Our goals in this research project are to determine the significance of performance of inanimate tasks as a marker for robotic proficiency and assess the utility of inanimate task training on robotic skill performance. We aim to establish standardized tasks for training, define accurate metrics for performance, and assess motor skill acquisition in virtual and real environments.
It has been reported in the literature that the smoothness of human subjects' arm/hand movements vanishes as the movements become slower. Intermittencies in the movement are observed as distinct peaks in the speed profile. Doeringer and Hogan (1998) proposed two possibilities for the origin of intermittency in slow movements: (1) noise in neuromuscular circuitry, and (2) a movement planner that can only construct simple movements. They showed that the intermittency can not be due to noise or delays in visual feedback.
Vibrating muscle tendons at a range of frequencies is known to produce movement illusions in human subjects. Although there are examples in the literature on the use of vibrators to transmit simple cues such as direction information, movement illusions due to vibration have not been utilized as a method of providing illusory kinesthetic feedback. One possible main application is artificial proprioception for prosthetic devices.