Prior research has shown that the direction of a user’s focus affects the perception of tactile cues. Additionally, user agency over touch stimulation has been shown to affect tactile perception. With the development of more complicated haptic and multi-sensory devices, simple tactile cues are rarely used in isolation and the effect of focus direction and of user agency on the perception of a sequence of tactile cues is unknown. In this study, we investigate the effect of both of these variables, focus direction and agency, on the perception of a cue sequence.
Vibrotactile sleeves and multimodal armbands show promise as devices that can transmit information to a user through the tactile sense. In this way, individuals have the potential to receive information haptically when typical auditory or visual channels are preoccupied or unavailable. To achieve this, individuals must successfully learn the mapping between haptic cues and informational icons through cross-modal associative learning. The success of this process is limited by perceptual capabilities of users, as well as lack of neural markers to quantify the success of haptic learning.
Our sense of touch offers a useful mode of communication through haptics that can augment the often-crowded visual and auditory pathways, but haptic devices have yet to be fully integrated into garments and other soft wearables in a way that maintains the compliance and comfort of everyday clothing, resulting in a barrier to widespread adoption.
Affective haptics is an emerging field that is dedicated to the creation, analysis, and evolution of systems for capturing, conveying, and rpocessing emotions through tactile sensation. This project is focused on the application of affective haptics in emotion regulation. Emotion regulation techniques are utilized in mental health treatments for mood and anxiety disorders. We are utilizing haptics with emotionally evocative qualities to act as a biofeedback mechanism for those utilizing these techniques.