
Implementing Haptic Feedback Environments from High-level Descriptions ∗

Angela Yun Zhu, Jun Inoue, Marisa Linnea Peralta, Walid Taha
Department of Computer Science, Rice University

Houston, TX 77005, USA
angela.zhu, jun.inoue, mlp3, taha@rice.edu

Marcia K. O’Malley, Dane Powell
Department of Mechanical Engineering and Materials Science

Rice University, Houston, TX 77005, USA
omalleym, danep@rice.edu

Abstract

Haptic feedback can be a critical component of vir-
tual environments used in cognitive research, rehabilita-
tion, military training, and entertainment. A limiting fac-
tor in the innovation and the acceptance of virtual environ-
ments with haptic feedback is the time and cost required to
build them. This paper presents a development environment
called iAcumen that supports a new approach for program-
ming such systems. This approach allows the developer to
directly express physical equations describing the underly-
ing dynamics. By raising the level of abstraction for the
developer, we avoid many of the problems that limit the ef-
fectiveness of traditional approaches.

1 Introduction

Haptic feedback systems are an important class of vir-
tual environments. Haptic feedback is force feedback in a
human-computer interface [22], relaying realistic tangible
sensations to a user. In a virtual environment, haptic feed-
back augments visual feedback to allow the user to push,
pull, feel, and manipulate virtual objects. The application
of haptic interfaces in areas such as computer aided design
and manufacturing (CAD/CAM), design prototyping, and
production evaluation allows users to interact with and visu-
alize virtual objects before manufacturing them. Along the
same lines, the users of simulators for training in surgical
procedures, control panel operations, and hostile work envi-

∗This research was sponsored by the NSF under Award 0439017,
0720857, and 0747431. Views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of NSF, or the U.S. gov-
ernment.

ronments benefit from increased sensations of realism in the
virtual environment that provides force feedback. The hap-
tic display, or force-reflecting interface, is the device that
allows the user to interact with a virtual environment. The
haptic interface consists of a real-time simulation of a vir-
tual environment and a manipulator, which serves as the in-
terface between the human operator and the simulation.

Today, the vast majority of the programming needed to
make a haptic system operational is carried out using ad
hoc methods, and in systems-programming languages such
as C++. This approach has at least two shortcomings. First,
for the resulting system to be reliable or efficient, advanced
C++ expertise is generally needed. This is a burdensome
requirement to place on the developers of such a system, be
they engineers or students. Second, the development time
using ad hoc approaches tends to be significant, slowing re-
search and innovation that depends on having a functioning
haptic system by sometimes months or more. This depen-
dence on expert developers is easier to envision when we
look closely at what is involved in programming such sys-
tems. Here are some examples:

1. Device interfacing involves building a layer of soft-
ware on top of device drivers to carry out digital-to-
analog and analog-to-digital conversions.

2. Modeling device kinematics generally requires intro-
ducing the various appropriate abstractions for repre-
senting the human user, coupled via the haptic device,
in the virtual environment.

3. Simulation infrastructure involves multi-threading
for haptic and graphic rendering loops, and is device-
specific. While generic simulation infrastructure of-
ten exists, it is often the case that there is no guar-
antee on the physical fidelity of such generic engines.

Figure 1. The iAcumen Environment

In essence, simple simulation engines are built from
scratch to ensure their conceptual soundness.

4. Virtual environment modeling is required to simulate
the kinematic and dynamic behavior of the desired vir-
tual system or scene, and to track interactions between
the human and the objects in the environment.

While some libraries and simulation engines such as CHAI
(Computer Haptic Active Interface) 3D [5] are now avail-
able, even the most basic offerings require substantial
knowledge of C++ for industrial or research grade use.
Tools such as MATLAB and Simulink offer a potentially
higher level interface to modeling dynamics, but are gen-
erally too slow and often not expressive enough to de-
scribe dynamics succinctly. With such tools, development
of graphics to accompany the haptic simulation still poses a
significant amount of labor.

1.1 Contributions

This paper presents an approach to programming hap-
tic systems that avoids these problems. The centerpiece of
our approach is a development environment called interac-
tive Acumen, or iAcumen for short (Section 2). The key
features of this environment include high-level mechanisms
for implementing a virtual environment by describing:

1. The physical dynamics of virtual objects. The physical
description language, PhyDL, allows us to directly de-
scribe dynamic equations governing the system being
modeled.

2. Events and their interaction with virtual objects. Mod-
eling of discrete events and control algorithms uses
the reactive/interrupt description language, RIDL, in
an event-driven programming paradigm.

3. Coupling with external devices, including haptic de-
vices, visual tools, and other application codes. An

interface for interaction between user and virtual envi-
ronment allows conceptually clear access to the low-
level codes needed to inject these external devices into
the real virtual world.

4. Real-time simulation. In iAcumen, high-level param-
eters are used to specify the speed of the simulation.
This specification becomes part of the specification of
the virtual environment.

The system is realized by a series of automatic transforma-
tions that convert the high-level descriptions into a form that
is directly machine executable, and a compilation process is
used for converting control algorithms written in RIDL to
executable form (Section 3). To illustrate the approach, we
present the complete descriptions of the codes needed to re-
alize two haptic tasks that have been used elsewhere in the
literature (Section 4).

2 The iAcumen Environment

A physical system with haptic feedback usually has three
parts: continuous behaviors, discrete events, and haptic de-
vices. Building such a system requires significant time and
effort. To ease this building process, we propose iAcumen,
which allows developers to realize such environments in a
declarative way.

2.1 Overview

The iAcumen environment has three components (Fig-
ure 1). PhyDL is used to describe continuous behaviors in
the system, and RIDL is used to describe discrete events.
A PhyDL program directly captures the physical equations
describing the underlying system dynamics. A RIDL pro-
gram specifies system responses (control actions) to events.
External modules are used for interactive input and output
such as haptic feedback and object positions in the system.

2

In the rest of this section, we first show by a simple ex-
ample what an iAcumen program looks like. Then we use
this example to give a detailed explanation of iAcumen’s
language components. The syntax of PhyDL and RIDL lan-
guages can be found in the Appendix.

2.2 A Simple Example

The diagram in Figure 2 shows a simple example illus-
trating the basic features of iAcumen. A ball is attached to
a spring, and the other end of the spring is attached to the
origin. Without loss of generality, we assume the original
position of the spring is at the origin, and the natural length
of the spring is zero. The effects of gravity of the ball are
omitted. The dynamics of the system are then defined by
the following equation:

m ∗ p′′ + k ∗ p = (0, 0); (1)
Suppose the ball is initially placed at position p =

(20, 5). We wish to track the number of times the ball
crosses the y-axis (moving from the positive x-plane to the
negative x-plane). The iAcumen program to model this sys-
tem and task is shown in figure 2. On the left is PhyDL code
for the virtual system’s dynamics and on the right is RIDL
code for the controller to count the number of crosses. In-
teractions between system and controller are described as
part of PhyDL code in the external ridl section. The
external GUI section describes interactive input and
output of the system.

Figure 2. Example: Ball on a spring

2.3 PhyDL Code

Beginning with the text at the bottom of the PhyDL code,
the system section describes system equations. Mass m

and spring constant k are defined as constants which repre-
sent the physical parameters of the simulated system. Sys-
tem dynamics are defined in the same form as equation (1).
The line (x,y)=p defines x and y as the x-value and y-
value, respectively, of the ball’s position p.

The boundary section specifies the initial position
p(0) of the ball and its initial speed p’(0). In this ex-
ample we have the ball starting at position (20,5) with an
initial velocity of (0,0).

The external GUI section specifies system output to
the user. The output is the position of the ball p as a func-
tion of time, and the user can observe the movement of the
ball on the GUI. User input can also be declared in this sec-
tion, where we use keyword reads instead of writes
followed by a list of input variable names.

The external ridl section describes the communi-
cation between PhyDL code and RIDL code. Keywords
reads and writes are followed by lists of variables
that are read and written by RIDL respectively. Keyword
observes event is followed by an event name and the
rate of the occurrence of the event. We will explain how
these declarations are used in a RIDL program in next sub-
section.

Finally, the simulation section defines the starting
time and ending time of the simulation, as well as the step
size used by iAcumen’s numerical solver.

2.4 RIDL Code

The RIDL code of Figure 2 defines three variables,
namely cur, prev and crosses. We call these variables
reactive behaviors or simply behaviors since they model
system behaviors which respond to events. Every reactive
behavior has an initial value, which is the value after key-
word init, and a set of event handlers in a pair of brackets
after keyword in. An event handler has form A=>B, where
A is an event name and B is an expression used to update
the behavior value when event A happens. Event handlers
with keyword laterwill update behavior value after event
handlers without the keyword later. Thus, for example,
when event clock happens, behavior cur and crosses
will update their values before behavior prev. Temporary
names can be used for a behavior if its event handlers will
refer to the behavior’s own value. For example, crosses
is referred to as a in its own event handler.

Event clock and variable x were defined in the
external ridl section of PhyDL program. Event
clock has rate 0.1, which means it happens every 0.1
seconds. When event clock occurs, any reactive behavior
which has an event handler for event clock will update its
value. For example, cur gets the current value of x from
PhyDL whereas prev keeps the previous value of x un-
til all other updates are completed. The delayed update for

3

prev is a result of later annotation. Behavior crosses
checks whether the x value is going from a positive value
to non-positive. If so, its value is incremented, otherwise it
keeps its previous value.

RIDL specifies system behaviors that are reactive to sys-
tem events. This specification provides a natural way to
describe controllers. A controller gets feedback from the
system being controlled and sends out control signals only
when certain events happen. This is different from continu-
ous time system dynamics described in PhyDL. That is why
we have two language components in iAcumen.

2.5 External Modules

Users interact with a virtual environment through physi-
cal devices, some of which can be haptic. Physical devices
create a closed loop between the user and the virtual en-
vironment. Continuous time position and force signals are
exchanged between user and haptic device. Discrete-time
position and force signals are exchanged between the hap-
tic device and virtual environment.

Our environment provides an interface for interactive
input and output. In the PhyDL language we have an
external GUI section, where one specifies variables of
discrete signals whose values are passed between iAcumen
and the external device. We use a pointing device for user
input as positions and a visual display for 2-D animations.

3 Implementation

We implement the virtual environment described in
iAcumen by automatically transforming these high-level
descriptions into executable C code. This section explains
how this is done.

3.1 Compilation of PhyDL

The core of the PhyDL code is a set of differential equa-
tions. Numerical methods exist to solve first order differen-
tial equations on a digital computer [3, 14]. In PhyDL, we
allow differential equations with arbitrary order to be writ-
ten directly, and the user does not need to worry about the
computation order of the input equations. Thus, key tasks
in compiling PhyDL are to reduce the order of any differen-
tial equation to one, to sort out the topological order among
all the equations according to their data-flow dependencies,
and to discretize the differential equations using numerical
methods.

Step 1. Order Reduction.
A function x(t) satisfying an ordinary differential equa-

tion of order n can be written as the n-th derivative of x(t)
connected with lower order derivatives by the relation

x(n) = f(t, x, x′, . . . , x(n−1))

We transform the above equation to a set of first order
differential equations involving another set of functions
u1(t), u2(t), . . . , un(t) as

u′1 = u2

u′2 = u3

. . .
u′n−1 = un

u′n = f(t, u1, u2, . . . , un)

where ui(t) is equal to the (i − 1)-th derivative of x(t) [1].
For example, the equation

m ∗ p′′ + k ∗ p = 0

would be rewritten into

p′′ = −k/m ∗ p

and then transformed to
p′1 = p2

p′2 = −k/m ∗ p1,

which are first order differential equations.

Step 2. Topological Sorting.
A set of physical equations usually involves three types

of variables: constant and input variables, dynamic vari-
ables, and algebraic variables. Dynamic variables are those
whose derivatives appear in the model. Algebraic variables
are those whose derivatives do not appear in the model, but
their values depend on some dynamic variables.

We would like to apply numerical methods to the small-
est possible ordinary differential equations and compute the
values of all other variables as constants or from the solu-
tion of this minimal problem set. This is achieved by the
following procedure:

• We construct a graph whose nodes are the equations
and variables of the problem.

• For each equation node, we add an edge between that
node and each variable that occurs in the equation.

• We use Tarjan’s strongly connected components algo-
rithm [24] to sort the equations and find the strongly
connected components.

For example, for the following set of equations

m = 1 (2)
p′ = m ∗ p (3)
y = 5 ∗ p (4)

we get the following graph:

The graph has three equation nodes and three variable
nodes, with the edges between them as on the left of above

4

graph. Strongly connected components are shown on the
right of the graph. We then compute the value of m as a
constant, and compute p by solving the differential equa-
tion (3). The value of y is computed from the value of p.

Step 3. Discretization.
Discretization transforms continuous differential equa-

tions into discrete time difference equations. Different nu-
merical methods can be applied in this process. Currently,
three numerical solvers are implemented in iAcumen. They
use the Euler [3], RK4 [14] and BS3 [2] methods. The step
size of the solver is defined in the simulation section.

Using the Euler method as an example, the discretization
is carried out as follows. Assume that f(t, x) is continuous
in the variable x, and consider the differential equation

x′ = f(t, x)

with x(a) = x0, over the interval a ≤ t ≤ b. Euler’s
method uses the formulas tk+1 = tk + h, and

xk+1 = xk + h · f(tk, xk)

for k = 0, 1, 2, ...,m−1 as an approximate solution to
the differential equation using the discrete set of points
{tk, xk}k∈0···(m−1), with t0 = a and h = tk+1 − tk.

3.2 Compilation of RIDL

The RIDL code is a set of event handlers. The compila-
tion of RIDL takes this set of event handlers and transforms
them into a C-like language. For example, the RIDL code
on the right side of Figure 2 would be transformed to:

cur=0; prev=0; a=0; crosses=0;
if clock happens
{cur = x;
if cur<=&&prev>0 then a=a+1 else ();
crosses=a; prev=x;}

The generated code has a set of variable declarations fol-
lowed by a set of if statements. Initial values of the vari-
ables are the same as declared in RIDL code. Each if state-
ment corresponds to an event. Inside an if statement, the
first part of the code is generated from event handlers with-
out later notation, and the second part of the code is gen-
erated from event handlers with later notation in original
RIDL code. The computation order in each part is decided
by the data-flow dependencies between the variables. De-
tails of RIDL compilation can be found in [15].

4 Examples

This section presents implementations of two different
tasks in iAcumen.

4.1 The Two-ball Task

The first task we consider is a task that has been used
extensively in haptics research [16]. It uses a pointing de-
vice as an input position to control a pair of balls in a virtual
environment. The two balls are connected by a spring and
damper in parallel, as shown in Figure 3. The white ball is
a massless controller, and the black ball is a follower. The
effect of gravity on the black ball is neglected, as the sys-
tem is assumed to be acting in a horizontal plane. The user
operates the pointing device to control the white ball. The
output is the position of the black ball and the force feed-
back to the user. We display the positions of both balls on
the GUI and the appropriate force feedback is sent to a hap-
tic device. A snapshot of the GUI with this task running in
iAcumen is shown in Figure 4.

Figure 3. The Two-ball Problem

The dynamics of this system are defined as follows:

F k = k ∗ (white ball − black ball);
F b = b ∗ (white ball′ − black ball′);
F = F k + F b;
F = m ∗ black ball′′;

The PhyDL code for this system is as follows:

boundary
black_ball with black_ball(0) = (0,0),
black_ball’(0) = (0,0);

system
F_k = k * (white_ball - black_ball);
F_b = b * (white_ball’ - black_ball’);
F = F_k + F_b;
F = m2*black_ball’’;
k = 4; b = 1; m = 1;

In addition to the dynamics above, this task also intro-
duces two boxes. The user’s objective is to control the
black ball to cross these two boxes alternately by manipulat-
ing only the white ball and leveraging the dynamics of the
two-ball system. The white ball is controlled by a pointing
device, which acquires real time input from the user. The
positions of the boxes are specified in PhyDL as follows:

box1 = (350, -300); box2 = (-350, 200);

5

where box1 and box2 define the bottom-left points of the
two boxes. The default size of the boxes is 50 for each side.

The counting of the crosses is implemented in RIDL as
follows:

cur = init 0 in {clock => black_ball},
prev= init 0 in {clock => black_ball later},

We first define variables cur and prev, each of which
has initial value zero. When event clock happens, cur
and prev update their values to the current and previous
value of black ball respectively.

cross1 = init a=0 in {clock =>
if (cur in box1) && !(prev in box1)
then x+1 else x}

cross2 = init a=0 in {clock =>
if (cur in box2) && !(prev in box2)
then x+1 else x}

Then variables cross1 and cross2 are defined. Be-
havior cross1 checks whether the black ball has just
gone into box1 from outside when event clock happens.
If so, the value of cross1 is increased by one. Behavior
cross2 is defined similarly.

Figure 4. Visual Display for Two-Ball Task

4.2 An Inverted Pendulum Task

The second task we consider here has been used in con-
trol design with haptic feedback as a performance enhance-
ment [6]. The task uses a pointing device as force input to
a cart of mass M , on which is placed an inverted pendulum
with mass m lumped at the end of a rod of length l (Fig-
ure 5). The pendulum is subjected to the effect of gravity,
and can rotate freely about the pin joint connecting it to the
cart. The cart is externally controlled by the pointing device
in the horizontal as if there is a spring connected between
the cart and the pointing device. Thus, the distance between
the pointing device and the cart on the x-axis generates a
spring force F . The purpose of the task is to control the cart
to stabilize the position of the pendulum, so that the angle
between the rod and vertical remains small. The positions
of the cart and the pendulum are visualized on the GUI and
force feedback is sent to a haptic device.

The dynamics of the system are as follows:

Figure 5. The Inverted Pendulum Problem

F = (M + m) ∗ x′′ + m ∗ l ∗ (a′′ ∗ cos(a)
−a′ ∗ a′ ∗ sin(a));

0 = m ∗ l ∗ (−g ∗ sin(a) + x′′ ∗ cos(a) + l ∗ a′′);

The PhyDL code implementing the equations is as fol-
lows:

boundary
a with a(0) = 0.1, a’(0) = 0;

system
F = (M+m)*x’’ + m*l*(a’’*cos(a)

- a’*a’*sin(a));
0 = m*l*(-g*sin(a)+x’’*cos(a)+l*a’’);
cart = (x, y); M = 10; m = 1; l = 4;
ball = cart + rotate((0, l), a);

This is the complete iAcumen specification for the dy-
namics of this task. The visual and haptic specification are
similar to the first example.

5 Related Work

The iAcumen environment has some similarities to Prob-
lem Solving Environments (PSEs) [12, 21], such as helping
the user express equations directly. Also, in iAcumen, we
have a real-time siler, which does seem typical for PSEs.
However, iAcumen also has some significant differences.
It does not try to expose the differential equation solution
techniques to the user, and in fact iAcumen tries to hide
such details from the user.

Several commercial tools are currently available for
modeling physical systems and building virtual environ-
ments. Each has its strength in some specific area, or be
powerful to some extent, but each also has disadvantages
that limit its applicability for modeling virtual environments
with haptic feedback.

Solidworks [19, 17] and ProEngineer [7] are 3D mechan-
ical CAD programs aimed at design automation and opti-
mization. These tools are widely used by product designers
and mechanical engineers for drafting their products. They
provide a systematic way for constructing solid objects and

6

assemblies. However, Solidworks and ProEngineer only
provide limited support for modeling system dynamics and
object interactions. For example, system dynamic equations
cannot be easily modeled using these tools.

In contrast, a number of tools aim at modeling rigid body
dynamics of physical systems, such as Open Dynamics En-
gine (ODE) [18]. These tools are capable of 3D visualiza-
tion and simulation of pure mechanical systems. However,
the modeling of system dynamics and control are not dis-
tinguishable from each other in these tools. In addition, sig-
nificant effort is required to translate from system dynamic
equations to programs.

Some tools for solving equations have been used for
modeling and simulation, such as Mathematica [23], SciLab
[13] and MathCAD [20]. In general, using such solutions
becomes very clumsy if the virtual environment to be mod-
eled involves both continuous behaviors and discrete events.
Additionally, these tools do not provide an interface for in-
teractive user input and output.

MATLAB/Simulink [4] is widely used for modeling and
simulation. However, it is not always obvious how to
derive MATLAB/Simulink code from physical equations.
Also, the user needs to have a deep knowledge of MAT-
LAB/Simulink to correctly interpret the result of its simu-
lations. For example, MATLAB lacks a package system,
all functions share the same global name space, and func-
tion precedence depends on the user’s MATLAB path, all of
which make it possible for the same input to give different
results for different runs.

Modelica is an equation-based, object-oriented language
for modeling physical systems [8, 10]. Physical equations
can also be easily transferred into a Modelica program.
Modelica is a specification language only and thus requires
an external computational environment to actually simulate
system response. A limited number of computational envi-
ronments support Modelica simulation, such as OpenMod-
elica [9], Dymola [10], and MathModelica [11]. All of these
environments have complex compilation processes and de-
mand the user to have a profound understanding of Model-
ica semantics. A more detailed discussion of these environ-
ments and their drawbacks can be found in [25].

6 Conclusions and Future Work

This paper presented a method for building haptic envi-
ronments at a higher-level of abstraction. The approach al-
lows us to realize virtual environments directly from phys-
ical equations that describe the dynamics of objects in the
virtual environment, augmented with very high level speci-
fications of events, event occurrences, and integration with
external hardware and software devices.

There are several areas where technical advances can be
made to iAcumen. For example, a static analysis that en-

sures that the simulation can be carried out within the spec-
ified simulation constraints would be invaluable for deliver-
ing production-quality applications that are based on iAcu-
men. We are also very interested in verifying the accuracy
of simulations, as well as in providing tools for the auto-
matic analysis of some control-theoretic properties of the
virtual systems described in iAcumen.

Finally, while this work emerged in the context of devel-
oping haptic feedback virtual environments, it appears that
there are significant potential applications in the broader do-
main of virtual environments for this approach. As such, we
expect that some of the most exciting future work will be in
exploring the range of applications for the iAcumen system.

References

[1] O. Aberth. Introduction to Precise Numerical Meth-
ods, Second Edition. Academic Press, Inc., Orlando,
FL, USA, 2007.

[2] R. W. Brankin, I. Gladwell, and L. F. Shampine. RK-
SUITE: A Suite of Explicit Runge-Kutta Codes. In
Contributions in Numerical Mathematics, pages 41–
53. World, 1993.

[3] J. C. Butcher. The Numerical Analysis of Ordinary
Differential Equations. Wiley, 1987.

[4] A. Cavallo, R. Setola, and F. Vasca. Using MATLAB,
SIMULINK and Control System Toolbox: A Practical
Approach. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1996.

[5] CHAI. http://www.chai3d.org/.
[6] H. Ching, L. Xie, J. Mao, R. Duo, and C Kong. Tele-

operation of Inverted Pendulum using Wave Variables
in the Framework of Reflection Coefficient. In SICE
Annual Conference, pages 716–721, 2008.

[7] S. S. Condoor. Mechanical Design Modeling Using
ProEngineer. McGraw-Hill, Inc., New York, NY,
USA, 2001.

[8] H. Elmqvist, S.E. Mattsson, D. Ab, and M. Otter.
Object-Oriented and Hybrid Modeling in Modelica. In
Journal Européen des Systèmes Automatisés, 2001.

[9] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nys-
trom, L. Saldamli, D. Broman, and A. Sandholm.
OpenModelica - A Free Open-Source Environment
for System Modeling, Simulation, and Teaching. In
Computer-Aided Control Systems Design, 2006 IEEE
International Symposium, volume 1, pages 1588–
1595, 2006.

[10] P. Fritzson and P. Bunus. Modelica, a General Object-
Oriented Language for Continuous and Discrete-
Event System Modeling and Simulation. In Proceed-
ings of the 35th Annual Simulation Symposium, pages
14–18. IEEE Press, 2002.

[11] P. Fritzson, J. Gunnarsson, and M. Jirstr. MathMod-

7

elica - An Extensible Modeling and Simulation En-
vironment with Integrated Graphics and Literate Pro-
gramming. In Proceedings of the 2nd International
Modelica Conference, 2002.

[12] E. Gallopoulos, E. Houstis, and J.R. Rice. Com-
puter as thinker/doer: Problem-solving environments
for computational science. In IEEE Computational
Science & Engineering, volume 1, pages 11–23, 1994.

[13] C. Gomez. Engineering and Scientific Computing with
SciLab. Birkhauser Boston, 1998.

[14] A. Iserles. A First Course in the Numerical Analysis of
Differential Equations. Cambridge Univ. Press, 1996.

[15] R. Kaiabachev, W. Taha, and A.Y. Zhu. E-FRP with
priorities. In EMSOFT ’07: Proceedings of the 7th
ACM & IEEE International Conference on Embedded
Software, pages 221–230, New York, NY, USA, 2007.

[16] A. Ko and J. Choi. A Haptic Interface using a Force-
feedback Joystick. In SICE Annual Conference on In-
strumentation, Control and Information Technology,
pages 202–207, 2007.

[17] D. Murray. Inside Solidworks. Delmar Books, 2000.
[18] ODE. http://www.ode.org/.
[19] D. C. Planchard and M. P. Planchard. Assembly Mod-

eling with SolidWorks 2008. Schroff Development
Corporation, 2008.

[20] P.J. Pritchard and R. Pritchard. MathCAD: A Tool
for Engineering Problem Solving (B.E.S.T. Series).
McGraw-Hill Higher Education, 1998.

[21] J.R. Rice and R.F. Boisvert. From scientific software
libraries to problem-solving environments. In IEEE
Computational Science & Engineering, pages 44–53,
1996.

[22] J. K. Salisbury, F. Conti, and F. Barbagli. Haptic Ren-
dering: Introductory Concepts. In IEEE Computer
Graphics and Applications, volume 24 (2), pages 24–
32, 2004.

[23] P.A. Savory. Using Mathematica to aid simulation
analysis. In WSC ’95: Proceedings of the 27th Confer-
ence on Winter Simulation, pages 1324–1328, Wash-
ington, DC, USA, 1995. IEEE Computer Society.

[24] R. Tarjan. Depth-First Search and Linear Graph Al-
gorithms. SIAM Journal on Computing, 1:146–160,
1972.

[25] S.A. Vaze, J.E. DeVault, and P. Krishnaswami. Mod-
eling of Hybrid Electromechanical Systems using a
Component-based Approach. In IEEE International
Conference on Mechatronics and Automation, vol-
ume 1, pages 204–209, 2005.

Appendix: Syntax of PhyDL and RIDL

This section presents the formal definitions of PhyDL
and RIDL syntax.

PhyDL syntax
The syntax of PhyDL is as follows.

Variable names x ∈ X
Variables v ::= x | v′

Constants c ∈ Qn

Elementary operators f ::= + | − | ∗ | / | sin | cos
| power | abs | index
| direction | rotate | proj

Logical operators ⊕ ::= > | = | < | ≥ | ≤ | 6=
Arith expressions d ::= c | v | f〈di〉 | if 〈b, d1, d2〉

| integration (d)
Boolean expressions b ::= d ⊕ d | ¬b | b || b | b &&b

External names E ∈ E ⊇ {ridl, matlab, GUI}
Module names S ∈ S
Timings T ::= starting time = c ending

time = c step size = c
Equations e ::= d = d | S〈xi〉
System modules m ::= [boundary {vi(ci) = di}]

system {ei}
Modules s ::= module S = (ports {xi} m)
Interface commands C ::= reads {vi} | writes {vi}

| {[when, rate] t = ci}
PhyDL programs p ::= {si} simulation T

{external E {Ci}} m

We use a|b or [a, b] to denote a or b, and use [a] to de-
note that a is optional (may or may not appear). In constant
definition, Q is the set of fractions, or equivalently, floating
point numbers. In the definition of arithmetic expression,
we write 〈b, d1, d2〉 to denote a sequence and 〈di〉 to denote
a sequence of d’s. We use {ai} to denote a set of a’s.

PhyDL has a module system that is not used in the paper.
Module system is useful when modeling complicated sys-
tems, where several parts of a system have their dynamics
described by same equations. For example, a robot with
multiple identical legs. The compilation of PhyDL pro-
grams with subsystems involves an instantiation step before
the compilation steps described in the paper.

RIDL syntax
The syntax of RIDL is as follows. Note that it refers to

some PhyDL definitions introduced above.

Event name I ∈ I
Passive behaviors D ::= c | x | f〈Di〉 | if 〈b, D1, D2〉
Reactive behaviors R ::= init [x =]c in {Hi}
Event handlers H ::= I ⇒ D [later]
Behaviors B ::= D | R
RIDL programs P ::= {xi = Bi}

Passive behaviors in RIDL are similar to arithmetic ex-
pressions in PhyDL, except that derivative and integration
operations are not allowed in RIDL syntax. In particular,
RIDL handles discrete time events rather than continuous
behaviors.

8

