I-a, a si-
nusoidal desired trajectory with 22◦ amplitude and 0.5 Hz
frequency is assigned for FE rotation while other joints
are kept in a neutral pose (see Fig. 2). The adaptation
gain Γ−1 (diag(0.0025 0.0025 0.0025 0.0025)N · m/rad), Λ
(diag(60 6 50 20) 1

s ), and KD (diag(10 2.5 1.5 1.5)N · ms/rad)
are chosen experimentally such that the average steady state
position error is less than 0.45◦ and the estimation of the feed-
forward part converges in approximately 140 s.

Fig. 7(a) shows the position error values for the first and last
10 s of Experiment I-a, and Fig. 7(b) shows the feedforward
and feedback part of the control input in task space. The in-
crease of the feedforward part in the region in which the spring
is maximally deformed indicates that the adaptive controller
successfully estimates Fp .

In order to assess the quality of force estimation, we ana-
lyzed the estimated values of unknown parameters related to the
Gaussian RBFs after the controller reached steady state. Since
Experiment I-a involved only a rotation of the FE joint, with
the other joints kept at 0◦, we considered only the values of the
five RBFs that are involved in this movement located at 0◦ for
the RUD and PS joints, and at −20◦, −10◦, 0◦, 10◦, and 20◦ for
the FE joint. Because the linear spring resists the movement
in the positive direction, the estimated values for 0◦, 10◦, and
20◦ are expected to show a linearly increasing trend, while
RBFs in the negative direction are unloaded by the spring and
thus should estimate a negligible torque, determined mainly by
unmodeled effects. Fig. 8(a) shows the converged values of the
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Fig. 7. Experiment I-a: Validation of the adaptive controller. (a) Errors for
the first and last 10 s. Smaller error values can be achieved as the controller
estimates the forces coming from the subject. (b) Feedforward and feedback
components of the control input in task space. As the estimation progresses, the
feedback decreases and feedforward dominates the response. Note that control
input value is larger when the spring is resisting the movement.

estimated Gaussian RBFs amplitudes, which agree well with
the expected magnitudes.

Finally, we analyzed whether the implemented feedback gain
modification algorithm compromises force field parameter es-
timation, compared to state-of-the-art constant feedback gain
adaptive controllers. For this reason, in Experiment I-b, different
KD values are used for the control law, including the adaptive
modification of the feedback gains described in (9). Fig. 8(b)
presents the average of the estimated values for the last 20 s
of Experiment I-b for different kD,F E values. The presented
values are coherent with each other, as expected, with a maxi-
mum deviation of 0.1 N·m that is caused mainly by modeling
inaccuracies such as friction.

B. Experiment II: Validation of the Online Trajectory
Recalculation Algorithm

Experiment II was conducted with one healthy subject in or-
der to validate the real-time implementation of the described
trajectory recalculation algorithm. The device was back-driven
by the subject, who was asked to complete wrist pointing move-
ments involving only wrist FE, with targets sequentially pre-
sented. The subject was instructed to reach the target as fast as
he could. Therefore, t3 was initially set to 2 s, ΔT was set to
0.002 s, and Δ was set to 1.1. The resulting pattern is shown
in Fig. 9, showing that the trajectory recalculation algorithm is

Fig. 8. Experiment I-b: Validation of the adaptive controller. (a) Converged
values of Gaussian RBFs located at μn = −20◦, −10◦, 0◦, 10◦, 20◦ for the FE
joint in Experiment I-a. (b) Estimated values for the last 20 s of Experiment I-b
for different KD values. The presented values are coherent with each other with
a maximum deviation of 0.1 N·m that is caused mainly by modeling inaccuracies
such as friction.

Fig. 9. Experiment II: Validation of real-time trajectory recalculation. The
subject initially moves faster than the desired trajectory, causing several re-
calculations with corresponding decrease in total allocated time t3 . After a
transient, the total time remains roughly constant at 0.8 s.

capable of reducing the allocated time when the subject is con-
tinuously overshooting the desired trajectory (i.e., in the early
trials, 2.2 < t < 20), and then increasing the time when the par-
ticipant movements lag behind the nominal profile (i.e., after
20 s).

C. Experiment III: Validation of the AAN Controller
Combined With the Online Trajectory Recalculation Algorithm

In Experiment III, the validation of the subject-adaptive
controller, including both the AAN controller and the online
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Fig. 10. Experiment III: Validation of the AAN controller combined with the
online trajectory recalculation algorithm, for the experiment with five healthy
subjects. (Top) Bar plot of the feedback gain value during each trial. (Bottom)
Total allocated time for each trial (at the beginning of the trial). Gray-shaded
area refers to the perturbation on, subject-passive phase. After 25 trials, the
perturbation ceases and the subject is asked to complete the visually guided
movements.

trajectory recalculation algorithm, was conducted with five
healthy subjects, ages 23–30, interacting with the robot with
their dominant arm. To explicitly test the capability of the
controller to accommodate a subject whose force capabilities
rapidly change during therapy, we structured the validation ex-
periment in two phases. In the first phase, the subject was asked
not to interfere with the robot, which was controlled through the
algorithm described in the previous sections. During this phase,
the robot applied a modified control action Fr,mod = Fr + c,
where Fr is the control input defined in (3), and c is a constant
task space applied torque that mimics the action of a subject.
After 60 s, c was instantaneously set to zero, and the subject was
asked to move intentionally as triggered by the visual display.2

The simulated instantaneous change of Fp represents an exag-
gerated scenario of a subject rapidly undergoing improvement of
functional capabilities during therapy. We show that the subject-
adaptive controller provides the desired characteristics for both
modification of the feedback gain and update of the allocated
time required to complete the trial.

During the perturbation on, subject-passive phase (shaded
in gray in Fig. 10), the feedback modification algorithm first
increases the assigned feedback gain, and as the adaptive con-
troller estimates the constant task-space torque, decreases the
gain until it settles down to a roughly constant value. During
the perturbation off, subject active phase (not shaded in Fig. 10)
c = 0, the subject is required to actively move. In this phase,
kD shows first-order decay dynamics, with update constant de-
termined by parameter τ in (14). The maximum allocated time
t3 remains roughly constant during the perturbation on, subject
passive condition, rapidly converging to a steady-state value

2The following set of controller parameters was used: kD ,FE (1) =
5 · 10−3 N ·ms/rad, kM IN ,FE = 1 · 10−3 N ·ms/rad, kM AX ,FE = 2 ·
10−2 N ·ms/rad, rM IN ,FE =0.5 rad/s, rM AX ,FE =15 rad/s, τ = 3,
c =0.2 N ·m, t3 (1, 1) = 2 s.

within 10–15 trials after the transition to the subject-active con-
dition (mean across all subjects 1.18 s, standard deviation in the
last 12 trials 0.19 s). Higher variability in the dynamics of t3
reflects different personal preferences in the accomplishment of
the trial, whose “optimal” duration was not cued or controlled
by any means. Approximately 10–15 trials after the entry in
the subject active condition, however, t3 did not significantly
change within subjects (maximum standard deviation of t3 in
trials 15–25 in the subject active phase equals to 6% of the mean
value).

VI. DISCUSSION AND CONCLUSION

We have presented the development of a subject-adaptive
controller that features an AAN controller with a feedback gain
modification algorithm and a real-time trajectory generation
algorithm. Together, these novel features enable the application
of this controller to the RiceWrist robotic system, a therapeutic
exoskeleton robot that has been developed to rehabilitate the
distal DOF (forearm PS, wrist FE, and RUD) of the upper limb.

Previous AAN controllers for robotic rehabilitation have used
impedance controllers to regulate assisting forces based on de-
viations from desired trajectories, but cannot adapt in the case
of heterogeneous residual motor capabilities across the robot
workspace. AAN controllers based on an adaptive control ar-
chitecture offer this customization and are, therefore, selected
for our application of wrist rehabilitation, since differential abil-
ities to execute wrist FE movements are often observed in our
target populations of stroke and incomplete spinal cord injury.
To date, however, such adaptive AAN controllers have modi-
fied the feedforward part of the controller in order to adapt the
estimate of the participant’s ability to execute movements.

We introduce a novel AAN controller, designed to obtain ul-
timately bounded stability properties. Inspired by motor control
studies showing that error is likely to be a driving signal for mo-
tor learning [9], [10], we developed a novel formulation based
on feedback gain modification. Our formulation gives direct ac-
cess to modify the allowable error during movement execution,
while simultaneously estimating the forces provided by the par-
ticipant that contribute to movement execution. Experimental
results show that the controller accurately estimates environ-
mental forces such as would be applied by the subject during
therapy.

The approach presented in this paper translates the adaptive
controller approach [19] to the field of rehabilitation robotics,
and combines Gaussian RBFs for estimating interaction forces,
as previously proposed in [16], and later proposed in [14] for
rehabilitation applications. Our controller differs from [14] be-
cause we directly manipulate the admissible error bounds and
the amount of force support. Hence, instead of requiring the
errors to become zero, our controller tolerates error and manip-
ulates the error bound in a performance-adaptive way. Further-
more, the proposed approach does not apply any modification
to the adaptation law of the controller [19] and, therefore, does
not interfere with the quality of force estimation.

The formulation is based on the working hypothesis that the
subjects’ applied force field (referred to as Fp in this paper)
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is linearly parameterizable. Despite the simplifying nature of
this assumption, the approach has been introduced in [18] for
a real-time controller implementation, and in [17] for modeling
of human motor control. Our experimental results show that the
system is capable of rapidly adapting to the changing residual
capabilities of subjects, even if the actual forces applied cannot
be accurately modeled as a linearly parameterizable force field
Fp . Although alternate methods of force estimation have the
potential to provide more accurate estimation, they are model
based, introduce complexity to the control algorithm, and in-
crease computational cost. For example, the nonlinear distur-
bance observer proposed in [33] requires detailed modeling of
the system, and the force estimation model proposed in a more
recent study [34] requires both modeling of the system and
measurement of the end-effector acceleration.

Because the RiceWrist is used to rehabilitate movements of
the distal upper extremity, we must ensure that the desired tra-
jectories are physiologically appropriate for wrist movements.
Much of the prior literature in trajectory generation for upper
limb rehabilitation robotics is based on the notion of optimally
smooth (minimum jerk) movements. Such characteristics of up-
per limb movements have been reliably demonstrated for whole
arm reaching tasks evaluated in task space. However, recent find-
ings have indicated that the same characteristics are not observed
in point-to-point reaching movements of the wrist joint. There-
fore, we have presented results of an experiment with healthy
subjects in order to define a physiological representation of a
desired wrist movement profile that can be employed with our
AAN controller. The resulting asymmetric single peak wrist
pointing profiles are represented with beta functions, which fa-
cilitate online recalculation during movement execution. The
online trajectory recalculation algorithm is presented and shown
to be feasible for implementation with the RiceWrist.

Finally, the combination of the proposed AAN controller
with feedback gain modification and online trajectory recal-
culation algorithm is validated through experiments involving
five healthy subjects. Experimental results demonstrate that the
proposed approach provides variable levels of mechanical as-
sistance, when the subject is able to complete the movement
on his own by estimating the forces provided by the subject,
adapts the feedback gains so as to regulate the assistance in a
performance-adaptive way, and updates the desired trajectory in
real time based on the capabilities of the subject, as estimated
via the AAN controller.

Future work will focus on the implementation of the
RiceWrist with the modified adaptive AAN controller and on-
line trajectory recalculation in a clinical setting, where we plan
to validate the efficacy of our controller for rehabilitation of
the distal upper limb after neurological injury, such as stroke or
incomplete spinal cord injury.

APPENDIX

We follow the formulation presented in [21] to derive an ac-
curate dynamical model of the parallel portion of the RiceWrist.
The dynamic modeling approach is based on separating a
generic parallel chain into a sub-set of rigid bodies or serial

structures, described in terms of n′ generalized coordinates q′

(n′ > n). After this operation, the system is actually composed
of a collection of isolated dynamical systems (that can be either
open chains with a known dynamical model or just isolated rigid
bodies), each satisfying an equation of the form

M ′(q′)q̈′ + C ′(q′, q̇′)q̇′ + g′(q)′ = 0. (26)

The goal of this approach is to find an analytical transformation
between the matrices representing the model of the isolated
system in (26) and the desired dynamical model expressed in
(1). In order to do this, we need to express the n′ − n constraint
equations, that for a holonomic system can be written in the
form

φ(q′) = 0. (27)

Equation (27) shows that the generalized coordinates q′ are
not in general independent, but are restricted to a subspace of
�n , namely to the domain U′ = {q′ ∈ �n : φ(q′) = 0} and are
named dependent generalized coordinates.

Normally, it is possible to choose a set of n independent gen-
eralized coordinates x among the n′ coordinates q′. In this case,
the mapping between x and q′ can be expressed by a selection
function such that x = α(q′). Combining this result with (27),
the complete kinematic model of the parallel manipulator can
be expressed as

[
φ(q′)

α(q′)

]
= ψ(q′) =

[
0

x

]
. (28)

Accordingly, we can define the Jacobian matrix for to the gen-
eralized model as

ψq ′(q′) =
∂ψ

∂q′
. (29)

When the manipulator is not in a singular configuration (i.e.,
q′ ∈ U ′ : det[ψq ′(q′)] �= 0), the differential mapping between
generalized and independent coordinates is expressed as

q̇′ = ρ(q′)q̇ (30)

where

ρ(q′) = ψ−1
q ′ (q′)

[
0(n ′−n)×n

In×n

]
. (31)

Under this formalism, it can be shown that a parallel system
can be modeled in the form of (1), by calculating B, C, and g
starting from the known functions B′, C ′, and g′ and imposing
the kinematic constraint as

M(q′) = ρ(q′)T M ′(q′)ρ(q′)

C(q, q̇′) = ρ(q′)T C ′(q′, q̇′)ρ(q′) + ρ(q′)T M ′(q′)ρ̇(q′, q̇′)

g(q′) = ρ(q′)T g′(q′). (32)

The use of the symbolic expressions shown in (32), in con-
junction with the iterative solution of the forward kinematics
problem to calculate the mapping q′ = σ(x), and with the dif-
ferential mapping q̇′ = ρ(q′)ẋ, allows simplification of the par-
allel dynamical modeling problem, into a simpler problem of
modeling m disjoint serial kinematic chains.
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The described method has been applied to the parallel portion
of the RiceWrist. For this manipulator, (27) can be expressed in
symbolic form, as a function of the generalized coordinates q′ =
[θ1 , θ2 , θ3 , α, β, γ,XC , YC , ZC , ll , l2 , l3 ]T . The model can be
converted in the end-effector frame defined by coordinates x =
[α, β, ZC ]T by 1) differentiation of the constraint equations,
2) separation of the parallel manipulator in a set of disjointed
serial chains and rigid bodies with known dynamical models,
and 3) application of (32).

Step 1 has been accomplished using symbolic calculation.
Step 2 has been accomplished by splitting the manipulator at
the level of the spherical joints, dividing the parallel manipula-
tor in three 2-DOF serial revolute-prismatic (RP) manipulators
and a rigid body, the platform B1B2B3 , which applies the in-
teraction forces and torques with the subject. For the serial RP
manipulator, the dynamical equations can be easily computed
using the Lagrangian approach, as a function of the coordinates
q′i = [θi, l1 ]T , thus obtaining

M ′
i =

[
mi(li − l0)2 + Ii + Ig,i 0

0 mi

]

C ′
i =

[
mi(li − l0)l̇i mi(li − l0)θ̇i

−mi(li − l0)θ̇i 0

]
(33)

g′i =

[
mi(li − l0)gi cos θi

migi

]

where mi refers to the mass of the sliders of the prismatic joint
with length li , Ig,i to the sliders’ baricentral moment of inertia,
Ii to the movement of inertia of the rotating part supporting the
sliders (which will later be neglected), gi is the component of the
gravity vector projected along the slider’s axis, and l0 is the half
length of the sliders. Concatenating the matrices defined above
for the three serial manipulators, and employing cardinal equa-
tions of dynamics for the platform, yields the matrices M ′, C ′,
and the vector function g′, needed for (32). Parameters reported
in (33) have been measured from CAD drawings of machined
parts, and the subject hand has been modeled as a pure inertia,
with a mass of 1 kg, providing an overly conservative estimate
of torques obtained through inverse dynamics in Section II.

REFERENCES

[1] A. Go, D. Mozaffarian, V. Roger, E. Benjamin, J. Berry, W. Borden, D.
Bravata, S. Dai, E. Ford, C. Fox, S. Franco, H. Fullerton, C. Gillespie,
S. Hailpern, J. Heit, V. Howard, M. Huffman, B. Kissela, S. Kittner, D.
Lackland, J. Lichtman, L. Lisabeth, D. Magid, G. Marcus, A. Marelli, D.
Matchar, D. McGuine, E. Mohler, C. Moy, M. Mussolino, G. Nichol, N.
Paynter, P. Schreiner, P. Sorlie, J. Stein, T. Turan, S. Virani, N. Wong, D.
Woo, and M. Turner, “Heart disease and stroke statistics—2013 update:
A report from the American Heart Association,” Circulation, vol. 127,
pp. e6–e245, 2013.

[2] National Spinal Cord Injury Statistical Center Report, “Spinal cord injury
facts and figures at a glance,” J. Spinal Cord Med., vol. 36, no. 2, pp. 170–
171, 2013.

[3] M. Berkowitz, Spinal Cord Injury: An Analysis of Medical and Social
Costs. New York, NY, USA: Demos Medical Publishing, 1998.
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